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Abstract

The aim of this article is to propose a novel kernel estimator of the baseline func-
tion in a general high-dimensional Cox model, for which we derive non-asymptotic
rates of convergence. To construct our estimator, we first estimate the regression
parameter in the Cox model via a Lasso procedure. We then plug this estimator
into the classical kernel estimator of the baseline function, obtained by smoothing
the so-called Breslow estimator of the cumulative baseline function. We propose
and study an adaptive procedure for selecting the bandwidth, in the spirit of Gold-
enshluger and Lepski (2011). We state non-asymptotic oracle inequalities for the
final estimator, which reveal the reduction of the rates of convergence when the
dimension of the covariates grows.
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estimation; Goldenshluger and Lepski method, Non-asymptotic oracle inequalities;
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1 Introduction
The Cox model, introduced by Cox (1972), is a regression model often considered in
survival analysis to relate the distribution of a time T to the values of covariates. The
hazard function of T is then defined by

λ0(t,Z) = α0(t) exp(βT0Z), (1)

where Z = (Z1, ..., Zp)T is a p-dimensional vector of covariates, β0 = (β01 , ..., β0p)T the
vector of regression coefficients and α0 the baseline hazard function.

The regression parameter β0 and the baseline function α0 are the two unknown param-
eters in this model. Yet, more attention has been paid to the estimation of the regression
parameter than to the estimation of the baseline function.

There are good reasons for this. First, the Cox partial log-likelihood, introduced by
Cox (1972), allows to estimate β0 without the knowledge of α0. Secondly, the regression
parameter is directly related to the covariates. Therefore, in order to select the relevant
covariates that explain the best the survival time, we need to estimate the regression
parameter. A lot of papers deal with the problem of the estimation of β0, the number of
covariates p being large or not compared with the size of the panel n. When p is smaller
than n, the usual estimator of β0 is obtained by maximizing the Cox partial log-likelihood
(see Andersen et al. (1993) as a reference book). When the number of covariates grows,
the Lasso procedure is often considered. This procedure consists in the minimization of
the opposite of the `1-penalized Cox partial log-likelihood. Asymptotic results are stated
in Bradic et al. (2012), Kong and Nan (2012), Bradic and Song (2012). Finally, the non-
asymptotic rate of convergence of the Lasso is now known to be of order

√
log p/n, see

Huang et al. (2013).
The estimation of the baseline function α0 has been less studied. The known estimator

of the baseline function is a kernel estimator, introduced by Ramlau-Hansen (1983a;b).
We present here its form in the special case of right-censoring. Let us consider, for
the moment, that we observe for i = 1, ..., n, (Xi, δi,Zi), where Xi = min(Ti, Ci), δi =
1{Ti≤Ci}, Ti is the time of interest and Ci the censoring time. The usual kernel estimator
is then obtained from an estimator of the cumulative baseline function A0 defined by
A0(t) =

∫ t
0 α0(s)ds. This estimator is called the Breslow estimator and is defined, for

t > 0, by

Â0(t, β̂) =
n∑
i=1

δi

Sn(Xi, β̂)
with Sn(t, β̂) =

∑
i:Ti≥t

exp(β̂TZi), (2)

see Ramlau-Hansen (1983b) and Andersen et al. (1993) for details. From Â0(., β̂), the
kernel function estimator for α0 is derived by smoothing the increments of the Breslow
estimator. It is defined by

α̂β̂h(t) = 1
h

∫ τ

0
K
(
t− u
h

)
dÂ0(u, β̂), τ ≥ 0 (3)
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withK : R 7→ R a kernel with integral 1, and h a positive parameter called the bandwidth.
This estimator has been introduced and studied by Ramlau-Hansen (1983a;b) within the
framework of the multiplicative intensity model for counting processes, thereby extending
its use to censored survival data. Consistency and asymptotic normality are proven in
Ramlau-Hansen (1983b) with fixed bandwidth.

The choice of the bandwidth in kernel estimation is crucial, in particular when one is
interested in establishing non-asymptotic adaptive inequalities. State-of-the-art methods
are based on cross-validation. Ramlau-Hansen (1981) has suggested the cross-validation
method to select the bandwidth but without any theoretical guarantees. For randomly
censored survival data, Marron and Padgett (1987) have shown that the cross-validation
method gives the optimal bandwidth for estimating the density: the ratio between the
integrated squared error for the cross-validation bandwidth and the infimum of the inte-
grated squared error for any bandwidth almost surely converges to one. Grégoire (1993)
has considered the cross-validated method suggested by Ramlau-Hansen (1981) for the
adaptive estimation of the intensity of a counting process and has proved some consistency
and asymptotic normality results for the cross-validated kernel estimator. However, all the
results for the adaptive kernel estimator with a cross-validated bandwidth are asymptotic.

No non-asymptotic oracle inequalities have to date been stated for the kernel estimator
of the baseline function. In addition, to our knowledge, the construction of α̂β̂h has not yet
been considered for high-dimensional covariates. The objective of the present paper is then
twofold: whatever the dimension, we aim at proposing an estimator α̂β̂ of the baseline
function, for which we can establish a non-asymptotic oracle inequality to measure its
performances. The loss of prediction of |α̂β̂ − α0| when p increases will be quantified.

To fulfill these two purposes, the idea is to estimate first the regression parameter β0
via a Lasso procedure applied to the Cox partial log-likelihood, then to plug this estimator
in the usual kernel estimator (3) of the baseline hazard function and finally to select a
data-driven bandwidth, following a procedure adapted from Goldenshluger and Lepski
(2011). In the latter, the problem of bandwidth selection in kernel density estimation is
addresses and an adaptive estimator is derived, which satisfies non-asymptotic minimax
bounds. This method was then considered by Doumic et al. (2012) to estimate the
division rate of a size-structured population in a non-parametric setting, by Bouaziz et al.
(2013) to estimate the intensity function of a recurrent event process and by Chagny
(2014) for the estimation of a real function via a warped kernel strategy. In the present
paper, we consider it to obtain an adaptive kernel estimator of the baseline function
with a data-driven bandwidth. We establish the first adaptive and non-asymptotic oracle
inequality, which warrants the theoretical performances of this kernel estimator. The
oracle inequality depends on the non-asymptotic control of |β̂ − β0|1 deduced from an
estimation inequality stated by Huang et al. (2013) and extended to the case of unbounded
counting processes (see Guilloux et al. (2015) for details).

The paper is organized as follows. In Section 3, we describe the two-step procedure
to estimate the baseline function: first, we describe the estimation of β0 as a preliminary
step and give the bound for |β̂ − β0|1 and then we focus on the kernel estimation of α0
and describe the adaptive estimation procedure of Goldenshluger and Lepski to select a
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data-driven bandwidth. In Section 4, we establish a non-asymptotic oracle inequalitie for
the adaptive kernel estimator. The fundamental proofs are gathered in Section 6. Lastly,
a supplementary material provides some technical results needed in the proofs.

2 Notations and preliminaries

2.1 Framework with counting processes
Consider the general setting of counting processes, which embeds the classical case of right
censoring. We follow here the now classical setting of Andersen et al. (1993) or Fleming
and Harrington (2011). For n independant individuals, we observe for i = 1, ..., n a
counting process Ni, a random process Yi with values in [0, 1] and a vector of covariates
Zi = (Zi,1, ..., Zi,p)T ∈ Rp. Let (Ω,F ,P) be a probability space and (Ft)t≥0 be the
filtration defined by

Ft = σ{Ni(s), Yi(s), 0 ≤ s ≤ t,Zi, i = 1, ..., n}.

From the Doob-Meyer decomposition, we know that each Ni admits a compensator de-
noted by Λi, such that Mi = Ni − Λi is a (Ft)t≥0 local square-integrable martingale (see
Andersen et al. (1993) for details). We assume in the following that Ni satisfies an Aalen
multiplicative intensity model.

