Priority assignment on an avionics switched Ethernet network (QoS AFDX)
Résumé
AFDX (Avionics Full Duplex Switched Ethernet) standardised as ARINC 664 is a major upgrade for avionics systems. For current aircrafts, it implements a FIFO scheduling policy and allows the transmission of sporadic flows between avionics functions distributed on a set of end systems. The certification imposes to guarantee that the end-to-end delay of any frame transmitted on the network is upper-bounded and that no frame is lost due to buffer overflow. This guarantee is obtained thanks to a worst-case analysis which is based on either network calculus or trajectory approach. However it leads to an over-dimensioning of the network. For future aircraft, it is envisioned to use a Fixed Priority scheduling policy in order to better use network resources (QoS AFDX). Existing AFDX switches implement two priority levels. A worst-case analysis of such a network exists, based on the Trajectory approach. Thus, the remaining issue is to assign efficiently the available priorities to the flows. The contribution of this paper deals with this issue. It proposes to assign the priorities to the flows using the well-know Optimal Priority Assignment algorithm (OPA) which was first defined for monoprocessor preemptive systems. The proposed solution is applied on two case studies. The overall worst-case delay is reduced by 30 % on a small configuration and 20 % on a realistic one.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...