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Abstract. We consider variational problems where the velocity depends
on a scale. After recalling the fundamental principles that lead to classical
and quantum mechanics, we study the dynamics obtained by replacing
the velocity by some physical observable at a given scale into the ex-
pression of the Lagrangian function. Then, discrete Euler-Lagrange and
Hamilton-Jacobi equations are derived for a continuous model that in-
corporates a real-valued discrete velocity. We also examine the paradigm
for complex-valued discrete velocity, inspired by the scale relativity of
Nottale. We present also rigorous definitions and preliminary results in
this direction.
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1 Some philosophical principles for Physics

In this contribution, we first introduce some general philosophical hypotheses
that are also widely discussed by several authors (see e.g. Bitbol [1], d’Espagnat
[4], Filk and von Müller [5] among others). We set three hypotheses. The two first
ones are of ontological type and the third one is concerned with experiments.
(H1)-Principle of reality. It exists a reality which is independent of any
observer.
(H2)-Continuous space-time. The space-time is a continuous manifold on
which the movement of particles can be described by continuous trajectories.
(H3)-Measurement and scale. The measurement of a physical quantity
(time, space, velocity, energy, etc) involves a notion of scale.

• In classical physics, hypothesis (H2) is more constrained: trajectories are
supposed to be differentiable or more regular. In this case, the particle velocity
is uniquely defined by v = dq

dt
which is independent of the scale. Observe that if

the trajectory is not regular (continuous but nowhere differentiable) or if some
general hypothesis of continuous but non-differentiable space-time is done (as in
scale relativity [12]), hypothesis (H3) remains true but the previous velocity has
no meaning. On the contrary, a discrete velocity associated with a given scale
can still be well-defined.
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• This framework leads to a first paradigm (labelled by the letter “a” in ta-
ble 1) of continuous classical physics. We recall in section 2 the main point about
Euler-Lagrange and Hamilton-Jacobi equations. As noticed by Gondran [7], a
complexification of the Hamilton-Jacobi framework provides a natural introduc-
tion to the Schrödinger equation. This second paradigm (letter “b” in table 1)
is shortly displayed in section 3. As a consequence the differentiability of the
trajectories is lost and they can be interpreted in terms of Brownian motion (see
e.g. Nelson [11]).

• In this contribution, we develop a scale point of view based on the analysis
of reality associated with observations at a given discrete scale. We develop in
section 4 a paradigm (labeled with the letter “c” in table 1) based on the knowl-
edge of real-valued discrete velocities. In other words, the velocity at a given
scale remains a real number. The idea of introducing discrete operators as fun-
damental principles of mechanics and quantum mechanics has been proposed by
several authors as Greenspan [8], Friedberg and Lee [6] and recently by Khren-
nikov et al. [9, 10] as well as Odake and Sasaki [13]. Nevertheless, our approach
does not follow the paradigms suggested by the above references. Our objective
is to develop our understanding of the ideas of Nottale [12] who introduced a set
of discrete complex velocities (see the label “d” in table 1). We propose some
preliminary remarks in this direction in section 5.

Continuous Geometry Given Scale Geometry

Classical Physics a© Hamilton-Jacobi c© Real-valued velocity

Quantum Physics b© Schrödinger d© Complex-valued velocity

Table 1. Proposition of four paradigms.

2 Some classical results on Hamilton-Jacobi equations

In order to reduce the notations, a Lagrangian function L(x, v) independent of
the time is given. To fix the ideas, this Lagrangian can be chosen as

L(x, v) =
1

2
mv2 − ϕ(x) . (1)

The potential energy ϕ(x) structures the space-time with objects governed by

physical laws (H1), whereas the kinetic energyK(v) ≡ mv2

2
catches the dynamics

through the velocity. Consider a regular trajectory θ 7−→ X(θ) for 0 ≤ θ ≤ t
and the associated action

A(t,X(•)) =

∫ t

0
L

(
X(θ),

d

dθ
X(θ)

)
dθ .