Assumption 2.1. For each i = 1, ..., n and all t ≥ 0,

Λi(t) =
∫ t

0
λ0(s,Zi)Yi(s)ds, (4)

where λ0(t, z) = α0(t)eβT z, for z ∈ Rp.

This general setting, introduced by Aalen (1980), embeds several particular examples
as censored data, marked Poisson processes and Markov processes (see Andersen et al.
(1993) for further details). This framework generalizes the case considered in Ramlau-
Hansen (1983b) to unbounded counting processes and hence widens the scope of appli-
cations: we can consider the jumps of the counting to happen at times of relapse from a
disease in biomedical research, times of monetization in marketing, times of blogging in
social network study, etc.

2.2 Notations
For a real number q ≥ 1 and a function f : R 7−→ R such that |f |q is integrable and
bounded, we consider

||f ||Lq(R) =
( ∫

R
|f(x)|qdx

)1/q
and ||f ||∞ = sup

x∈R
|f(x)|.
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The integrals and the supremum are restricted to the support of f and for τ a positive
real number, we set ||f ||∞,τ = supx∈[0,τ ] |f(x)| and we simply denote by ||.||2 the L2-norm
restricted to the interval [0, τ ], so that

||f ||22 =
∫ τ

0
f 2(x)dx.

For h a positive real number, we define fh(.) = f(./h)/h. For square-integrable functions
f and g from R to R, we denote the convolution product of f and g by f ∗ g. For a vector
b ∈ Rp and a real q ≥ 1, we denote |b|q = (∑p

j=1 |bj|q)1/q.
For quantities γ(n) and η(n), the notation γ(n) . η(n) means that there exists a

positive constant c such that γ(n) ≤ cη(n).
Finally, let Z ∈ Rp denote the generic vector of covariates with the same distribution

as the vectors of covariates Zi of each individual i and by Zj its j-th component, namely
the j-th covariates of the vector Z.

3 Estimation procedure
In this section, we describe the two-step procedure to estimate the baseline function. We
begin by recalling the usual estimation of the regression parameter β0 in high-dimension.
We then focus our study on the second step, which consists in the adaptive kernel esti-
mation of the baseline function α0.

3.1 Preliminary estimation of β0

The regression parameter β0 is estimated via a Lasso procedure applied to the so-called
Cox partial log-likelihood introduced by Cox (1972) and defined, for all β ∈ Rp, by

l∗n(β) = 1
n

n∑
i=1

∫ τ

0
log eβTZi

Sn(t,β)dNi(t), where Sn(β, t) = 1
n

n∑
i=1

eβTZiYi(t). (5)

The estimator β̂ of β0 is then defined by

β̂ = arg min
β∈B(0,R)

{−l∗n(β) + pen(β)}, with pen(β) = Γn|β|1, (6)

where Γn is a positive regularization parameter to be suitably chosen and B(0, R) is the
ball defined by

B(0, R) = {b ∈ Rp : |b|1 ≤ R}, with R > 0.
The ball constraint has already been considered by van de Geer (2008) or Kong and Nan
(2012). Roughly speaking, it means that we have restrict our attention to a, possibly
very large, ball around β0, for which the following (very mild) assumption is needed. It
is required to control the kernel estimator of the baseline function β0.

Assumption 3.1. We assume that |β0|1 < +∞.
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Concerning the covariates, we introduce the following assumption.

Assumption 3.2. There exists a positive constant B such that for all j ∈ {1, ..., p},

|Zj| ≤ B.

Assumption 3.2 is a classical assumption in the Cox model to obtain oracle inequalities
(see Huang et al. (2013) and Bradic and Song (2012)) and seems reasonable since in
practice

We know give a general version of the estimation inequality of Theorem 3.1 of Huang
et al. (2013). We refer to Guilloux et al. (2015) for a proof of Proposition 3.3 in the
general case.

Proposition 3.3. Let k > 0, c > 0 and s := Card{j ∈ {1, ..., p} : β0j 6= 0} be the sparsity
index of β0. Assume that ||α0||∞,τ < ∞. Then, under Assumptions 3.1 and 3.2, with
probability larger than 1− cn−k, we have

|β̂ − β0|1 ≤ C(s)
√

log(pnk)
n

(7)

where C(s) > 0 is a constant depending on the sparsity index s.

In the rest of the paper, the conditions of Proposition 3.3 will be fulfilled, so that β̂
satisfies Inequality (7). The assumption ||α0||∞,τ <∞ is to found in Assumptions 3.4.

3.2 Estimation of α0

In this subsection, we define the kernel estimator of the baseline hazard function α0 on
which our procedure relies. We state some functional and kernel assumptions, and we
describe the Goldenshluger and Lepski procedure to select a data-driven bandwidth.

3.2.1 Kernel estimator

We first recall the definition of the kernel estimator introduced by Ramlau-Hansen (1983b)
by using kernel functions to smooth the increments of the non-parametric Breslow esti-
mator (2) of the cumulative intensity.

Let define K : R → R a kernel, namely K is a function such that
∫
RK(x)dx = 1.

The usual kernel function estimator iof α0 is then defined by

α̂β̂h(t) = 1
nh

n∑
i=1

∫ τ

0
K
(
t− u
h

)1{Ȳ (u)>0}

Sn(u, β̂)
dNi(u), (8)

with
Ȳ = 1

n

n∑
i=1

Yi, and Sn(u,β) = 1
n

n∑
i=1

eβTZiYi(u), for all β ∈ Rp.
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The parameter h > 0 is called the bandwidth. In kernel function estimation, the band-
width has to be chosen by the user. Grégoire (1993) has defined a cross-validation proce-
dure for selecting the bandwidth for the smooth estimate of intensity in the Aalen counting
process. To our knowledge, all theoretical results for the kernel function estimator (8) with
a bandwidth selected by cross-validation are asymptotic. The cross-validation ensures no
theoretical adaptive guarantees when the size of the panel n is fixed and not so large as it
is the case for medical surveys where only a few patients can be observed. This explains
our interest in providing a data-driven method to select automatically the bandwidth
and obtain a kernel function estimator, for which we can warrant some non-asymptotic
properties.

In what follows, we denote the estimator under study by α̂β̂h in which the Lasso esti-
mator (6) has been plugged.

3.2.2 Functional and kernel assumptions

Classical conditions are required on the intensity function and the kernel K.

Assumption 3.4.

(i) For all i ∈ {1, ..., n}, the random process Yi takes its values in {0, 1}.

(ii) For S(t,β0) = E[eβT0 ZiYi(t)], there exists a positive constant cS such that,

S(t,β0) ≥ cS, ∀t ∈ [0, τ ].

(iii) ||α0||∞,τ := supt∈[0,τ ] α0(t) <∞.

Assumption 3.4.(i) is satisfied for all the examples quoted in the introduction. In fact,
this assumption is needed to ensure that the random process Yi has a lower bound when
it is nonzero. We could also have considered a modified estimator of Sn(u,β), defined
by (5), as it is usually done in the censoring case without covariates. Assumption 3.4.(ii)
is common in the context of estimation with censored observations (see Andersen et al.
(1993))). Assumption 3.4.(iii) is required to obtain Lemma 6.1 and Theorem 4.1 below.
Nevertheless, the value ||α0||∞,τ is not needed to compute the estimator (see Section 5).

The following assumptions are fulfilled by many standard kernel functions and are
standard in kernel function estimation.

Assumption 3.5.

(i) ||K||∞ = supu∈R |K(u)| <∞ and ||K||22 =
∫
RK

2(u)du <∞.

(ii) nh ≥ 1 and 0 < h < 1.

