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Abstract—AFDX (Avionics Full Duplex Switched Ethernet)
standardised as ARINC 664 is a major upgrade for avionics
systems. For current aircrafts, it implements a FIFO scheduling
policy and allows the transmission of sporadic flows between
avionics functions distributed on a set of end systems. The
certification imposes to guarantee that the end-to-end delay of
any frame transmitted on the network is upper-bounded and
that no frame is lost due to buffer overflow. This guarantee is
obtained thanks to a worst-case analysis which is based on either
network calculus or trajectory approach. However it leads to an
over-dimensioning of the network.

For future aircraft, it is envisioned to use a Fixed Priority
scheduling policy in order to better use network resources (QoS
AFDX). Existing AFDX switches implement two priority levels.
A worst-case analysis of such a network exists, based on the
Trajectory approach. Thus, the remaining issue is to assign
efficiently the available priorities to the flows.

The contribution of this paper deals with this issue. It
proposes to assign the priorities to the flows using the well-know
Optimal Priority Assignment algorithm (OPA) which was first
defined for monoprocessor preemptive systems. The proposed
solution is applied on two case studies. The overall worst-case
delay is reduced by 30 % on a small configuration and 20 % on
a realistic one.

I. INTRODUCTION

Designing and manufacturing new civilian aircrafts has
lead to an increase of the number of embedded systems and
functions. The AFDX [1] brings an answer by multiplexing
a huge amount of communication flows over a full duplex
switched Ethernet network. It has become the reference com-
munication technology in the context of civilian avionics and
provides a backbone network for the avionics platform.

Since flows are multicast, each frame of a given flow
follows a set of paths. It experiences a delay along each
path. This delay is the sum of transmission delays on links
and latencies in switches. There are no collisions on full
duplex links. Thus transmission delays are directly derived
from link rates and frame lengths. Latencies in switches mainly
depend on the waiting times in output queues. Indeed each
output port is shared by a set of flows. Since AFDX flows
are asynchronous, frames from competing flows can arrive
at any time in an output port. Their order of transmission is
determined by the scheduling policy.

AFDX switches implement a fixed priority scheduling at
each output port, with two priority levels. For current aircraft,
one single priority level is used. It comes to consider a first
come first served (FCFS or FIFO) scheduling policy.

For certification purpose, it is mandatory to upper bound
the end-to-end delay of all the frames transmitted on the
AFDX. Three main approaches have been proposed for this
worst-case analysis in the context of FCFS scheduling. The
network calculus approach provides sure upper bounds [2]
and it has been used for the certification of the AFDX
on board of the A380 and A350. The trajectory approach
provides tighter sure upper bounds [2]. It has been shown [3]
that, for some corner cases, this approach introduces some
optimism. However these cases never occur in existing AFDX
configurations. The last approach is based on model checking.
It gives exact worst-case delays on limited configurations, due
to the well-known combinatorial explosion problem [4].

Results show that the worst-case delay can be very different
for different flows. On a typical aircraft configuration, it varies
from 2 to 15 ms, depending on the considered flow. Actually,
it is impacted by the distribution of the flows on the available
paths. This variation is an issue when the constraint on the
delay is the same for all the flows of the configuration, which is
a classical situation. Obviously this worst-case delay constraint
cannot be less than 15 ms. If it appends to be less than this
value, then, there exist several solutions.

1) Reduce the number of flows: most of the time, this
is impossible, due to applicative constraints.

2) Use extra switches and links: it is often too costly.
3) find another static routing which reduces the overall

worst-case delay: the idea is to better distribute the
flows among the available paths.

4) use the two available priority levels: the goal is to
limit the delay variation, thus the overall worst-case
delay.

Solutions 3 and 4 are the most interesting ones, since they have
no impact on the application nor on the networks architecture.

In this paper, we consider solution 4. Two problems have
to be addressed:

• allocate the priorities to the flows

• upper-bound the delays of these flows with priorities.

A solution to the second problem (worst-case analysis) has
been proposed in [5]. It is based on the trajectory approach. It
has been shown that it gives tight upper bound on delays for
flows with priorities transmitted on an AFDX network.