For an arbitrary variation δt and for all C1-functions X and associated varia-
tions δX, we introduce the variation δA of the action. It is given by:
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δA
(
t,X(•)

)
= L

(
X(t),

d

dθ
X(t)

)
δt

+

∫ t

0

[
∂xL

(
X(θ),

d

dθ
X(θ)

)
δX(θ) + ∂vL

(
X(θ),

d

dθ
X(θ)

) d

dθ
δX(θ)

]
dθ

and after integrating by parts:

δA = L
(
X(t),

d

dθ
X(t)

)
δt+

∫ t

0

d

dθ

[
∂vL

(
X(θ),

d

dθ
X(θ)

)
δX(θ)

]
dθ

+

∫ t

0

(
∂xL

(
X(θ),

d

dθ
X(θ)

)
−

d

dθ

[
∂vL

(
X(θ),

d

dθ
X(θ)

)])
δX(θ) dθ .

(2)

• Let q0 be fixed and consider the class of functions C1
q0

(0, t) = {X ∈ C1(0, t)
such that X(0) = q0}. Notice that the difference between two functions of
C1
q0

(0, t) belongs to C1
0(0, t). Thus, if δX ∈ C1

0(0, t), then δX(0) = 0. Vanish-
ing the first variations of the action leads to the well-known Euler-Lagrange
equation given by

∂xL
(
X(θ),

d

dθ
X(θ)

)
−

d

dθ

[
∂vL

(
X(θ),

d

dθ
X(θ)

)]
= 0 ,

withX(0) = q0 , X(t) = q .
(3)

Moreover, for any arbitrary time t > 0 and any arbitrary state q, let Xopt(•; t, q)
be the solution X(•) in C1

q0
(0, t) of the Dirichlet boundary problem given by

the Euler-Lagrange equation (3). Observe that Xopt(•; t, q) is parameterized by
the time of arrival t and the value q, as precised in (3). At fixed time t and
position q, the optimal trajectory Xopt(•; t, q) is supposed to exist and to be
unique. We have the initial condition Xopt(0; t, q) = q0 and the final condition
Xopt(t; t, q) = q. Moreover the trajectory θ 7−→ Xopt(θ; t, q) has a velocity at

time t and position q equal to ∂θX
opt(θ; t, q)

∣∣∣
θ=t

that can also be considered as

a “natural” velocity dq
dt

(t) = ∂θX
opt(θ; t, q)

∣∣∣
θ=t

.

• Let the momentum p(t, q) be defined by

p(t, q) = ∂vL
(
q, ∂θX

opt(t; t, q)
)

(4)

and the optimal action S(t, q) as the action along the optimal trajectory :

S(t, q) = A
(
t, Xopt(•; t, q)

)
. (5)

At fixed time t, due to the Euler-Lagrange equation (3), we deduce from (2) that
δA

(
t,Xopt(•)

)
= ∂vL

(
q ∂θX

opt(t; t, q)
)

= p(t, q). In other words, the first
variation of the optimal action with respect to the final state is the momentum,
namely

∂qS(t, q) = p(t, q) . (6)

If time t is varying and considering the optimal trajectory θ 7−→ Xopt(θ; t, q),
we have ∂tA

(
t, Xopt(•)

)
= L

(
q, ∂θX

opt(t; t, q)
)
. Wrinting that this quantity is
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the time variation of the optimal action (5) and taking into account the velocity
of the optimal trajectory at the location q, we deduce

∂tS + ∂qS • ∂θX
opt(t; t, q) = ∂tA

(
t, Xopt(•)

)
= L

(
q, ∂θX

opt(t; t, q)
)
. (7)

• Introduce now the Legendre transform of the Lagrangian L relatively to
the second variable v. Suppose that the function v 7−→ y = ∂vL(x, v) is invert-
ible and denote by V (x, y) its inverse. The Hamiltonian H(y, x) is classically
defined by

H(y, x) = y •V (x, y) − L
(
x, V (x, y)

)
.