(iii) The kernel K is of order 1, i.e. for j ∈ {0, 1, 2} the function x 7→ xjK(x) is
integrable and ∫

R
xK(x)dx = 0 and

∫
R
x2K(x)dx <∞.
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Assumptions 3.5.(i) and 3.5.(ii) are rather standard in kernel density estimation (see
Goldenshluger and Lepski (2011)) and has also been considered in the kernel intensity
estimation by Bouaziz et al. (2013). Assumption 3.5.(iii) is only required to ensure that
Kh ∗ α0(t) −→

h→0
α0(t) for all t ∈ [0, τ ].

Remark 3.6. In this paper, we do not assume that the kernel K has a compact support, by
opposition to Bouaziz et al. (2013). The Breslow estimator (8) and the pseudo-estimator
(19) are then well defined for all t ∈ [0, τ ].

3.2.3 Collection of estimators

Let Hn be a grid of bandwidths h > 0, satisfying the following assumptions:

Assumption 3.7.

(i) Card(Hn) ≤ n.

(ii) For some a ≥ 0, ∑h∈Hn
1
nh

. loga(n).

(iii) For all b > 0, ∑h∈Hn exp(−b/h) < +∞.

Assumptions 3.7.(i)-(iii) mean that the bandwidth collection should not be too large.
Let us give an example of grid Hn that satisfies the three previous assumptions.

Example 3.8 (Example of Hn). The following grid is considered in the simulations in
Section 5

Hn =
{
hj = 1

2j , j = 1, ..., blog(n)/ log(2)c
}
,

where ε ∈ [0, τ/2] is a small constant chosen arbitrarily as close as possible to 0. For this
grid, all the assumptions required on the bandwidths are verified. Indeed, Card(Hn) ≤
log(n)/ log(2) ≤ n and ∀k = 1, ..., blog(n)/ log(2)c, we have hj ∈ [n−1, 1]. Moreover,
Assumption 3.7.(ii) holds true since

∑
j:hj∈Hn

1
nhj

= 1
n

blog(n)/ log(2)c∑
j=1

2j = O(1).

Lastly, ∑
j:hj∈Hn

exp(−b/hj) =
blog(n)/ log(2)c∑

j=1
e−b2j = O(1)

and Assumption 3.7.(iii) is verified.

On the grid Hn, we obtain a set of kernel estimators F(Hn) = {α̂β̂h , h ∈ Hn} of the
baseline function α0 from the definition (8).
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3.2.4 Adaptive selection of the bandwidth

We wish to automatically select a relevant bandwidth h ∈ Hn, in such a way to then
be able to select a kernel estimator among the set F(Hn). As usual, we must choose
a bandwidth h which realizes the best compromise between the squared-bias and the
variance terms. The choice should be data-driven. For this, we use a quite recent method
introduced by Goldenshluger and Lepski (2011) for the problem of density estimation. The
"Goldenshluger and Lepski method" has only been considered in two different settings:
Bouaziz et al. (2013) has applied this method to provide an adaptive kernel function
estimator of the intensity function of a recurrent event process and Chagny (2014) has
used it to estimate a real valued function from a sample of random couples (see Chagny
(2014)). Lately, Chagny (2013) has also proposed a "mixed strategy", which consists in
applying the "Goldenshluger and Lepski method" to select the relevant model in model
selection methods for real valued function in regression models. We consider this method
to obtain an adaptive kernel function estimator of the baseline function, for which we
establish a non-asymptotic oracle inequality.

Let us begin to describe the method. We can explain the idea of the method of
Goldenshluger and Lepski (2011) from an heuristic proposed by Chagny (2013). We want
to define α̂β̂

ĥβ̂
so that the risk is as close as possible as

min
h∈Hn
{||α0 −Kh ∗ α0||22 + V (h)},

with

V (h) = κ
||α0||∞,ττ

c2
S

(
||α0||∞,τE[e2βT0 Z1 ]τ + E[eβT0 Z1 ]

) ||K||2L2(R)

nh
= O

( 1
nh

)
,

for a constant κ > 0 . In order to get closer from the bias term ||α0−Kh∗α0||22, we replace
α0 with an estimator α̂β̂h′ (with a fixed bandwidth h′), so that we obtain ||α̂β̂h′−Kh ∗ α̂β̂h′||22.
However, unlike the bias term, this quantity is random and thus contains some variability.
We need to correct this variability by deducting the part of the variance V (h′). Lastly,
since there are no reason to choose one bandwidth h′ ∈ Hn rather than an other one, we
consider the entire collection and take the maximum over this collection.

Formally, we define for h ∈ Hn

Aβ̂(h) = sup
h′∈Hn

{
||α̂β̂h,h′ − α̂β̂h′ ||22 − V (h′)

}
+

(9)

where
α̂β̂h,h′(t) = Kh′ ∗ α̂β̂h(t), (10)

for any t ≥ 0 and h, h′ two positive real numbers, and

V (h) = κ
||α0||∞,ττ

c2
S

(
||α0||∞,τE[e2βT0 Z1 ]τ + E[eβT0 Z1 ]

) ||K||2L2(R)

nh
, (11)
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for some numerical constant κ > 0. A data-driven equivalent of this variance term is
given in Section 5. The choice of κ is also discussed.

From these definitions, we deduce the following choice of the bandwidth:

ĥβ̂ = arg min
h∈Hn

{Aβ̂(h) + V (h)}. (12)

Our adaptive kernel estimator is then α̂β̂
ĥβ̂
.

4 Non-asymptotic bounds for the kernel estimator
Now, let us state the main theorems of the chapter, which provide the first non-asymptotic
oracle inequality for the adaptive kernel baseline estimator in high-dimension.

Theorem 4.1. Under Assumptions 3.1, 3.2, 3.4.(i)-(iii) and 3.5.(i)-(iii), if Hn is a finite
discrete set of bandwidths such that 3.7.(i)-(iii) are satisfied, then there exists a constant
κ such that α̂β̂

ĥβ̂
defined by (11), (9) and (12) satisfies for n large enough and k ≥ 12:

E[||α̂β̂
ĥβ̂
− α0||22] ≤ C inf

h∈Hn

{
||αh − α0||22 + V (h)

}
+ C ′(s) loga(n) log(pnk)

n
, (13)

(14)

with
V (h) = κ

||α0||∞,ττ
c2
S

(
||α0||∞,τE[e2βT0 Z1 ]τ + E[eβT0 Z1 ]

) ||K||2L2(R)

nh
,

where C is a numerical constant, C ′(s) a constant depending on τ , κb, B, |β0|1, R,
||α0||∞,τ , cS, ||K||L1(R), ||K||L2(R) and on the sparsity index s of β0.

This inequality ensures that the adaptive kernel estimator α̂β̂
ĥβ̂

automatically makes
the squared-bias/variance compromise. The selected bandwidth ĥβ̂ is performing as well
as the unknown oracle:

hβ̂oracle := arg min
h∈Hn

E[||α̂β̂h − α0||22],

up to the multiplicative constant C and up to a remaining term of order loga(n) log(pnk)/n,
which is negligible. In Inequality (16), the infimum term is classic in such oracle inequal-
ities for kernel estimators: the bias term ||αh − α0||22 decreases when h decreases and the
variance term V (h) increases when h decreases. The remaining terms are of order

loga(n) log(pnk)
n

= k loga+1(n)
n

+ loga(n) log(p)
n

.

Chagny (2014), in the context of an additive regression model, has established an oracle
inequality for the kernel estimator of the real-value regression function with a remaining
term of order 1/n. In the context of the estimation of the intensity of a recurrent event
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process observed under a standard censoring scheme but without covariates, Bouaziz et al.
(2013) have a logarithm term which appears in their oracle inequality with a remaining
term of order log1+a(n)/n instead of the expected 1/n. This logarithm term comes from
the control in log(n)/n between the distribution function G and its modified Kaplan-
Meier estimator Ĝ, which appears in the kernel intensity estimator. The exponent a in
the remaining term arises from Assumption 3.7.(ii), which is needed for the control of the
difference between the kernel intensity estimator involving Ĝ and a pseudo-estimator that
does not depend of Ĝ. As well as Bouaziz et al. (2013), our kernel estimator depends on
an other estimator, so that we need Assumption 3.7.(ii) in order to control the difference
between the kernel estimator (8) and the pseudo-estimator (19). If our kernel estimator
had not involved another estimator, we would have considered condition∑ 1/h ≤ k0n

a
0, as

in Chagny (2014), instead of Assumption 3.7.(ii). The term in log(p)/n in the remaining
term comes from the control of |β̂ − β0|1 given by Proposition 3.3. This term is typical
of the estimation of the regression parameter β0 when the number of covariates is large.
There is no hope of capturing up to usual rates in this high-dimensional setting, but the
loss in the variance term is only of order log p/n.