The allocation of priorities to flows transmitted on an
AFDX network is the topic of this paper. The problem of
priority allocation has been widely studied in the context of



real-time systems. An Optimal Priority Assignment algorithm
(OPA) has been proposed in the context of monoprocessor
preemptive Systems [6]. This algorithm has been extended to
other types of systems (e.g. multiprocessor systems) [7]. OPA
is based on a schedulability test which has to respect a set of
conditions.

The contribution of this paper is to show that OPA can be
extended to the context of an AFDX network implementing
a fixed priority scheduling. The schedulability test is based
on the Trajectory approach. Then we show that this priority
assignment algorithm can be used in order to significantly
reduce the overall worst-case end-to-end delay on the network.

The paper is organised as follows. Section II gives the key
features of the AFDX network and summarised the Trajectory
approach in the context of Fixed Priority scheduling. Section
III describes the Optimal Priority Assignment algorithm and
shows how it can be applied in the context of AFDX. Section
IV presents results on two case studies. Section V concludes
the paper and gives some directions for future work.

II. CONTEXT

This section gives the key features of the AFDX network
and summarises the worst-case delay analysis of the AFDX
based on the Trajectory approach for Fixed Priority scheduling.

A. AFDX network and traffic model

AFDX (Avionics Full Duplex Switched Ethernet), stan-
dardised as ARINC 664 [1], has been tailored in order to
take into account avionics constrains. Avionics function are
distributed on a set of End Systems which are interconnected
by a full Duplex switched Ethernet network. An illustrative
example is depicted in Figure 1. It is composed of 7 End
Systems (ES) (e1 to e7) and 3 switches (S1 to S3). Each switch
uses a store and forward pattern. Switches have no buffers on
input ports and buffers on output ports. Each switch has a
switching latency bounded by a constant value Lmax = 16µs.
Each ES is connected to exactly one switch port and each
switch port is connected to at most one ES.
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Fig. 1. Illustrative AFDX configuration

End Systems exchange frames through Virtual Links (VLs).
A VL statically defines a unidirectional virtual communication
channel between one source ES and one or more destination
ESs. For instance, in Figure 1, VL v1 is defined by the
path {e1 - S1 - S3 - e6}. The definition of a VL includes
also the Bandwidth Allocation Gap (BAG) and the minimum
and the maximum frame length (Smin and Smax). BAG is
the minimum delay between two consecutive frames of the
associated VL (a VL is a sporadic flow). Table I gives BAGs
and frame lengths of the ten VLs of the configuration in
Figure 1.

A combined Fixed Priority and First In, First Out
(FP/FIFO) scheduling policy is implemented in each AFDX

v0, v1, v2, v3 v4, v5, v6, v7, v8, v9

BAG (ms) 4 4

Smax (bytes) 500 1000

TABLE I. VL FEATURES

switch output port. Up to now, all the VLs are assigned the
same priority, leading to a FIFO scheduling in existing AFDX
switch.

An avionics network has to be certified. Thus, it is manda-
tory to prove that the End-To-End delay is upper bounded for
each flow transmitted on the network. Moreover, the output
buffers have to be dimensioned so that no frame is lost due to
buffer overflow.

Many work has been devoted to the worst-case analysis of
an AFDX network. Up to now, the computation of an exact
worst-case End-to-End delay is not possible in a reasonable
time on an industrial size configuration (roughly 1000 flows)
[4]. Conversely, the computation of a sure upper bound of this
End-To-End delay in the context of FIFO scheduling can be
obtained by at least two approaches, namely Network Calculus
[8] and Trajectory approach [2][9]. The latest approach can
also cope with FP/FIFO scheduling [10].

The goal of the work presented in this paper is to assign
priorities to flows such that timing constrains of flows are
respected. The verification of this timing constrains is based
on the trajectory approach with FP/FIFO scheduling. This
approach is summarised in the next paragraph.

B. Worst-case analysis based on Trajectory approach

The trajectory approach [11] has been developed to get
deterministic upper bounds on end-to-end (ETE) response time
in distributed systems. It identifies for a packet m belonging
to a flow τi the worst-case scenario on its trajectory. This
approach has been applied and optimised in the context of
AFDX network with FIFO output port policy [2][9]. It has
been extended to the case of QoS AFDX with fixed priority
(FP)/FIFO output port policy [10] based on existing results
for combined FP and FIFO [12]. This last extension of the
approach is now summarized and illustrated on the example
in Figure 1.