Observe that if (4) holds then ∂θX
opt(t; t, q) = V (q, p) and H(p, q) = p •V (q, p)

−L(q, V (q, p)). We deduce from (7),

L
(
q, ∂θX

opt(t; t, q)
)

= ∂tS +
(
∂qS

)
• ∂θX

opt(t; t, q)

= ∂tS + p(t, q) •V
(
q, p(t, q)

)
.

This leads to the well-known Hamilton-Jacobi equation

∂tS + H
(
∂qS, q

)
= 0 . (8)

3 How to derive the Schrödinger equation ?

The “break through” from classical Hamilton-Jacobi equations to quantum dy-
namics is due to Schrödinger [14]. Introduce the wave function ψ according
to

ψ = exp
(
i
S

~

)
(9)

and inject this relation into (4) and (8). We get i
~

dS = 1
ψ

dψ and due to (6),

we have p = ~

i
1
ψ
∂qψ. Then Schrödinger transforms the momentum p into the

so-called momentum operator P defined by P •ψ ≡ −i ~ ∂qψ. Observe that
the momentum P becomes now a complex derivative operator. Starting from the
usual Lagrangian, we observe that the good generalisation of quantum mechanic
of v2 is not |v|2 (or PP ∗) but vv (or PP in the classical formalism). Then the

Hamiltonian H takes the expression H = 1
2m

P 2 + ϕ(q) = − ~
2

2m
∆ + ϕ(q)

and the Schrödinger equation

i ~ ∂tψ = −
~

2

2m
∆ψ + ϕ(q)ψ (10)

is a direct consequence of the Hamilton-Jacobi equation (8).

• An other way to derive the Schrödinger equation has been proposed by
Nottale [12]. The idea consists in replacing the classical trajectory derivative
d
dt

≡ ∂t + v • ∂q by the complex Dynkin operator d
dt

≡ ∂t + v • ∂q − i ~

2m
∆.

Then, equation (7) takes the form: L = ∂tS + v •

(
∂qS

)
− i ~

2m
∆S and

∂tS + 1
m

(∂qS)2 − i ~

2m
∆S + ϕ(q) − m

2

(
1
m
∂qS

)2
= 0. Following Gondran [7],

one can derive a complex Hamilton-Jacobi equation

∂tS +
1

2m
(∂qS)2 + ϕ(q) − i

~

2m
∆S = 0 . (11)
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If we decompose the complex optimal action S into its real and imaginary
parts, id est S = Σ− i ~ logR, an elementary calculus allows to transform the
complex Hamilton-Jacobi equation (11) into the form proposed by Bohm and
Hiley [2]:

∂tΣ +
1

2m
(∂qΣ)2 + ϕ(q) −

~

2m

∂qR

R
= 0 , ∂tR

2 + div
(R2

m
∂qΣ

)
= 0 . (12)

The quantum potential Q ≡ − ~

2m

∂qR

R
is the quantity that has to be added to

transform the classical Hamilton-Jacobi equation (8) into the real part of the
complex Hamilton-Jacobi equation (11).

• Introduce now the change of variables (9) into the complex Hamilton-Jacobi
equation (11). If we derive once again the relation i

~
∂qS = 1

ψ
∂qψ towards the

space variable q, we get i
~
∂2
qS = − 1

ψ2

(
∂qψ

)2
+ 1

ψ
∂2
qψ. The left hand side of

the complex Hamilton-Jacobi equation (11) is now equal to
1
ψ

[
~

i
∂tψ + 1

2mψ
(~

i
∂qψ)2 + ϕ(q)ψ − i ~

2m
~

i

(
− 1

ψ

(
∂qψ

)2
+ ∂2

qψ
)]

and the Schrödinger equation (10) is established.

