On Jacobi fields and canonical connection in sub-Riemannian geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

On Jacobi fields and canonical connection in sub-Riemannian geometry

Résumé

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [Zelenko-Li]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
Fichier principal
Vignette du fichier
1506.01827v2.pdf (221.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160902 , version 1 (04-11-2015)
hal-01160902 , version 2 (28-03-2017)

Identifiants

Citer

Davide Barilari, Luca Rizzi. On Jacobi fields and canonical connection in sub-Riemannian geometry. 2015. ⟨hal-01160902v1⟩
647 Consultations
539 Téléchargements

Altmetric

Partager

More