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Abstract

We consider a multivalued function of the form Hε = Pα0
ε

∏
k

i=1
P

αi
i

, Pi ∈ R[x, y], αi ∈ R
∗

+,

which is a Darboux first integral of polynomial one-form ω = Mε
dHε

Hε
= 0,Mε = Pε

∏
k

i=1
Pi. We

assume, for ε = 0, that the polycyle {H0 = H = 0} has only cuspidal singularity which we assume
at the origin and other singularities are saddles.

We consider families of Darboux first integrals unfolding Hε (and its cuspidal point) and pseudo-
Abelian integrals associated to these unfolding. Under some conditions we show the existence of
uniform local bound for the number of zeros of these pseudo-Abelian integrals.

———————————————————————————————————————————–
Keywords. integrable systems, blowing-up, singular foliations, singularities, abelian functions

1 Formulation of main results

In this paper, we study a non generic case. Other non generic cases have been studied in [1,3,4,5].
Pseudo-Abelian integrals appear as the linear principal part of the displacement function in polynomial
perturbation of Darboux integrable case.

More precisely consider Darboux integrable system ω given by

ω =Md logH, (1)

where

M =

k
∏

i=0

Pi, H =

k
∏

i=0

Pαi

i , αi > 0, Pi ∈ R[x, y]. (2)

Now we consider an unfolding ωε of Darboux integrable system ω, where ωε are one-forms with
first integral

Hε = Pα
ε

k
∏

i=1

Pαi

i , ωε =Mεd logHε, Mε = Pε

k
∏

i=1

Pi. (3)

where the polynomial P0 has a cuspidal singularity at p0 = (0, 0), i.e. P0(x, y) = y2 − x3 +O((x, y)4).
For non zero ε, the polynomial Pε = y2 − x3 − εx2 +O((x, y, ε)4).

Choose a limit periodic set i.e. bounded component of R2 \ {∏k
i=0 Pi = 0} filled cycles γ(h) ⊂

{H = h}, h ∈ (0, a). Denote by D ⊂ H−1(0) the polycycle which is in the boundary of this limit
periodic set.

Consider the unfolding ωε = Mεd logHε of the form ω. The foliation ωε has a maximal nest
of cycles γ(ε, h) ⊂ {Hε = h}, h ∈ (0, a(ε)), filling a connected component of R2 \ {Hε = 0} whose
boundary is a polycycle Dε close to D. Assume moreover that the foliation ωε = 0 has no singularities
on IntDε.

Consider pseudo-Abelian integrals of the form

I(ε, h) :=

∫

γ(ε,h)

η2, η2 =
η1
Mε

(4)
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where η1 is a polynomial one-form of degree at most n.
This integral appears as the linear term with respect to β of the displacement function of a poly-

nomial perturbation
ωε,β = ωε + βη1 = 0. (5)

We assume the following genericity assumptions

1. The level curves Pi = 0, i = 1, . . . , k are smooth and Pi(0, 0) 6= 0.

2. The level curves Pε = 0, Pi = 0, i = 1, . . . , k, intersect transversaly two by two.

Theorem 1. Under the genericity assumptions there exists a bound for the number of isolated zeros of
the pseudo-Abelian integrals I(ε, h) =

∫

γ(ε,h) η2 in (0, a(ε)). The bound is locally uniform with respect

to all parameters in particular in ε.

Let F1 : {ωε = 0},F2 : {dε = 0} are the foliations of dimension two in complex space of dimen-
sion three with coordinates (x, y, ε).

Let F be the foliation of dimension one on the complex space of dimension three with coordinates
(x, y, ε) which is given by the intersection of leaves of F1 and F2 (i.e. given by the 2-form Ω = ωε∧dε).
This foliation has a cuspidal singularity at the origin (a cusp).

We want to study the analytical properties of the foliation F in a neighborhood of the cusp. For this
reason we make a global blowing-up of the cusp of the product space (x, y, ε) of phase and parameter
spaces. We want our blow-up to seperate the two branche of the cusp. This requirements leads to the
quasi-homogeneous blowing-up of weight (2, 3, 2).

Remark 1. In term of first integrals, the foliation F is given by two first integrals

H(x, y, ε) = h, ε = s.