4 Real-valued discrete-measured velocity at a given scale

We consider now that the classical velocity is not a relevant observable. We
introduce a given strictly positive scale parameter ε, a “fat” initial condition
q0 ∈ C([−ε, 0]) as a continuous function and the classical discrete so-called finite
difference operators

(
d−

ε q
)
(θ) ≡

1

ε

(
q(θ) − q(θ − ε)

)
,

(
d+
ε q

)
(θ) ≡

1

ε

(
q(θ + ε) − q(θ)

)
. (13)

Let us notice that the velocity v±ε = d±
ε q is now measured at the given scale ε

by two possible schemes (13), as a consequence of the hypothesis (H3). We
consider a given (final) time t strictly positive and a continuous trajectory(
[−ε, t] ∋ θ 7−→ q(θ)

)
∈ C([−ε, t]) with the initial condition q0. This ini-

tial condition is not classical, q0 is not anymore given at a time t = 0, but on a
small interval depending on the scale ε. It has to be considered in the following
sense: restricted to the interval [−ε, 0], function q is equal to the given function
q0. As in the classical case described in section 2, we introduce an action A
based on a regular Lagrangian L(x, v) which is similar to that introduced at
the relation (1):

A(t, q) ≡

∫ t

0
L

(
q(θ), d−

ε q(θ)
)
dθ . (14)

In the following, we examine the choice of d−
ε q as the observed velocity. Thus

the paradigm based on this choice and (14) is studied. We have just formally
replaced velocity v in the second argument of the Lagrangian (1) by the discrete
velocity vε = d−

ε q. We have the following result.
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• Proposition 1. Variation of the discrete action
The variation δA of the action A defined in (14) when trajectory q is varying
by an increment δq and time by an increment δt is given by

δA = Lδt−
1

ε

∫ 0

−ε
∂vL(θ + ε) δq(θ) dθ

+

∫ t

t− ε

[
∂xL+

1

ε
∂vL

]
(θ) δq(θ) dθ

+

∫ t− ε

0

[
∂xL− d+

ε

(
∂vL

)]
(θ) δq(θ) dθ .

(15)

The first integral in (15) is null a priori since initial condition q0 is supposed to
be fixed between −ε and 0.

Proof of Proposition 1.
Since Lagrangian L in (1) is a regular function, differentiating (14) yields

δA = Lδt+

∫ t

0

(
∂xL

)
δq(θ) dθ +

∫ t

0

(
∂vL

) 1

ε

(
δq(θ) − δq(θ − ε)

)
dθ

= Lδt+

∫ t

0

(
∂xL

)
δq(θ) dθ+

1

ε

∫ t

0

(
∂vL

)
δq(θ) dθ−

1

ε

∫ t−ε

−ε

(
∂vL

)
(θ+ε) δq(θ) dθ

= Lδt −
1

ε

∫ 0

−ε

(
∂vL

)
(θ + ε) δq(θ) dθ

+

∫ t−ε

0

(
∂xL−

1

ε

[(
∂vL

)
(θ + ε) −

(
∂vL

)
(θ)

])
δq(θ) dθ

+

∫ t

t−ε

[
∂xL +

1

ε
∂vL

]
(θ) δq(θ) dθ , so that (15) is a conse-

quence of the definition of the operator d+
ε given by (13). �

• We deduce from relation (15) that an optimal trajectory satisfies the discrete
version of the Euler-Lagrange equation, that is

∂xL
(
q(θ),d−

ε q
)
− d+

ε

[
∂vL

(
q(θ),d−

ε q
)]

= 0 , 0 ≤ θ ≤ t− ε . (16)

This discrete-time dynamics is formally very similar to the classical Euler-Lagrange
dynamics (3). Remark that it is nothing but an implicit finite difference scheme:

∂xL
(
q(θ),

1

ε

(
q(θ) − q(θ − ε)

))
−

1

ε
∂vL

(
q(θ + ε),

1

ε

(
q(θ + ε) − q(θ)

))

+
1

ε
∂vL

(
q(θ),

1

ε

(
q(θ) − q(θ − ε)

))
= 0 .