The trajectory of a frame includes a set of output ports
(including the links) and a set of switch fabrics. In the
context of AFDX, the delay of a switch fabric is bounded,
while the delay in an output port highly depends on the
competing frames. Indeed, depending on the scheduling policy
implemented in the nodes, a given frame is delayed by the
transmission of the frames with a higher priority and the frames
with the same priority which have arrived in the output port
before the considered frame.

Let us consider a VL vi (i ∈ [1, n]) following a path Pi.
The frame fi of VL vi generated at time t is under study. vi
is characterised by its period BAGi and its processing time
Ci = Smaxi

/R, where Smaxi
is the maximum size of frames

of vi and R = 100Mb/s is the AFDX link rate (all the AFDX
links work at the same rate). The VL vi is emitted by the
source node firsti and it follows a statically defined path Pi.
Its last visited node is denoted lasti. On a QoS AFDX, vi is



assigned a priority pi. The set of VLs having a fixed priority
level strictly higher, equal or strictly lower than this of vi are
denoted resp. hpi, spi and lpi.

In order to compute the worst-case end-to-end delay of
frame fi, the Trajectory approach considers the longest pos-
sible busy period ending with frame fi at each node in the
path Pi. Such a busy period bp(h) is a temporal interval
with no idle time in node h. The busy periods along the path
P3 = {e2, S2, S3} of v3 in Figure 1 are illustrated in Figure 2.

Let f(h) denote the first frame of bph which crosses h and
comes from the node preceding h in Pi. The starting instant of
the busy period bp(h) i.e. the arrival time of f(h) is denoted
M(h, i), while a(h, fi) denotes the arrival time of the studied
frame fi at the node h.

e2

S2

f(e2) f(S2) fi

f(S2) f(S3) fi

f(S3) fiS3

bp(S2)

bp(e2)

bp(S3)

M(S2,i) M(S3,i)a(s2,fi) a(S3,fi)

Fig. 2. Busy periods of v3

Frames from competing VLs generated by other source
nodes and crossing the VL vi will delay its frames.

For example, frames of VLs having the same priority level
as vi, (i.e ∈ spi) arriving no earlier than M(h, i) and no later
than a(h, fi) delay the frame fi . The maximum waiting delay
of fi generated by competing VLs ∈ spi in a busy period
bph is obtained by maximising the number of frames of these
VLs joining vi in the interval [M(h, i), a(h, fi)]. Frames with
higher priorities are also considered, as it will be shown later.
This process propagates till the last node.

The computation of the worst-case ETE delay of any VL vi
according to the Trajectory approach for FP/FIFO is bounded
by:

Ri = max
t≥0

(W lasti
i,t + Ci − t) (1)

lasti is the last node of flow τi and W lasti
i,t is an upper

bound on the latest starting time of a frame m generated at

time t on its last visited node. The definition of W lasti
i,t given

in [10] is:

W lasti
i,t =

∑

j∈spi∪{i}
Pj∩Pi 6=∅

(

1 + ⌊
t+Ai,j

Tj

⌋

)

.Cj (2)

+
∑

j∈hpi

Pj∩Pi 6=∅

(

1 + ⌊
W

lasti,j
i,t +Bi,j

Tj

⌋

)

.Cj (3)

+
∑

h∈Pi

h 6=lasti






max

h∈hpi∪spi∪[i]
h∈Pj

{Cj}






(4)

+ (|Pi| − 1) .Lmax (5)

+
∑

h∈Pi

δhi (6)

+
∑

h∈Pi

h 6=firsti

∆h (7)

− Ci (8)

Let’s have a look at each term of this definition.

Term (2) represents the workload of all the competing
VLs with the same priority as the one of vi under study. The
principle is to determine the maximum number of frames of
each of those competing VLs which can delay frame fi. Let
us consider a VL vj which joins vi in a node h = firsti,j .
vj is assigned the same priority as vi. A frame of vj can
delay fi if it arrives in firsti,j during the busy period
where fi is transmitted from firsti,j and no latter than the
arrival of fi at firsti,j . Since the transmission of a frame
of VL vj from its source node firstj to the node firstj,i
requires at least S

firstj,i
minj

and at most S
firstj,i
maxj , the earliest

generation time of a frame of VL vj at its source node must

be M(firsti,j , i)−S
firstj,i
maxj −Jj and the latest generation time

must be t+ S
firstj,i
maxi − S

firstj,i
minj

. Thus we have:

Ai,j = Sfirstj,i
maxi

− S
firstj,i
minj

−M(firsti,j , i) + Sfirsti,j
maxj

+ Jj (9)

Term (3) represents the workload of all the competing VLs
with higher priority than vi. The difference with the previous
term is that, due to FP scheduling, a frame from a competing
VL can delay fi in h even if it arrives at h after a(h, fi). Thus

the computation considers W
lasti,j
i,t , the latest starting time of

fi at its last shared node lasti,j with vj

According to [11], f(h+1) has to be counted twice in each
node, except the slowest one. In AFDX context, the slowest
node is arbitrary chosen as the last one [10] since all nodes
work at the same speed. In order to guarantee the end-to-end
delay upper bound, the frames counted twice are those with
the largest size. Thus, this part of the delay is given by:

∑

h∈Pi

h 6=lasti






max

h∈hpi∪spi∪[i]
h∈Pj

{Cj}






(10)



Due to physical constraint, for a frame fi visiting |Pi| − 1
switches, there is a switch-dependent delay Lmax computed
as follows:

(|Pi| − 1) .Lmax (11)

The trajectory computation also integrates the non-preemption
effect. Actually, when a frame arrives in the output port it
has to wait until the end of the frame under transmission
in this port, regardless of the priority of the frame. Thus,
with FP/FIFO policy, fi can be delayed at most by one lower
priority frame. If we consider that at each node h of Pi, fi is
delayed by the frame ∈ lpi with the maximum size (denoted
δh
i

) the delay due to non-preemption is bounded by:
∑

Nh∈Pi

δhi (12)

In [2] an optimisation of the trajectory approach is proposed in
order to take into account the fact that frames transmitted by
the same input link are serialised and they cannot arrive at an
output port at the same time. Therefore, a serialisation factor
is subtracted from the computation. This factor sums for each
node h in Pi the duration between the beginning of bph and
the arrival of the first frame coming from the preceding node
in Pi, i.e. h− 1. It is computed by:

∑

h∈Pi

h 6=firsti

∆h (13)

In [10], Bauer and al. establish a lower bound on
∆Nh

∀Nh ∈ Pi in the context of AFDX with FP/FIFO policy.
The serialisation term is lower bounded by the maximum of 0
and

max
1≤x≤kh

(

min(lhx)
)

−max(lh
0
)

Now, We illustrate the trajectory approach computation
on the sample AFDX configuration depicted in Figure 1. It
includes seven ES (e1 to e7), three switches (S1 to S3) and
ten VLs (v0 to v9). VL features (BAGs and frame lengths) are
summarized in Table I. We assume that v0, v1, v2, v3 have the
lowest priority (1) while the six other VLs have the highest
priority (2). Every link works at 100 Mb/s and the switching
delay is 16 µs. The transmission time of a frame of 500 (resp.
1000) bytes on a link is 40 (resp. 80) µs.

v6 v7

v5 v4e3

v6 v5 v7 v4

v8 v9

v0

v0 v6 v5 v8 v7 v9 v4

e5

e4

S1

S3

S2

0 100 200 300 400 500 600 700

Fig. 3. Worst-case scenario for v4

Let us analyse the worst-case response time of VLs v4.
The sequence producing worst-case ETE delay with FP/FIFO
policy is illustrated in Figure 3. The frame from v4 is generated

at time 0. Let’s calculate each term of trajectory approach
computation.

Term 2 concerns frames from v4 and competing VLs with
the same priority as v4. Here, there is one single frame from
each VL (v4, v5, v6, v7, v8, v9). Thus term 2 is 480 µs.

Term 3 concerns frames from VLs with higher priority than
this of v4. There are no such VLs in the configuration. Thus
term 3 is null.

Term 4 represents the extra delay due to frames which have
to be counted twice. There is one frame with maximal size for
e4 and S2, which leads to 160 µs.

Term 5 is the sum of switching latencies (16 µs per switch).
v4 crosses two switches. Thus term 5 is 32 µs.

Term 6 concerns the delay induced by lower priority VLs.
There are no such VLs in e4 and S2. There are two of them
in S3. They have the same transmission time (40 µs). Thus,
term 6 is 40 µs.