2 Quasi-homogeneous blowing-up of F
Recall the construction of the quasi-homogenous blowing-up. We define the weighted projective space
CP

2
2:3:2 as factor space of C

3 by the C
∗ action (x, y, ε) 7→ (t2x, t3y, t2ε). The quasi-homogeneous

blowing-up of C3 at the origin is defined as the incidence three dimensional manifold W = {(p, q) ∈
CP

2
2:3:2×C3 : ∃t ∈ C : (q1, q2, q3) = (t2p1, t

3p2, t
2p3)}, where (q1, q2, q3) ∈ C and [(p1, p2, p3)] ∈ CP

2
2:3:2.

The quasi-homogeneous blowing-up σ : W → C3 is just the restriction to W of the projection
CP

2
2:3:2 × C3.
We will need explicit formula for the blow-up in the standard affine charts of W . The projective

space CP
2
2:3:2 is covred by three affine charts: U1 = {x 6= 0} with coordinates (y1, z1), U2 = {y 6= 0}

with coordintaes (x2, z2) and U3 = {ε 6= 0} with coordinates (x3, y3).
The transition formula follow from the requirement that the points (1, y1, z1), (x2, 1, z2) and (x3, y3, 1)

lie on the same orbit of the action:

F2 : (y1, z1) 7→
(

x2 = 1/y
2/3
1 , z2 = z1/y1

√
y1

)

F3 : (y1, z1) 7→ (x3 = 1/z1, y3 = y1/z1
√
z1) .

These affine charts define affine charts on W , with coordinates (y1, z1, t1),
(x2, z2, t2) and (x3, y3, t3). The blow-up σ is written as

σ1 : x = t21, y = t31y1, ε = t21z1 (6)

σ2 : x = t22x2, y = t32, ε = t22z2 (7)

σ3 : x = t23x3, y = t33y3, ε = t23. (8)
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We apply this blow-up σ to the one-dimensional foliation F . Let σ−1F the lifting of the foliation F
to the complement This foliation has a cuspidal singularity at the origin. The pull-back foliation σ∗F
will be called the strict transform of the foliation F is defined by the pull-back σ∗Ω = σ∗ (ωε ∧ dε)
divided by a suitable power of the function defining the exceptional divisor. In this charts Uj, j = 1, 2, 3
we have

σ∗
1Ω = x2Ω1, σ∗

2Ω = y3Ω2, σ∗
3Ω = ε2Ω3,

where

Ω1 = (6y21 − 6− 4z1)dx ∧ dz1 + 4y1z1dy1 ∧ dx+ 2xy1dy1 ∧ dz1, (9)

Ω2 = (6− 6x32 − 4x22z2)dy ∧ dz2 + (−6z2x
2
2 − 4x2z

2
2)dx2 ∧ dy (10)

+ (−3yx22 − 2yx2z2)dx2 ∧ dz2, (11)

Ω3 = (−6x23 − 4x3)dx3 ∧ dε+ 4y3dy3 ∧ dε. (12)

Remark 2. In term of first integrals, the foliation σ∗F is given by two first integrals

σ∗H(x, y, ε) = h, σ∗ε = s,

In particular in a neighborhood of the exceptional divisor the restrictions of the foliation σ∗F to the
charts U1 and U3 are given respectively, by

ψ1 = H(t21, t
3
1y1, t

2
1z1) = x3(y21 − 1) = h, ϕ1 = xz1 = s, (13)

ψ3 = H(t23x3, t
3
3y3, t

2
3) = ε3(y23 − x23 − x33) = h, ϕ3 = ε = s, (14)

where {x = 0} and {ε = 0} are local equations of the exceptional divisor respectively.

3 Singular locus of the foliation σ∗F
In this section, we compute the singular locus of the pull-back σ∗Ω in a neighborhood of the exceptional
divisor CP

2
2:3:2. We check it in each chart seperatly.

In the chart U1, the zeros locus of the form Ω1 in a neighborhood of the exceptional divisor {x = 0}
consists of germs of two curves {y1 = ±1, z1 = 0} and a two singular points p1 = (0, 1, 0), p2 = (0,−1, 0)
generated by the quasi-homogeneous blowing-up.