(17)

From (17), it is clear that the dynamics of the optimal trajectory is that of a
delay system, and more precisely,

q(θ) is a function of θ, q (θ − ε), q(θ − 2 ε) . (18)

Function q is the solution of the two-step finite-difference scheme (17). Because
q0(θ) is known for −ε ≤ θ ≤ 0, the knowledge of q(θ) for 0 ≤ θ ≤ ε is generi-
cally sufficient for solving the scheme (17) under the form (18). The knowledge
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of q0 on [−ε, ε] is equivalent to the knowledge of the discrete derivative d+
ε q(θ)

for −ε ≤ θ ≤ 0. Let us define this initial variation
(
d+
ε q)0 as

(
d+
ε q

)
0
(θ) =

1

ε

(
q(θ + ε) − q(θ)

)
, −ε ≤ θ ≤ 0 . (19)

• From the knowledge of q0(θ) and
(
d+
ε q)0 we construct a priori without

major difficulty the continuous trajectory q solution of (17) of the type (18) for
0 ≤ θ ≤ t. We obtain in this way a “final state” qf which is now a piece of
trajectory q:

qf(θ) = q(t+ θ) , −ε ≤ θ ≤ 0 .

This leads to the functional Qt : (d+
ε q)0 7−→ qf = Qt

(
(d+
ε q)0

)
defined from

C([−ε, 0]) to C([−ε, 0]), for q0 fixed. We suppose this functional to be one to
one. In consequence, we can suppose the optimal trajectory parameterized by
the final state qf ∈ C([−ε, 0]). We denote by S

(
t, qf

)
the corresponding optimal

action. We observe that at fixed q0, it depends only on the final time t and the
final state qf whereas the action A is a functional of all the states along the
whole trajectory.

• Proposition 2. Derivative of the optimal action
Under a variation δqf of the final state, the optimal action admits a variation
δS

(
t, qf

)
given by

δS
(
t, qf

)
≡

∂S

∂qf
• δqf =

∫ t

t− ε

[
∂xL+

1

ε
∂vL

](
q(θ),

(
d−

ε q
)
(θ)

)
δq(θ) dθ . (20)

Proof of Proposition 2.
Due to the discrete Euler-Lagrange equations (16), the optimal trajectory van-
ishes the third term of the right hand side of the relation (15). The first one is
identically null because the initial condition q0 remains fixed. The result is then
a simple consequence of the relation (15) when time t is fixed. �

• In the right hand side of relation (20) the final state is not explicit. In order
to exhibit the variation δqf we introduce

Γ (t, qf)(θ) ≡
(
∂vL+ ε ∂xL

)(
q(t+ θ),

(
d−

ε q
)
(t+ θ)

)
, −ε ≤ θ ≤ 0 . (21)

Then, Γ (t, qf) ∈ C([−ε, 0]) and relation (20) can be also written as

∂S

∂qf
• δqf =

1

ε

∫ 0

−ε
Γ (t, qf)(θ) δqf(θ) dθ . (22)

Let us observe that expression Γ (t, qf) is a good candidate for a momentum
variable analogous to the one that satisfies the relation (6) in differentiable me-
chanics.