Term 7 takes into account the impact of the serialization
effect. There is no such impact in our case. Thus term 7 is
null.

The worst-case delay of v4 is the sum of all these terms,
which is 712 µs.

III. ASSIGNMENT OF PRIORITIES TO VLS

The trajectory approach presented in the previous section
allows a worst-case delay analysis of an AFDX network
implementing a FP/FIFO scheduling of VLs (QoS AFDX).
Such a QoS AFDX is envisioned for future aircrafts in order
to better use the available resources [10]. The remaining issue
of such a network is to efficiently assign the priorities to the
VLs.

An Optimal Priority Assignment algorithm (OPA) has been
proposed in the context of monoprocessor preemptive Systems
[6]. This algorithm has been extended to other types of systems
(e.g. multiprocessor systems) [7]. In this paper we show that
it can be extended to the context of QoS AFDX.

A. OPA overview

OPA considers a mono-processor preemptive system exe-
cuting a set of real-time tasks [6]. It has been proved that,
for an asynchronous periodic task set, OPA generates an
optimal priority ordering while using a polynomial number
of schedulability tests [6].

OPA proceeds as follows. It first assigns the lowest priority
to one task which respects its deadline with this lowest priority.
It continues till the remaining unassigned set of tasks is empty.
If at a step no task can be assigned the current priority,
no feasible priority assignment exists. An overview of OPA
process is given by the following algorithm.

for each priority level i, lowest first do

for each unassigned task t do

if t feasible with priority i assuming that all
unassigned tasks have higher priority then



assign priority i to t;
break;

end;
end;
if no task is feasible with priority i then

return unschedulable;
end;

end;
return schedulable;

At each step, a schedulability test is applied to the task
which is assigned the current priority in order to determine
whether it respects its deadline or not. Let us assume a set
of n tasks. At the first step, at most n schedulability tests
are applied (n is reached if only one task is feasible with
the lowest priority and this task is tested at last). Similarly,
at step i, n − i + 1 tasks are in the remaining set. Thus at
most n− i+ 1 schedulability tests are applied. Consequently
the maximum number of feasibility tests leading to a priority
ordering for n tasks is given by:

n+ (n− 1) + ...+ 1 = (n2 + n)/2

The OPA algorithm is applied provided that schedulability
test respects the following condition [6] (it is then considered
OPA compatible):

• Condition 1: Schedulability of a task may, according
to the test, be dependent on the set of higher priority
tasks, but not on their relative priority ordering.

• Condition 2: Schedulability of a task may, according
to the test, be dependent on the set of lower priority
tasks, but not on their relative priority ordering.

• Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned
the higher priority cannot become unschedulable ac-
cording to the test, if it was previously deemed schedu-
lable at the lower priority.

Let us illustrate OPA algorithm on the example task set in
Table II. Classically, each task Ti has a period Pi, deadline
Di, computation time Ci and offset Oi. For sake of simplicity,
task offsets are supposed null. We assume that all tasks are
independent and that the system is preemptive. Since we have
3 tasks, we consider 3 priority levels {1,2,3} where 1 is the
lowest one and 3 is the highest one. The feasibility test used
in this example, proposed in [13], consists on the computation
of the task response time Ri.

Task Ci Di Pi

T1 1 5 5

T2 2 10 10

T3 3 15 15

TABLE II. TASK SET SCHEDULABLE WITH OPA

At the first step, OPA looks for one task which can be
assigned the lowest priority level 1. The first candidate is T1.
Assuming that T1 is assigned priority 1 while T2 and T3 are
assigned higher priority levels, the worst-case response time of
T1 is R1 = 6. Since R1 > D1, T1 exceeds its deadline and

therefore is not feasible with priority 1. OPA moves then to a
new candidate, T2. Assuming that T2 is assigned priority 1
while T1 and T3 are assigned higher priority levels, the worst-
case response time of T2 is R2 = 7. Since R2 ≤ D2, T2
respects its deadline and therefore is assigned priority 1. The
next step is to assign priority 2. Task T1 is the first candidate.
Assuming that task T3 has a higher priority, R1 = 4. Since
R1 ≤ D1, task T1 is assigned the priority 2. Finally, we assign
the priority 3 to the remaining task T3. We find that R3 =
3 ≤ D3 which means that T3 is feasible at the priority level
3.

