ON THE NUMBER OF ISOLATED ZEROS OF PSEUDO-ABELIAN INTEGRALS: DEGENERACIES OF THE CUSPIDAL TYPE - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

ON THE NUMBER OF ISOLATED ZEROS OF PSEUDO-ABELIAN INTEGRALS: DEGENERACIES OF THE CUSPIDAL TYPE

Résumé

We consider a multivalued function of the form $H_{\varepsilon}=P_{\varepsilon}^{\alpha_0}\prod^{k}_{i=1}P_i^{\alpha_i}, P_i\in\mathbb{R}[x,y], \alpha_i\in\mathbb{R}^{\ast}_+$, which is a Darboux first integral of polynomial one-form $\omega=M_{\varepsilon}\frac{dH_{\varepsilon}}{H_{\varepsilon}}=0, M_{\varepsilon}=P_{\varepsilon}\prod^{k}_{i=1}P_i$. We assume, for $\varepsilon=0$, that the polycyle $\{H_0=H=0\}$ has only cuspidal singularity which we assume at the origin and other singularities are saddles. We consider families of Darboux first integrals unfolding $H_{\varepsilon}$ (and its cuspidal point) and pseudo-Abelian integrals associated to these unfolding. Under some conditions we show the existence of uniform local bound for the number of zeros of these pseudo-Abelian integrals.
Fichier principal
Vignette du fichier
degeracies of the cuspidal type.pdf (167.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01145681 , version 1 (25-04-2015)

Identifiants

Citer

Aymen Braghtha. ON THE NUMBER OF ISOLATED ZEROS OF PSEUDO-ABELIAN INTEGRALS: DEGENERACIES OF THE CUSPIDAL TYPE. 2015. ⟨hal-01145681⟩
172 Consultations
63 Téléchargements

Altmetric

Partager

More