• The natural question is now to determinate the “total variation” with time
of the optimal action, id est the discrete analogous of the expression (7). This
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is not possible if we restrict to solely continuous trajectories. Nevertheless we
propose a result for a discrete variation in time of amplitude exactly equal to
ε. We denote by q̃f the trajectory obtained from the final state qf after a time
extension of amplitude ε: q̃f(θ) ≡ q(t + ε + θ) for −ε ≤ θ ≤ 0. Then we have
a simple expression for the difference S(t + ε, q̃f) − S(t, qf) because the two
integrals in (14) operates on the same optimal trajectory:

S(t+ ε, q̃f) − S(t, qf) =

∫ t+ ε

t
L

(
q(θ),

(
d−

ε q
)
(θ)

)
dθ . (23)

• Proposition 3. Discrete variation of the optimal action
Let ξ be a continuous function in the space C([−ε, 0]). We have

S(t, qf + ξ) − S(t, qf) =
1

ε

∫ 0

−ε

[ ∫ 1

0
Γ (t, qf + η ξ)(θ) dη

]
ξ(θ) dθ . (24)

Proof of Proposition 3.
We introduce Φ(η) ≡ S(t, qf + η ξ) for 0 ≤ η ≤ 1. It is a derivable function of
the real variable η and we have

dΦ

dη
=

∂S

∂qf
(t, qf + η ξ) •

d

dη

(
qf + η ξ

)
=

∂S

∂qf
(t, qf + η ξ) • ξ

=
1

ε

∫ 0

−ε

Γ (t, qf + η ξ)(θ) ξ(θ) dθ.

Then the relation (24) is obtained by integration relative to η ∈ [0, 1] and using
Fubini theorem. �

Then, we present here the main result of this contribution.

• Proposition 4. Discrete temporal variation of the optimal action
Let Γε(t, q

f) be a mean value at final time t of the momentum introduced in
(21):

Γε(t, q
f)(θ) ≡

∫ 1

0

Γ
(
t+ε, qf+ε η

(
d−

ε q
)
(t+ε+θ)

)
(θ) dη , −ε ≤ θ ≤ 0 . (25)

The following discrete Hamilton-Jacobi type equation holds

d+
ε S +

1

ε

∫ 0

−ε
Γε(t, q

f)(θ)
(
d−

ε q
)
(t+ ε+ θ)

)
dθ

−
1

ε

∫ t+ ε

t
L

(
q(τ),

(
d−

ε q
)
(τ)

)
dτ = 0 .

(26)

Proof of Proposition 4.

We recall that d+
ε S ≡

1

ε

(
S(t+ε, qf)−S(t, qf)

)
. Then we have the decomposition

εd+
ε S = −

(
S(t+ ε, q̃f) − S(t+ ε, qf)

)
+

(
S(t+ ε, q̃f) − S(t, qf)

)
.
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We remark also that q̃f(θ)−qf(θ) = q(t+ε+θ)−q(t+θ) = ε
(
d−
ε q

)
(t+ε+θ).

Then we have from (24) with ξ = ǫ
(
d−
ε q

)
(t+ ε+ θ) :

S(t+ ε, q̃f) − S(t+ ε, qf) =

=
1

ε

∫ 0

−ε

[ ∫ 1

0

Γ
(
t+ ε, qf + ε η

(
d−

ε q
)
(t+ ε+ θ)

)
(θ) dη

] (
q̃f(θ)− qf(θ)

)
dθ

=
1

ε

∫ 0

−ε

[ ∫ 1

0

Γ
(
t+ε, qf+ε η

(
d−

ε q
)
(t+ε+θ)

)
(θ) dη

]
ε
(
d−

ε q
)
(t+ε+θ) dθ

and the second term of the left hand side of the relation (26) is clear. The end
of the proof is a consequence of the decomposition of εd+

ε S and relation (23).
�

• The analogy between the classical Hamilton-Jacobi equation (8) and the
discrete version (26) is clear. We observe that the Lagrangian is replaced by its
mean value on an interval of size ε. Moreover the natural associated momentum
Γε(t, q

f)(θ) defined at relation (25) is not a priori strictly equal to the momen-
tum Γ (t, qf)(θ) introduced at relation (21). This splitting at the discrete scale
of the moment p satisfying both relations (4) and (6) is a real difficulty that we
will consider in a future contribution.