B. Minimising priority levels

The basic OPA algorithm considers that the system sup-
ports one priority level per task. Such an assumption might be
unrealistic since concrete systems support a limited number of
priority levels. In order to overcome this problem, an extension
of the OPA algorithm has been proposed in [6]. It allows to
minimise the number of priority levels requested for a feasible
priority ordering. Actually, a priority is no longer assigned
exclusively to one single task; it can be assigned to more than
one task.

The minimum number of priority levels is achieved by
successively maximising the number of tasks assigned to
priority levels from the lowest one to the highest one. This
extended version of the algorithm is described as follows.

for each priority level i, lowest first do
for each unassigned task t do

if t feasible with priority i assuming that all
unassigned tasks have higher priority then

assign priority i to t;
end;

end;
if no task is feasible with priority i then

return unschedulable;
end;
if no unassigned task remains then

break;
end;

end;
return schedulable;

C. Extending OPA to the AFDX case

In this section, we show that OPA algorithm can be used
in order to assign priorities to the VLs transmitted on a QoS
AFDX network. We consider the extended OPA algorithm
which minimises the number of priority levels. Indeed, the
number of priority levels available on AFDX switches is low
(two in existing switches). The schedulability test is based on
the trajectory approach. A deadline is associated to each VL
and the worst-case End-To-End delay of each VL is computed
by the trajectory approach for FP/FIFO.

It is mandatory to check that the trajectory approach is
OPA compatible, i.e. it respects the three conditions given
in section III-A. This point is addressed in the following
paragraphs.



1) Condition 1: impact of higher priority VLs:
Due to FP policy, the time spent by a frame fi of VL vi in
a switch depends on the static higher priority frames in the
switch that arrives before the start time of the transmission of
fi. The term (3) of the Trajectory computation illustrates this
effect.

Obviously, the Trajectory approach takes into account the
impact of competing VLs with priority levels higher than this
of vi (i.e. ∈ hpi). However, this impact do not depend on
their relative priority order, since the priority levels are not
considered in Term (3). Thus, the trajectory approach meets
condition 1 required for OPA compatibility.

2) Condition 2: impact of lower priority VLs:
The impact of lower priority VLs ∈ lpi on the end-to-end
delay of frame fi appears through the non-preemption effect
on the AFDX network. It is taken into account in the Trajectory
computation by Term (6). Since it computes an upper bound
of the end-to-end delay of fi, the Trajectory approach takes
into account a maximum size frames of competing VLs ∈ lpi
at every visited node in Pi. This latter does not depend of the
relative priority ordering of lpi VLs.

Clearly, the non-preemption effect do not depend on the
priority ordering of flows ∈ lpi. It can be concluded that the
trajectory computation meets Condition 2 for OPA compati-
bility.

3) Condition 3: variation of Ri as a function of priority
levels:
Condition 3 of OPA compatibility imposes the following: If
the priority levels of two VLs are swapped, the one being
assigned the higher priority must remain feasible if it was
initially feasible with the lower priority level. In order to
demonstrate that the Trajectory computation meets this con-
dition, we prove that the worst-case end-to-end delay of a
given VL vi, computed with the Trajectory approach, does
not increase if a higher priority is assigned to vi.

Let’s illustrate this property with VL v4 of the configuration
in Figure 1. Figures 4 and 5 depict the worst-case delay of v4
for two different priority assignments. We assume three priority
levels.
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Fig. 4. Worst-case scenario for v4 with priority 2

In Figure 4, v4, as well as v5, v6 and v7 are assigned
priority 2 (medium). v0, v1, v2 and v3 are assigned priority
1 (low) while v8 and v9 are assigned priority 3 (high). v4 is
delayed by one frame of each VL with the same or a higher
priority and one frame of lower priority (e.g. v0) in S3.