When we assume that the counting processes Ni are bounded for i = 1, ..., n, the
variance term V (h) is simpler and has the same form as the variance term in Bouaziz
et al. (2013). In this particular case, Theorem 4.1 takes the following form.

Theorem 4.2. Under the same assumptions as in Theorem 4.1 and assuming also that
there exists cτ > 0, such that Ni(t) ≤ cτ almost surely for every t ∈ [0, τ ] and i ∈ {1, ..., n},
there exists a constant κ such that α̂β̂

ĥβ̂
defined by (9), (12) and

Vb(h) = κ
cττ ||α0||∞,τ

cS

||K||2L2(R)

nh
, (15)

satisfies for n large enough:

E[||α̂β̂
ĥβ̂
− α0||22] ≤ C̃ inf

h∈Hn

{
||αh − α0||22 + Vb(h)

}
+ C̃ ′(s) loga(n) log(np)

n
(16)

(17)

where C̃ is a numerical constant, C̃ ′(s) a constant depending on τ , cτ , B, |β0|1, R,
||α0||∞,τ , cS, ||K||L1(R), ||K||L2(R) and on the sparsity index s of β0.

The proof of Theorem 4.2 is close to the one of Theorem 4.1 and we refer to Lemler
(2014) for the details.

5 Applications

5.1 Simulation study

The aim of this subsection is to illustrate the behavior of the kernel estimator α̂β̂
ĥβ̂

of the
baseline function in the case of right censoring and to compare it with the usual kernel

11



estimator with a bandwidth selected by cross-validation introduced by Ramlau-Hansen
(1983b).

5.1.1 Simulated datas: censored data.

We consider a cohort of size n and p covariates simulated according to the Cox model (1)
with right censoring and with regression parameter β0 chosen as a vector of dimension p,
defined by

β0 = (0.1, 0.3, 0.5, 0, ..., 0)T ∈ Rp,

for various p ≥ 3. Several choices of n and p have been considered, with sample size
n taking values n = 200 and n = 500 and p varying between p =

√
n, being 15 and

22 respectively and p = n, referred to as the high-dimension case. For each n and
p, the design matrix Z = (Zi,j)1≤i≤n,1≤j≤p is simulated independently from a uniform
distribution on [−1, 1] and survival times Ti, i = 1, ..., n are simulated according to Weibull
distributions W(1.5, 1) and W(0.5, 2). Hence, the associated baseline function has the
form α0(t) = aλata−1, where a and λ stand for parameters in W(a, λ). The censoring
times Ci, for i = 1, ..., n, are simulated independently from the survival times via an
exponential distribution E(1/γE[T1]), where γ is adjusted to the chosen rate of censorship:
γ = 4.5 for 20% of censorship and γ = 1.2 for 50% of censorship.

The time τ of the end of the study is taken as the quantile at 90% of (Ti ∧ Ci)i=1,...,n.
For i = 1, ..., n, we compute the observed times Xi = min(Ti, C̃i), where C̃i = Ci ∧ τ and
the censoring indicators δi = 1Ti≤Ci . The definition of C̃i ensures that there exist some
i ∈ {1, ..., n} for which Xi ≥ τ , so that all estimators are defined on the interval [0, τ ]
and it prevents from a certain edge effect. Each sample (Zi, Ti, Ci, Xi, δi, i = 1, ..., n) is
repeatedly simulated Ne = 100 times.

The compared estimators of the baseline hazard function are both constructed with
the Epanechnikov kernel, defined by

K(u) = 3
4(1− u2)1{|u|≤1}.

In both cases we plugg the Lasso regression parameter estimator β̂ defined by (6) and
implemented from the R-package glmnet.

We compare two procedures for the data-driven choice of h: the Goldenshluger and
Lepski method with the selected bandwidth denoted by ĥβ̂GL and the cross-validation with
the selected bandwidth denoted by ĥβ̂CV .

5.1.2 The Goldenshluger and Lepski method

The adaptive bandwidth selection method, we consider here, is based on the grid of
bandwidths Hn defined in Example 3.8 by

Hn = {1/2k, k = 0, ..., blog(n)/ log(2)c}.

12



In our procedure (9), the variance term V (h) involves unknown quantities, so we consider
a data-driven equivalent of it and use that the right-censoring context implies that the
counting processes are bounded. Hence we implement the following procedure:

ĥβ̂GL = arg min
h∈Hn

{Aβ̂(h) + V̂ β̂b (h)},

where, for any t ≥ 0 and h, h′ two positive real numbers,

Aβ̂(h) = sup
h′∈Hn

{
||α̂β̂h,h′ − α̂β̂h′ ||22 − V̂

β̂
b (h′)

}
+
, α̂β̂h,h′(t) = Kh′ ∗ α̂β̂h(t),

and

V̂ β̂b (h) = κ′
||α̂β̂max(h)||∞,τ ||K||2L2(R)

nh
.

In the variance term V̂ β̂b (h), we have replaced the true unknown function α0 by an esti-
mator α̂β̂max(h) computed for the largest bandwidth h in the grid Hn (see Bouaziz et al.
(2013)). The numerical constant κ′ is a universal constant that we tuned from the com-
parison of the MISEs for several candidate values in the range 10−4 − 1000, and for the
two different distributions W(1.5, 1) and W(0.5, 2). We take κ′ = 1.

5.1.3 Cross-validation method

The bandwidth ĥβ̂CV selected by cross-validation is defined by:

ĥβ̂CV = arg min
h

E
∫ τ

0
(α̂β̂h(t))2dt− 2

∑
i 6=j

1
h
K
(
Xi −Xj

h

)
δi

Ȳ (Xi)
δj

Ȳ (Xj)

,
where Ȳ = ∑n

i=1 1{Xi≥t}.

5.1.4 Performances

The performances of these two estimators are evaluated via different Integrated Squared
Errors (ISE). For some function α ∈ L2([0, τ ]) the standard ISE and the total ISE are
respectively defined by

ISEstand(α) =
∫ τ

0
(α(t)− α0(t))2dt,

ISEtotal(α,β) = 1
n

n∑
i=1

∫ τ

0
(α(t)eβTZi − α0(t)eβT0 Zi)2dt.

The associated Mean Integrated Squared Errors are defined by MISEg(α) = E[ISEg(α)],
for g=stand or total, where the expectation is taken on (Ti, Ci,Zi) (for sake of simplicity,
we write MISEg(α) even if the MISE depends on β). We obtain an estimation of the
different MISE by taking the empirical mean for the Ne = 100 replications.