5 Towards complex-valued discrete-measured velocity

The discrete scaled velocity vε = d−
ε q introduced in section 4 is purely real.

We consider now a complex discrete velocity vε. Following an idea proposed by
Nottale [12], we introduce a discrete complex derivation operator �ε according
to

(
�εq

)
(θ) ≡

1

2 ε

(
q(θ + ε) − q(θ − ε)

)
+
i µ

2 ε

(
q(θ + ε) − 2 q(θ) + q(θ − ε)

)
, (27)

with µ2 = 1. We decompose the discrete operator �εq under the form
�εq ≡ �

r
εq + i µ�

i
εq. We have

(
�

r
εq

)
(θ) ≡

1

2 ε

(
q(θ + ε) − q(θ − ε)

)
=

1

2

(
d+
ε q(θ) + d−

ε q(θ)
)

(
�

i
εq

)
(θ) ≡

1

2 ε

(
q(θ + ε) − 2 q(θ) + q(θ − ε)

)
=

1

2

(
d+
ε q(θ) − d−

ε q(θ)
)
.

(28)

The real part �
r
ε q is the standard time derivative for regular trajectories when

ε goes to 0. The imaginary part �
i
ε q is asymptotically null for a regular function

and accounts for the slope jump at a given time. This framework has been proven
to be well-posed by Cresson and Greff [3] introducing a limit when ε goes to
zero in a well-defined projection functional space.

• As remarked previously, the appropriate generalization of the kinetic energy
m
2
v2 is obtained by taking the (complex) square of the momentum operator. So

in the expression of the Lagrangian we have to replace v2 by (�εq)
2. We set

Kε ≡
m

2
(�εq)

2 =
m

2

[(
�

r
εq

)2
−

(
�

i
εq

)2
+ 2 i µ

(
�

r
εq

) (
�

i
εq

)]
. (29)



10

If Kε is real, i.e. ImKε = 0, the product
(
�

r
εq

) (
�

i
εq

)
is null and two cases

occur.
(i) If Kε ≥ 0, then �

i
εq = 0 and we have a natural reference to a regular

trajectory.
(ii) If Kε < 0, then then �

r
εq = 0. The position q(θ) is essentially unchanged

during one ε-step but the jump is not null and the direction of the trajectory
has changed abruptly.

If the kinetic energy is imaginary, ReKε = 0 and we have
(
�

r
εq

)2
=

(
�

i
εq

)2

that implies d+
ε q(θ) = 0 or d−

ε q(θ) = 0. The particle has not moved just before
time t or just after!

• We consider now the iterate of the operator �ε with itself. This type of
algebraic formula is natural for the extension of d

dt

(
m d

dt

)
in the Euler-Lagrange

equation. We emphasise the role of µ2 = 1 when we consider the composed
operator. We have

{
Re

(
(�ε ◦ �ε)q

)
= (1 − µ2)

(
�

r
ε ◦ �

r
ε

)
q + µ2

(
�

r
ε

2

◦ �
r
ε

2

)
q

Im
(
(�ε ◦ �ε)q

)
= 2µ

(
�

r
ε ◦ �

i
ε

)
q .

Roughly speaking the product “jump by jump” allows to recover some regularity
at a smaller scale ε/2.

• We propose to introduce the following complex action for q ∈ C([−ε, t+ε]) :

Aε(t, q) ≡

∫ t

0
L

(
q(θ), (�εq)(θ)

)
dθ =

∫ t

0

[ m
2

(�εq)
2 − ϕ

(
q(θ)

) ]
dθ .

Our working plan follows the ideas presented in sections 2 and 3. In an analogous
way as the one proposed in section 3, we will consider the Euler-Lagrange op-
timality condition, introduce the optimal trajectories, derive a Hamilton-Jacobi
like equation for the optimal value of the action. Then make the change of
variable (9) to transform the evolution equation (26) into a Schrödinger type
equation.
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