In Figure 5, priorities of v4 and v8 are swapped. v4 is
delayed by less frames in both S2 and S3 (e.g. one single

lower priority frame from e4, i.e. v6 or v7). Thus its worst-
case delay is reduced.
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Fig. 5. Worst-case scenario for v4 with priority 3

Now, we analyse the general case. Let us consider two
VLs vi and vj to whom was assigned resp. the priorities pi
and pj (pi < pj). We suppose that vi is feasible with priority
level pi, i.e. it respects its deadline according to the trajectory
computation. Now, we swap the priorities of vj and vi, i.e.
vi is assigned a higher priority level pj . Let us analyse the
impact of the increasing of vi priority on its end-to-end delay.
The terms (5) and (8) are not considered in this analysis given
that they do not depend on the priority level of the VLs.

a) Impact of VLs ∈ (spi ∪ hpi): As explained in
Sect.II-B, a frame fi of vi is delayed by frames of competing
VLs having the same priority as vi. This delay is bounded
by Term (2) in the trajectory computation, from which we
subtract the serialisation (term (7)). fi is also delayed by
frames of competing VLs having a higher priority than that
of vi (Term (3)).

Since pi ¡ pj , we have (spj ∪ hpj) ⊂ hpi. Therefore, we
have (spj ∪ hpj) ⊂ (spi ∪ hpi). That means that with priority
level pj , the VL vi has a lower number of competing VLs
∈ (spi ∪ hpi). Consequently, the delay induced by VLs with
priority level equal or higher than that of vi decreases.

b) Impact of VLs ∈ lpi: As explained in Section II-B,
due to FP scheduling policy, a frame fi of vi is delayed by at
most one lower priority frame on each node visited by fi. This
delay is illustrated by Term (6) of the Trajectory computation.
The frame of lpi introducing the non-preemption related delay
at a given node h is the one having the maximum size among
lpi crossing h. Since lpj ⊃ lpi, the maximum size of frame
in lpj might be greater or equal to that in lpi.

Let’s suppose that maxfk∈lpj
size(fk)} >

maxfk∈lpi
size(fi)}. The frame corresponding to

maxfk∈lpj
size(fk)} was counted in Term (2) when vi

was assigned priority pi. Consequently, assigning priority pj
to vi reduces Term (2) by the size of this frame and increases
Term (6) by maxfk∈lpj

size(fk)} − maxfk∈lpi
size(fi)}.

Overall, the worst-case delay of vi is smaller.

IV. CASE STUDY

In this section, the proposed solution is evaluated on two
case studies. The first one considers a small configuration
including 18 VLs. The second one copes with a realistic
configuration including 1000 VLs. For both configurations,
the goal is to achieve an overall minimisation of the worst-
case end-to-end delay of all the flows transmitted on this



AFDX configuration. As explained in the introduction, such
a minimisation is relevant in the context of avionics where
a classical timing constraint is an upper bound on the delay
of any frame transmitted on the network. Paragraph IV-A
details the algorithm implemented in order to achieve this goal.
Paragraphs IV-B and IV-C gives the network configuration and
the results.

A. Implemented algorithm

At the beginning of the process no priority assignment
has been done. Thus all the VLs of the considered AFDX
configuration have the same priority (it comes to a FIFO
scheduling).

In the first step the worst-case end-to-end delay Ri for each
VL vi is computed using the trajectory approach for FIFO.
Then we determine the maximum value Rmax among all these
worst-case delays Ri. Rmax is an upper bound of the end-to-
end delay of any frame of any VL transmitted on the network.

In the second step priorities are assigned to the VLs in
order to reduce as much as possible this Rmax. The goal is
an overall minimisation of the worst-case end-to-end delay of
all the flows transmitted on the network.

More formally, the goal is to find the smallest possible
overall worst-case delay R′

max such that the priority assign-
ment is feasible. It comes to find the smallest real value x in
[0, 1] such that:

• R′
max = x×Rmax

• There exist at least one priority assignment for the VLs
of the configuration such that no VL has a worst-case
end-to-end delay greater than R′

max.

The implementation of this second step consists in decreasing
the value of x till the priority assignment becomes not feasible.

A tool implementing this process has been developed in
Python. It is based on the tool implementing the trajectory
approach for FP/FIFO [10].

B. Case study 1: a small configuration

An overview of the AFDX configuration under study is
depicted in the upper part in Figure 6. It includes 7 end
systems, 3 switches and 18 VLs. The features of the different
VLs are given in Table III.