13



``````````````̀Dimensions
MISEs 20% 50%

MISEstand MISEtot MISEstand MISEtot

n = 200 p = 15 0.014 0.017 0.080 0.082 0.023 0.029 0.104 0.120
p = 500 0.013 0.016 0.117 0.117 0.022 0.026 0.152 0.154

n = 500 p = 22 0.009 0.007 0.038 0.035 0.011 0.012 0.055 0.056
p = 1000 0.008 0.008 0.068 0.064 0.011 0.013 0.094 0.096

Table 1 – MISEs of the kernel estimators with a bandwidth selected by the Goldenshluger
and Lepski method (first column for each MISE) and with a bandwidth selected by cross-
validation of the baseline function with a Lasso estimator of the regression parameter,
given two rates of censoring: 20% and 50% of censoring.

5.1.5 Results

Table 1 gives the two empirical MISEs of the kernel estimators with a bandwidth selected
either by cross-validation or by the Goldenshluger and Lepski method for a Lasso estima-
tor of the regression parameter and survival times that are distributed from W(1.5, 1), in
different censoring situation. We consider the results for two rates of censoring: a usual
rate of 20% of censoring and large rate of 50% of censoring.

As expected, witht both procedures, the MISEs are degraded when the censoring rate
increases. When we compare the standard and total MISEs, the results are rather good for
the standard MISE. This is consistent, since the total MISE measures the performances of
the complete intensity estimators λ̂(t,Z) = α̂β̂(t)eβ̂TZ , including the error coming from β̂,
whereas the standard MISEs measures the performances of the estimators of the baseline
function. Therefor

One can see that MISEs resulting from the two procedure are very similar, with very
rather good results with our procedure.

In Table 2, we give the standard MISE of the kernel estimators with a bandwidth
selected either by cross-validation or by the Goldenshluger and Lepski method for different
distributions of the survival times. We observe that the kernel estimator with a bandwidth
selected by the Goldenshluger and Lepski method performs better than the one with a
bandwidth selected by cross-validation for the two Weibull distributions.

5.2 Application to a real dataset on breast cancer
In this section, we apply the proposed method to study the relapse free survival (RFS)
from breast cancer adjusted on high-dimensional covariates in two groups of patients. We
consider a Cox model (1) to link the RFS to the covariates. We aim at answering the
two questions of the introduction concerning the biomarkers that influence the RFS and
the prediction of the RFS for each individual. The dataset is available on the website
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532.
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hhhhhhhhhhhhhhhhhhDimensions
Distributions W(1.5, 1) W(0.5, 2)

n = 200 p = 15 0.056 0.088 1.02 1.561
p = 200 0.06 0.085 0.923 1.556

n = 500 p = 22 0.025 0.037 1.006 1.521
p = 500 0.027 0.033 1.098 1.515

Table 2 – MISEs for the kernel estimators with a bandwidth selected by the Goldenshluger
and Lepski method (first column for each distribution) and with a bandwidth selected
by cross-validation (second column for each distribution), with a Lasso estimator of the
regression parameter for two different Weibull distributions of the survival times.

The dataset consists of 414 patients in the cohort GSE6532 collected by Loi et al.
(2007) for the purpose of characterizing Estrogen Receptor (ER)-positive subtypes with
gene expression profiles. Estrogen receptors are a group of proteins found inside cells,
which is activated by the hormone estrogen. There are different forms of estrogen recep-
tors, referred to as subtypes of estrogen receptors. When they are over expressed, they are
referred to as ER-positive. The dataset has been studied from a survival analysis point
of view in Tian et al. (2012). Following them, we apply the two procedures to the same
survival time of interest (the RFS). Excluding patients with incomplete informations, as it
is done by Loi et al. (2007), there are 142 patients receiving Tamoxifen and 104 untreated
patients. It should be underlined that we should do better to handle the missing data,
but in this study we also exclude the patients with missing data. In addition to clinical
informations such as the age or the size of the tumor, we have 44 928 gene expression
measurements for each of the 246 patients. Two different survival times are available in
this study: the time of relapse free survival and the time of distant metastasis free sur-
vival. We are interested in this study in the time of relapse free survival, which subjects
to right censoring due to incomplete follow-up. There are 60% of censorship in the group
of the untreated patients and 66% in the group of patients receiving Tamoxifen. Our goal
is to compare the baseline functions in the two groups of patients: the patients receiving
Tamoxifen and the untreated patients.

We start by a preliminary variable selection among the 44928 levels of gene expression.
This corresponds to a screening step (see Fan et al. (2010)). This preliminary variable
selection is based on the score statistics of each Cox model considered for each variable
separately. We only keep the variables which score statistics are superior to a threshold.
The difference from the procedure proposed by Fan et al. (2010) is that we fix the number
of covariates we want to keep and then we tune a threshold to select this number of
covariates. We define the threshold as the 95th percentile of a Chi-squared distribution
with 1 degree of freedom, so that 996 probesets have been selected and with the clinical
covariates, we have p = 1000.

Figure 1 shows the graphs of the kernel estimators of the baseline function with a
bandwidth selected by cross-validation and by the Goldenshluger and Lepski method, in
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(a) Untreated patients (p=1000).