In the chart U3, the zeros locus of the form Ω3 in a neighborhood of the exceptional divisor {ε = 0}
consists of p3 = (0, 0, 0) (Morse point) and p4 = (− 2

3 , 0, 0) (center). The singularities of this foliation
are the line of Morse points x3 = 0, y3 = 0, the lines of centers x3 = − 2

3 , y3 = 0 and the transform
strict of {y2 − x3 − x2ε = 0}.

Proposition 1. The singularities of σ∗F are located at the points p1, p2, p3 and p4. The points
p1, p2 and p3 are linearisable saddles and the point p4 is a center.

Proof. Since σ :W → C3 is a biholomorphism autside the exceptional divisor CP2
2:3:2, all singularities

of σ∗F on C3 \ {x = 0} correspond to singularities of F . Thus, it suffices to compute the singularities
of σ∗F on the exceptional divisor {x = 0}. More precisely, we consider the foliation on neighborhood
of CP

2
(2:3:2) (the exceptional divisor) generated by the blown-up one-form σ∗Ω. Let ψ1, ψ3 are the

functions given in (13) and (14).

(1) In the chart U1, near the divisor exceptional and for |z1| ≤ ǫ for ǫ sufficiently small, the folia-
tion σ∗F is given by two first integrals

G1 = ϕ3
1ψ

−1
1 = z31(y

2
1 − (1 + z1))

−1V −1 = s3h−1, ϕ1 = xz1 = s.
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where V is analytic function such that V (0, 0, 0) 6= 0. In particular on the exceptional divisor {x = 0}
the foliation σ∗F is given by the levels G1 = s3h−1 = t.

Now we calculate the eigenvalues at p1 and p2. The vector field V1 generating the foliation σ∗F
is given by

V1(x, y1, z1) = β1x
∂

∂x
+ β2y1

∂

∂y1
+ β3z1

∂

∂z1
,

where the vector (β1, β2, β3) satisfies the following equations

< (β1, β2, β3), (3, 1, 0) >= 0, < (β1, β2, β3), (1, 0, 1) >= 0

here <,> be the usual scalar product on C3. By simple computation, we obtain β1 = 1, β2 = −3 and
β3 = −1.

(2) In the chart U3, near the exceptional divisor {ε = 0}, the foliation σ∗F is given by

G3 = ϕ3
3ψ

−1
3 = (y23 − x23(1 + x3))

−1 = s3h−1, ϕ3 = ε = s.

In particular the restriction of this foliation to the exceptional divisor {ε = 0}, by Morse lemma we
can put the function 1/G3 to the normal form y23 − z23 in a neighborhood of p3 (we put the variable
change z3 = ±x3(1 + x3)

1/2). On other hand the Hessian matrix of 1/G3 at the point p4 has two
positive eigenvalus.

4 The different scaled variations of δ(s, t)

In this section, we compute the scaled variations with respect to differents variables s and t of the in-
tegrals of the blown- up one form σ∗

1η2 along the different relatives cycles using the same technics of [5].

Proposition 2. The computation of the different scaled variations of the cycle δ(s, t) us gives

1. For t ∈ [0, 2N ], the cycle δ(s, t) satisfies a iterated scaled variations with respect to t of the form

Var(t,3) ◦ Var(t,−1) ◦ Var(t,−α1) ◦ . . . ◦ Var(t,−αk)δ(s, t) = 0. (15)

2. For t ∈ [N,+∞], the cycle δ(s, t) satisfies a iterated scaled variations with respect to 1/t of the
form

Var(1/t,−3) ◦ Var(1/t,1) ◦ Var(1/t,1) ◦ Var(1/t,α1) ◦ . . . ◦ Var(1/t,αk)δ(s, 1/t) = 0. (16)

3. Near s = 0, we have

Var(s,1) ◦ Var(s,1)δ(s, t) = Var(s,1)(δ̃(s, t)) = 0, (17)

where Var(s,1)δ(s, t) = δ̃(s, t) is a figure eight cycle.

