On least action principles for discrete quantum scales
Résumé
We consider variational problems where the velocity depends on a scale. After recalling the fundamental principles that lead to classical and quantum mechanics, we study the dynamics obtained by replacing the velocity by some physical observable at a given scale into the expression of the Lagrangian function. Then, discrete Euler-Lagrange and Hamilton-Jacobi equations are derived for a continuous model that incorporates a real-valued discrete velocity. We also examine the paradigm for complex-valued discrete velocity, inspired by the scale relativity of Nottale. We present also rigorous definitions and preliminary results in this direction.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...