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(b) Tamoxifen patients (p=1000).

Figure 1 – Kernel estimator with a bandwidth selected by cross-validation (in blue) and
kernel estimator with a bandwidth selected with the Goldenshluger and Lepski method
(in red). The righthand plot is associated to the group of untreated patients and the
lefthand plot correspond to the group of Tamoxifen patients for p = 1000.

the two groups of patients for p = 1000.
On Figure 1, we observe that the estimator obtained by cross-validation fails to give

an interpretable estimate of α0 for the untreated patients. For the estimator obtained
from the Goldenshluger and Lepski method, we observe that the risk of relapse to breast
cancer has slowed down with the treatment, because the estimated baseline function is
close to 0 until t = 2.5 for the patients treated with tamoxifen whereas it already increases
at time t = 1.5 for the untreated patients. This leads us to believe that the treatment
has a positive influence on the survival time.

6 Proofs
This section is organized as follows. First, we establish a lemma that allows to control
the estimation error of the kernel estimator for a fixed bandwidth h, then we prove
Theorem 4.1 from two fundamental lemmas that are also proved in this section. We add
a supplementary material for all the other used technical lemmas, that are not essential
for a first reading.
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6.1 Intermediate lemma: bound for the kernel estimator of α0
with a fixed bandwidth

We first establish a non-asymptotic global bound on Mean Integrated Squared Error
(MISE) for the estimators α̂β̂h , with h fixed.
Lemma 6.1. Under Assumptions 3.1, 3.2, 3.4.(ii)-(iii) and 3.5.(i)-(iii), for a fixed h > 0,
n large enough and k ≥ 12

E[||α̂β̂h − α0||22] ≤ 2||αh − α0||22 + C1

nh
+ C2(s) log(pnk)

n
(18)

where C1 is a constant depending on τ , ||α0||∞,τ , cS, E[eβT0 Z1 ], E[e2βT0 Z1 ], τ and ||K||L2(R)
and C2(s) is a constant depending on B, |β0|1, R, ||α0||∞,τ , cS, τ , ||K||L2(R) and on the
sparsity index s of β0.

To prove this lemma and link the kernel estimator to the true baseline function α0,
the trick is to introduce a pseudo-estimator, which does not depend on β̂. Consider for
h > 0 the pseudo-estimator

ᾱh(t) = 1
nh

n∑
i=1

∫ τ

0
K
(
t− u
h

) 1
S(u,β0)dNi(u), (19)

which corresponds to the kernel estimator of α0 when S(u,β0) = E[eβT0 ZiYi(u)] is known.
To justify the choice of the pseudo-estimator, let us calculate its expectation:

E[ᾱh(t)] = 1
nh

n∑
i=1

∫ τ

0
K
(
t− u
h

) 1
S(u,β0)α0(u)E[eβT0 ZiYi(u)]du

= 1
h

∫ τ

0
K
(
t− u
h

)
α0(u)du

= Kh ∗ α0(t),

which is a unit approximation of α0, so that Kh ∗ α0 −→
h→0

α0 under mild conditions (see
Bochner Lemma and Assumption 3.5.(iii)).
In the following, we define for all t ∈ [0, τ ]

αh(t) := E[ᾱh(t)] = Kh ∗ α0(t). (20)

The proof is based on the following decomposition for h > 0

E[||α̂β̂h − α0||22] ≤ 2E[||α̂β̂h − ᾱh||22] + 2E[||ᾱh − α0||22]. (21)

Since the pseudo-estimator (19) does not depend on the estimator β̂, the error E[||ᾱh −
α0||22] is easier to bound than directly the error E[||α̂β̂h − α0||22]. The study of the error of
α̂β̂h − α0 is then divided into two parts: the error of ᾱh − α0 and the one of α̂β̂h − ᾱh.

The following lemma provides the classical bias/variance inequality for the pseudo-
estimator (19).
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Lemma 6.2. Under Assumptions 3.4.(ii)-(iii), 3.5.(i)-(iii), for h > 0 fixed

E[||ᾱh − α0||22] ≤ ||αh − α0||22 + 2||α0||∞,ττ
c2
S

(
E[eβT0 Z1 ] + ||α0||∞,τE[e2βT0 Z1 ]τ

) ||K||2L2(R)

nh
.

(22)

The next lemma controls the quadratic error between α̂β̂h and ᾱh. The term to be
controlled in this difference is in fact the difference between the regression parameter β0
and its Lasso estimator β̂. The `1-norm of this difference is bounded from Proposition 3.3
by a term of order log(np)/n. This explains the obtained bound in the following lemma.
Lemma 6.3. Under Assumptions 3.4.(ii)-(iii), 3.5.(i)-(iii), 3.1 and 3.2, for a fixed h > 0,

E[||α̂β̂h − ᾱh||22] ≤ c(s) log(nkp)
n

,

where c(s) is a constant depending on B, |β0|1, R, ||α0||∞,τ , cS, τ , ||K||L2(R) and s the
sparsity index of β0.

From Equation (21), gathering Lemmas 6.2 and 6.3 provide directly Lemma 6.1.
Lemmas 6.2 and 6.3 are proved in the supplementary material.

6.2 Proof of the oracle inequality in Theorem 4.1
For all h ∈ Hn, Aβ̂(h) is defined by (9) and we can apply this definition for h = ĥβ̂. We
deduce from this, using Definition (12) of ĥβ̂, that for all h ∈ Hn

||α̂β̂
ĥβ̂
− α0||22 ≤ 3||α̂β̂

ĥβ̂
− α̂β̂

h,ĥβ̂
||22 + 3||α̂β̂

h,ĥβ̂
− α̂β̂h ||22 + 3||α̂β̂h − α0||22

≤ 3(Aβ̂(h) + V (ĥβ̂)) + 3(Aβ̂(ĥβ̂) + V (h)) + 3||α̂β̂h − α0||22
≤ 6(Aβ̂(h) + V (h)) + 3||α̂β̂h − α0||22.

We obtain for h ∈ Hn

E[||α̂β̂
ĥβ̂
− α0||22] ≤ 6E[Aβ̂(h)] + 6V (h) + 3E[||α̂β̂h − α0||22]. (23)

Lemma 6.1 gives a bound of E[||α̂β̂h − α0||22], which reveals the bias term, the variance
term of order 1/nh and a remaining term of order log(np)/n, and V (h) is of the expected
order 1/nh. E[Aβ̂(h)] is bounded in the following proposition.
Proposition 6.4. Let h ∈ Hn be fixed. Under the assumptions of Theorem 4.1, there
exist constants C1, C2(s), C3(s) such that,

E[Aβ̂(h)] ≤ C1||αh − α0||22 + C2(s) loga(n) log(nkp)
n

+ C3(s) log(nkp)
n

, (24)

where the constant C1 only depends on ||K||1.
Applying Inequalities (18) and (24) in Equation (23) implies Inequality (16) by taking

the infimum over h ∈ Hn. This ends the proof of Theorem 4.1.
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6.3 Proof of Proposition 6.4
We introduce several additional notations ᾱh,h′ = Kh′ ∗ ᾱh, αh(t) = E[ᾱh(t)], αh,h′(t) =
E[ᾱh,h′(t)], and write

Aβ̂(h) = sup
h′∈Hn

{
||α̂β̂h′ − α̂β̂h,h′ ||22 − V (h′)

}
+

≤ 5 sup
h′∈Hn

{
||ᾱh′ − αh′||22 − V (h′)/10

