On Jacobi fields and canonical connection in sub-Riemannian geometry - Archive ouverte HAL
Article Dans Une Revue Archivum Mathematicum Année : 2017

On Jacobi fields and canonical connection in sub-Riemannian geometry

Résumé

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [Zelenko-Li]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
Fichier principal
Vignette du fichier
non-linear-connection.pdf (398.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160902 , version 1 (04-11-2015)
hal-01160902 , version 2 (28-03-2017)

Identifiants

Citer

Davide Barilari, Luca Rizzi. On Jacobi fields and canonical connection in sub-Riemannian geometry. Archivum Mathematicum, 2017, 53 (2), pp.77-92. ⟨10.5817/AM2017-2-77⟩. ⟨hal-01160902v2⟩
642 Consultations
527 Téléchargements

Altmetric

Partager

More