First the worst-case end-to-end delay for each VL is
computed, considering a FIFO scheduling policy. Results are
shown in the lower part in Figure 6 (FIFO curve). The
maximum worst-case ETE delay Rmax is that of VL v56. It is
equal to 378 µs. This value is taken as the reference in order to
define a schedulability condition for the different flows, i.e. the
factor x which is applied to Rmax in order to get the reduced
overall maximum end-to-end delay R′

max. The smallest value
x which leads to a feasible priority assignment is 0.7 (reduction
of 30 %). Thus, we have:

R′
max = 0.7×Rmax = 265 µs

The resulting worst-case end-to-end delays for the VLs are
shown in the lower part in Figure 6 (OPA curve). The priorities

Fig. 6. Sample AFDX configuration

V Li BAG (ms) Smax(bytes)

V L50 32 343

V L51 32 171

V L52 16 307

V L53 64 567

V L54 32 183

V L55 128 263

V L56 128 475

V L57 32 217

V L58 16 217

V L59 16 217

V L60 32 343

V L61 64 217

V L62 16 171

V L63 32 217

V L64 32 217

V L65 32 217

V L66 16 171

V L67 16 171

TABLE III. VL FEATURES

assigned to the VLs are shown on the curve. Four priority
levels are used by OPA for this configuration. 13 VLS are
assigned the lowest priority (1), while respectively 2, 1 and 2
VLs are assigned priority levels 2, 3 and 4.

These results show that OPA can bring a significant reduc-
tion on the overall worst-case delay. Next section gives results
on a realistic AFDX configuration.

C. Case study 2: a realistic configuration

A general overview of the configuration considered in this
case study is depicted in Figure 7. This configuration has been
presented in [14]. It includes 123 end systems, 18 switches,
roughly 1000 Virtual Links and 6400 VL paths per network
(due to VL multicast characteristics). BAGs are harmonic
between 2 and 128 ms.

The goal of this case study is to evaluate the reduction of
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Fig. 7. Realistic AFDX configuration

the maximum worst-case delay provided by the utilization of
the two priority levels available in existing AFDX switches.

First the worst-case end-to-end delay for each VL is com-
puted. The maximum worst-case ETE delay Rmax is 15.413

ms.

The direct application of the proposed algorithm on such
a large configuration requires to execute the worst-case delay
analysis for each priority assignment to a VL. It means at least
1000 execution of the trajectory computation on the whole
network, probably much more since many priority assignments
lead to an exceeded delay. In order to manage this amount of
computation, it is necessary to minimize the computation time
for each trajectory computation. The solution would be to keep
all the results of the FIFO computation, then to only modify
the values which are impacted by the priority assigned to each
VL, in a step by step process. Such an incremental computation
is still an open issue.

In a first step, we apply a heuristic. We assign the low
priority to the largest possible set of VLs which have the
smallest worst-case delay with FIFO (we check that the delay
of these VLs do not exceed R

′
max). Then the high priority is

assigned to all the remaining VLs and the R
′
max constraint

is checked on these VLs. The number of execution of the
trajectory computation is drastically reduced: one per tested
set for the low priority and one at the end. Of course, the
drawback is that it can lead to a significantly suboptimal
priority assignment.

The application of this heuristic on the configuration in
Figure 7 leads to a reduction of 20 % of the overall worst-
case delay. 970 VLs out of 1000 are assigned the low priority.
This result is very promising.

V. CONCLUSION

This paper deals with the assignment of priorities to flows
transmitted on an avionics switched Ethernet network (QoS
AFDX) implementing a fixed priority/FIFO scheduling policy.
The proposed solution uses the well-known Optimal Priority
Assignment algorithm (OPA) which was first defined for
monoprocessor preemptive systems. The schedulability test
used by the algorithm is based on the Trajectory approach.

Thus we show that this approach is OPA-compatible. Then
we show on two case studies is efficient, since the overall
worst-case delay of flows is reduced by 30 % for a small
configuration and 20 % on a realistic one.

The computation still needs to be optimized in order to
be able to cope efficiently with a realistic configuration with
roughly 1000 Vls.

The proposed approach considers the worst-case delay
as the key constraint of an AFDX network. Another very
important feature is the maximum size of buffers needed in
each switch in order to guarantee that no frames are lost.
It is determined thanks to the computation of the maximum
backlog in each switch. Such a computation has been proposed
in the FIFO context, based on the Trajectory approach [5].
An extension of this computation with two priority levels has
been proposed in [15]. We plan to assign priorities in order to
minimise the buffer sizes in the switches.
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