}
+
+ 5 sup

h′∈Hn

{
||ᾱh,h′ − αh,h′||22 − V (h′)/10

}
+

+ 5 sup
h′∈Hn

||α̂β̂h′ − ᾱh′ ||22 + 5 sup
h′∈Hn

||α̂β̂h,h′ − ᾱh,h′ ||22 + 5 sup
h′∈Hn

||αh′ − αh,h′ ||22

:= 5(T1 + T2 + T3 + T4 + T5)

• Study of E[T1] : Recall that for all h ∈ Hn

||ᾱh − αh||22 = sup
f∈L2([0,τ ]),||f ||2=1

〈ᾱh − αh, f〉22. (25)

We introduce the centered empirical process νn,h(f) = 〈ᾱh − αh, f〉2, which is equal to

1
n

n∑
i=1

∫ τ

0
f(t)

(∫ τ

0

Kh(t− u)
S(u,β0) (dNi(u)− α0(u)S(u,β0)du)

)
dt.

As f 7−→ νn,h(f) is continuous, the supremum in (25) can be taken over a countable dense
subset of {f ∈ L2([0, τ ]), ||f ||2 = 1}, which we denote by Bτ . Therefore, we can write

E[T1] ≤ E
[{

sup
h′∈Hn

||ᾱh′ − αh′||22 − V (h′)/10
}

+

]
≤

∑
h′∈Hn

E
[{
||ᾱh′ − αh′ ||22 − V (h′)/10

}
+

]

≤
∑

h′∈Hn
E
[{

sup
f∈Bτ

ν2
n(f)− V (h′)/10

}
+

]
. (26)

Let introduce a key lemma, which allows to bound (26).

Lemma 6.5. Let us introduced the centered process νn,h(f) = 〈ᾱh − αh, f〉2, for any
h ∈ Hn and f ∈ L2([0, τ ]) and Bτ = {f ∈ L2([0, τ ]), ||f ||2 = 1}. Under the assumptions
of Theorem 4.1, with V (h′) defined by (11) for any h′ ∈ Hn, there exists two constants c6
and c7 depending on the bound κb of the Bürkholder Inequality, τ , ||α0||∞,τ , the bound cS
of S(t,β0), E[eβT0 Z1 ], E[e2βT0 Z1 ], ||K||L1(R) and ||K||L2(R), such that

∑
h∈Hn

E

 sup
f∈Bτ (h)

ν2
n,h(f)− V (h)/10


+

 ≤ c6

n
+ c7

loga(n)
n

.
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So, from Lemma 6.5, there exists two constants c6 > 0 and c7 > 0 such that

E[T1] ≤ c6

n
+ c7

loga(n)
n

, (27)

where c6 and c7 depend on τ , ||α0||∞,τ , cS, E[eβT0 Z1 ], E[e2βT0 Z1 ], ||K||L1(R) and ||K||L2(R).

• Study of E[T2] : We study T2 similarly as T1 since

E[T2] ≤
∑

h′∈Hn
E
[{
||ᾱh,h′ − αh,h′ ||22,h′ − V (h′)/10

}
+

]
.

From Lemma 6.5 (see the remark at the end of the proof of Lemma 6.5), there exists two
constants c8 > 0 and c9 > 0 such that

E[T2] ≤ c8

n
+ c9

loga(n)
n

, (28)

where c8 and c9 depend on τ , ||α0||∞,τ , cS, E[eβT0 Z1 ], E[e2βT0 Z1 ], ||K||L1(R) and ||K||L2(R).

• Study of E[T3] : First, write for all h ∈ Hn, that

α̂β̂h(t)− ᾱh(t) = 1
nh

n∑
i=1

∫ τ

0
K

t− u
h

S(u,β0)1{Ȳ (u)>0} − Sn(u, β̂)
Sn(u, β̂)S(u,β0)

dNi(u)

For all u ∈ [0, τ ], we have S(u,β0)1{Ȳ (u)>0} − Sn(u, β̂) = (S(u,β0)− Sn(u, β̂))1{Ȳ (u)>0}.
Indeed, for all u ∈ [0, τ ], if 1{Ȳ (u)>0} = 0, then for all i ∈ {1, ..., n}, Yi(u) = 0 and
Sn(u, β̂) = 0. So, we can rewrite for all h ∈ Hn that

α̂β̂h(t)− ᾱh(t) = 1
nh

n∑
i=1

∫ τ

0
K

t− u
h

S(u,β0)− Sn(u, β̂)
Sn(u, β̂)S(u,β0)

1{Ȳ (u)>0}dNi(u). (29)

Consider the following sets:

ΩH,k =
{
ω : ∀u ∈ [0, τ ], |Sn(u, β̂)− S(u,β0)| ≤ 2C(s)BeBRe2B|β0|1

√
log(pnk)

n

}
, (30)

ΩSn =
{
ω : ∀u ∈ [0, τ ], Sn(u, β̂)− S(u,β0) ≥ −cS2

}
, (31)

Ωk = ΩH,k ∩ ΩSn . (32)
We decompose T3 on Ωk and on its complement. On Ωc

k, let introduce the following
lemma:
Lemma 6.6. Under Assumptions 3.4.(ii)-(iii), 3.5.(i)-(iii), 3.1 and 3.2, for all k ∈ N,
we have

E[||α̂β̂h − ᾱh||221(Ωc
k)] ≤ c3n

4−k/2,

where c3 is a constant depending on B, |β0|1, R, ||α0||∞,τ , cS, τ , ||K||∞. Choosing k ≥ 10
yields E[||α̂β̂h − ᾱh||22] ≤ c3/n.
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From Lemma 6.6,

E

 sup
h′∈Hn

||α̂β̂h′ − ᾱh′||221(Ωc
k)
 ≤ ∑

h′∈Hn
E[||α̂β̂h′ − ᾱh′||221(Ωc

k)]

≤
∑

h′∈Hn
c3n

4−k/2,

which is of order 1/n as long as k ≥ 12. On the other hand, from (29) on Ωk, we have

E

 sup
h′∈Hn

∫ τ

0
(α̂β̂h′ − ᾱh′)2(t)1(Ωk)dt


≤ 16C(s)2B2e2BRe4B|β0|1

c2
S

log(pnk)
n

E

 sup
h′∈Hn

∫ τ

0

∫ τ

0

|Kh′(t− u)|
S(u,β0)

 1
n

n∑
i=1

dNi(u)
2

 .
Then, we decompose Ni = (Ni − Λi) + Λi to obtain

E

 sup
h′∈Hn

∫ τ

0


∫ τ

0

|Kh′(t− u)|
S(u,β0)

( 1
n

n∑
i=1

dNi(u)
)

2

dt


≤ 2E

 sup
h′∈Hn

∫ τ

0


∫ τ

0

|Kh′(t− u)|
S(u,β0)

( 1
n

n∑
i=1

dNi(u)− α0(u)S(u,β0)du
)

2

dt
 (33)

+ 2 sup
h′∈Hn

∫ τ

0


∫ τ

0
|Kh′(t− u)|α0(u)du


2

dt. (34)

The term (34) is bounded by 2τ ||α0||2∞,τ ||K||2L1(R). Let us bound the term (33),

E

 sup
h′∈Hn

∫ τ

0


∫ τ

0

|Kh′(t− u)|
S(u,β0)

( 1
n

n∑
i=1

dNi(u)− α0(u)S(u,β0)du
)

2

dt


≤
∑

h′∈Hn

∫ τ

0
Var

 ∫ τ

0

|Kh′(t− u)|
S(u,β0)

1
n

n∑
i=1

dNi(u)


It remains to bound the variance term.

Var
 1
n

n∑
i=1

∫ τ

0

|Kh(t− u)|
S(u,β0) dNi(u)

 ≤ 1
n
E

∫ τ

0

|Kh(t− u)|
S(u,β0) dN1(u)

2.
We apply the Doob-Meyer decomposition to get

Var
 1
n

n∑
i=1

∫ τ

0

|Kh(t− u)|
S(u,β0) dNi(u)

 ≤ 2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) dM1(u)

2 (35)

+ 2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) α0(u)eβT0 Z1Y1(u)du

2. (36)
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The term (35) is bounded by

2
n
E

 ∫ τ

0

K2
h′(t− u)

(S(u,β0))2α0(u)eβT0 Z1Y1(u)du
 ≤ 2

n

||α0||∞,τE[eβT0 Z1 ]
c2
S

||K||2L2(R)

h′
, (37)

and from the Cauchy-Schwarz inequality, the term (36) is bounded by

2
n

||α0||2∞,τE[e2βT0 Z1 ]τ
c2
S

||K||2L2(R)

h′
. (38)

From (37) and (38), (33) is bounded by
4
n

||α0||∞,ττ
c2
S

[
E[eβT0 Z1 ] + ||α0||∞,τE[e2βT0 ]

]
||K||2L2(R)

∑
h′∈Hn

1
nh′

. (39)

From Condition 3.5.(ii) and bounds (36) and (39), we deduce that

E

 sup
h′∈Hn

∫ τ

0
(α̂β̂h′ − ᾱh′)2(t)1(Ωk)dt


≤ C(s, cS, B,R, |β0|1, ||α0||∞,τ , τ, ||K||L2(R),E[eβT0 Z1 ],E[e2βT0 Z1 ]) loga(n) log(pnk)

n
.

Finally, there exists a constant c5 > 0 such that

E[T3] ≤ c5
loga(n) log(nkp)

n
, (40)

where c5 depends on s, cS, B, R, τ , ||α0||∞,τ , |β0|1, ||K||L2(R), E[eβT0 Z1 ] and E[e2βT0 Z1 ].

• Study of E[T4] : Since

α̂β̂h,h′ − ᾱh,h′ = Kh′ ∗ (α̂β̂h − ᾱh),
we have from Young Inequality (Lemma 2.2 in the supplementary material) with p =
1, q = 2, r = 2,

E[T4] ≤ ||K||2L1(R)E[||α̂β̂h − ᾱh||22] ≤ C(s)||K||2L1(R)
log(nkp)

n
, (41)

where the last inequality is obtained from Lemma 6.3.

• Study of E[T5] : From Young Inequality (Lemma 2.2 in the supplementary material)
with p = 1, q = 2, r = 2, we obtain that

||αh′ − αh,h′||22 = ||Kh′ ∗ (α0 −Kh ∗ α0)||22 ≤ ||K||2L1(R)||α0 −Kh ∗ α0||22
Therefore, since αh = Kh ∗ α0,

E[T5] ≤ ||K||2L1(R)||α0 − αh||22, (42)
which corresponds to a bias term.

Finally, gathering the bounds of the five terms (27), (28), (40), (41) and (42), gives
the result of Proposition 6.4.
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6.4 Proof of Lemma 6.5
We have to control the supremum of νn,h(f) defined by (43) over the ball Bτ = {g ∈
L2([0, τ ]), ||g||2 = 1}. For all h ∈ Hn and f ∈ Bτ , we have

νn,h(f) = 1
n

n∑
i=1

∫ τ

0
f(t)

(∫ τ

0

Kh(t− u)
S(u,β0) (dNi(u)− α0(u)S(u,β0)du)

)
dt. (43)

Usually, to control such a process, we apply the Talagrand Inequality given in Theorem
??. However, since νn,h(f) is not bounded, we can not directly apply the Talagrand
Inequality: we have to introduce a truncation (see Chagny (2014) for a close approach).
Let us define for a constant c,

κn = c

√
n

log n,

and we decompose νn,h as

νn,h(f) = ν
(1)
n,h(f) + ν

(2)
n,h(f),

where

ν
(1)
n,h(f) = 1

n

n∑
i=1

∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{Ni(τ)≤κn}dNi(u)dt

− 1
n

n∑
i=1

∫ τ

0
f(t)

∫ τ

0
E

Kh(t− u)
S(u,β0) 1{Ni(τ)≤κn}dNi(u)

dt,

and

ν
(2)
n,h(f) = 1

n

n∑
i=1

∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{Ni(τ)>κn}dNi(u)dt

− 1
n

n∑
i=1

∫ τ−h

h
f(t)

∫ τ

0
E

Kh(t− u)
S(u,β0) 1{Ni(τ)>κn}dNi(u)

dt.

• Control of ν(1)
n,h(f):

We can apply a Talagrand Inequality to ν(1)
n,h(f), which is bounded. To apply this

concentration inequality, we need to determine the bounds H, M , W and the con-
stant ε (see Theorem ?? in Appendix ?? for the notations).

– Determination of the constant M :
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Using the Cauchy-Schwarz Inequality, we have for∣∣∣∣∣∣
∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)≤κn}dN1(u)dt

∣∣∣∣∣∣
≤||f ||2

∣∣∣∣∣∣
∫ τ

0

( ∫ τ

0
K2
h(t− u)dt

)1/21{N1(τ)≤κn}

S(u,β0) dN1(u)

∣∣∣∣∣∣
≤
||K||2L2(R)√

h

|N1(τ)1{N1(τ)≤κn}|
cS

≤
||K||2L2(R)

cS
√
h

κn := M ∼
√
n

log n
√
h
.

– Determination of the constant H:
Let define

ψh(t) = 1
n

n∑
i=1

∫ τ

0

Kh(t− u)
S(u,β0) 1{Ni(τ)≤κn}dNi(u)

We have supf∈Bτ (ν
(1)
n,h(f))2 = supf∈Bτ 〈ψh − E[ψh], f〉22 = ||ψh − E[ψh]||22. We

deduce from the Doob-Meier decomposition that

E
[

sup
f∈Bτ

(ν(1)
n,h(f))2

]
=
∫ τ

0
Var[ψh(t)]dt

≤ 1
n

∫ τ

0
E

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)≤κn}dN1(u)

2dt

≤ 2||α0||∞,ττ
c2
S

(
||α0||∞,τE[e2βT0 Z1 ]τ + E[eβT0 Z1 ]

) ||K||2L2(R)

nh
:= H2

We have H2 = V (h)/κ. Then, we set ε2 = 1/2 and κ = 80 in order to have
2(1 + 2ε2)H2 = V (h)/20 = O(1/nh).

– Determination of the constant W :
Since f ∈ Bτ , we have

Var
 ∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)≤κn}dN1(u)dt


≤E

∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)≤κn}dN1(u)dt

2
≤E

1{N1(τ)≤κn}

∫ τ

0

(Kh ∗ f)(u)
S(u,β0) dN1(u)

2.
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So, from the Doob-Meier decomposition and Young Lemma 2.2 in the supple-
mentary material, we have

Var
 ∫ τ

0
f(t)

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)≤κn}dN1(u)dt


≤2||α0||∞,τ

c2
S

[
τ ||α0||∞,τE[e2βT0 Z1 ] + E[eβT0 Z1 ]

]
||Kh ∗ f ||22

≤2||α0||∞,τ
c2
S

[
τ ||α0||∞,τE[e2βT0 Z1 ] + E[eβT0 Z1 ]

]
||K||2L1(R) := W

Then, from Assumptions 3.7.(ii) and (iii), we deduce that

∑
h∈Hn

E

 sup
f∈Bτ

(ν(1)
n,h(f))2 − V (h)/20


+

≤ ϑ1

n

∑
h∈Hn

e−
ϑ2
h + 1

n log2(n)h
e−ϑ3 logn


≤ ϑ̃1

n
+ ϑ̃2

loga−2 n

nϑ̃3
(44)

with
V (h) = κ

2||α0||∞,ττ
c2
S

(
||α0||∞,τE[e2βT0 Z1 ]τ + E[eβT0 Z1 ]

) ||K||2L2(R)

nh
.

• Control of ν(2)
n,h(f):

Now, let us focus on the second unbounded term ν
(2)
n,h(f). Let us consider the process

Ψ(t) defined as

1
n

n∑
i=1

 ∫ τ

0

Kh(t− u)
S(u,β0) 1{Ni(τ)>κn}dNi(u)− E

 ∫ τ

0

Kh(t− u)
S(u,β0) 1{Ni(τ)>κn}dNi(u)

,
so that ν(2)

n,h(f) =
∫ τ

0 f(t)Ψ(t)dt. Using Cauchy-Schwarz inequality, we get

E

 sup
f∈Bτ

(ν(2)
n,h(f))2

 ≤ E

 ∫ τ

0
Ψ2(t)dt


≤ 1
n

∫ τ

0
Var

 ∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)>κn}dN1(u)

dt

≤ 1
n

∫ τ

0
E

∫ τ

0

Kh(t− u)
S(u,β0) 1{N1(τ)>κn}dN1(u)

2dt

Applying the Cauchy-Schwarz Inequality (see Lemma 2.1 in the supplementary ma-
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terial), we obtain that for all k > 0,

E

 sup
f∈Bτ

(ν(2)
n,h(f))2

 ≤ 1
n

∫ τ

0
E

1{N1(τ)>κn}N1(τ)
∫ τ

0

K2
h(t− u)

S2(u,β0) dN1(u)
dt

≤
||K||2L2(R)

nhc2
S

E[N2
1 (τ)1{N1(τ)>κn}]

≤
||K||2L2(R)

nhc2
S

E[Nk+2
1 (τ)]
κkn

≤
||K||2L2(R)

nhc2
S

E[Nk+2
1 (τ)]
n

From Assumption 3.7.(ii), we deduce that for k large enough

∑
h∈Hn

E

 sup
f∈Bτ

(ν(2)
n,h(f))2

 ≤ C
loga(n)E[N(τ)k+1]

n
.

It remains to verify that E[N(τ)k+1] is bounded. Using the fact that for all a ≥ 0,
b ≥ 0 and p ≥ 1, (a + b)k ≤ 2k−1(ak + bk) and from the Bürkholder Inequality,
we can easily show by recurrence that for all p ∈ N∗, E[N(τ)k] ≤ Ck. Thus, we
conclude that for a good choice of p,

∑
h∈Hn

E

 sup
f∈Bτ

(ν(2)
n,h(f))2

 ≤ C̃
loga(n)
n

, (45)

for a constant C̃ > 0.

Combining (44) and (45), we finally get

∑
h∈Hn

E

 sup
f∈Bτ

ν2
n,h(f)− V (h)/10


+

 ≤ c6

n
+ c7

loga(n)
n

,

where c6 and c7 depends on τ , ||α0||∞,τ , cS, E[eβT0 Z1 ], E[e2βT0 Z1 ], ||K||L1(R) and ||K||L2(R).

Remark: A similar lemma can be obtained for the centered process 〈ᾱh,h′ − αh,h′ , f〉2,
where ᾱh,h′ = Kh′ ∗ ᾱh and αh,h′ = E[ᾱh,h′ ] for h, h′ ∈ Hn. Indeed, from Young Lemma
2.2 in the supplementary material, we have

〈ᾱh,h′ − αh,h′ , f〉2 =
∫ τ

0
f(t)

(
Kh′ ∗ ᾱh(t)− E[Kh′ ∗ ᾱh(t)]

)
dt

≤ ||f ||2||Kh′ ∗ (ᾱh − E[ᾱh])||2
≤ ||f ||2||K||L1(R)||ᾱh − E[ᾱh]||22.

Just take the same constants M , H2 and W than previously and multiply them by
||K||L1(R).
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The proofs of Lemmas 6.2, 6.3 and 6.6 are available in the supplementary material.
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