Proof. As in [5], there exist a some local chart with coordinates (u, v, w) defined in a some neighborhood
of each separatrix of polycycle such that the foliation σ∗F is defined by two first integrals. Precisely:

1. for t ∈ [0, 2N ], there exist a local chart (Vdiv , (u, v, w)) defined in neighborhood of the separatrix
δdiv such the foliation σ∗F by two first integrals

F1 = w3(v − 1)−1(v + 1)−1 = t, F2 = uw = s,
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2. for t ∈ [N,+∞], there exists a local chart (V +
div, (u, v, w)) defined in neighborhood of the separa-

trix δ+div such that the foliation σ∗
1F is defined by two first integrals

F1 = w3(v + 2)−1v−1 = t, F2 = uw = s,

3. for t ∈ [N,+∞], there exists a local chart (V −

div , (u, v, w)) defined in a neighborhood of the
separatrix δ−div such that the foliation σ∗

1F is defined by two first integrals

F1 = w3(v − 2)−1v−1 = t, F2 = uw = s.

In second step we prove that each relative cycle can be chosen as a lift of a path contained in the
separatrix associated to this relative cycle. Precisely:

1. on the chart (Vdiv, (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the
levels of the foliation σ∗F which corresponds simply to the graphs of the multivalued functions

v 7→ (u,w) =
(

st−
1
3 (v − 1)−

1
3 (v + 1)−

1
3 , t

1
3 (v − 1)

1
3 (v + 1)

1
3

)

,

2. on the chart (V +
div, (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the

levels of the foliation σ∗F which corresponds simply to the graphs of the multivalued functions

v 7→ (u,w) =
(

st−
1
3 v−

1
3 (v + 2)−

1
3 , t

1
3 v

1
3 (v + 2)

1
3

)

,

3. on the chart (V −

div, (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the
levels of the foliation σ∗F which corresponds simply to the graphs of the multivalued functions

v 7→ (u,w) =
(

st−
1
3 v−

1
3 (v − 2)−

1
3 , t

1
3 v

1
3 (v − 2)

1
3

)

.

In third step, we compute the different scaled variations of relatives cycles using the local expression
of two first integrals F1 and F2 above near the singular points p1, p2 and p3. Recall that the scaled
variation of a relative cycle δ(s) is given by

Var(s,β)δ(s) = δ(seiπβ)− δ(se−iπβ).

In the local chart (V +
div, (u, v, w)), the restriction of the blown-up foliation σ∗

1F to the transversals
sections Σ−

div = {w = 1} (near the point p3) and Ω+ = {u = 1} (near the point p1) is given respectively
by

F1|Σ−

div
=

1

v
= t, F2|Σ−

div
= u = s,

F1|Ω+ =
w3

v
= t, F2|Ω+ = w = s.

Let us fix t ∈ [N,+∞]. We observe that the restriction of the foliation σ∗
1F to the transversal

section Σ+
div = {w = 1} is analytic with respect to s. Then, after taking an scaled variation with

respect to s, the relative cycle δ+div(s, t) is replaced by a loop θ1, modulo homotopy, which consists of
line segment ℓ31 = [p3, p1] connecting the Morse point p3 with the point p1 encircling the latter along
a small counterclockwise circular arc α1 and then returning along the segment ℓ13 = [p1, p3]. The loop
θ1 can be moved along the complex curve {u = w = 0}. Then, we have

Var(s,1)δ+div(s, t) = θ1 = ℓ31α1ℓ13.

The same computation of the scaled variation with respect to s for the relative cycle δ−div(s, t) gives us
a loop θ3, modulo homtopy, which can be moved along the complex plane {u = w = 0}. The loop θ3
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consists of line segment ℓ32 = [p3, p2] connecting the point p3 with the point p2 encircling the latter
along a small counterclockwise circular arc α3 and then returning along the segment ℓ23 = [p2, p3].
Then, we have

Var(s,1)δ−div(s, t) = θ3 = ℓ32α3ℓ23.

In the local chart (Vdiv, (u, v, w)), we define the transversal section Ω+ = {u = 1} (resp Ω+ = {u =
1}) near p1 (resp near p2). The restriction of the foliation σ∗

1F to the transversal section Ω+ is given
by

F1|Ω+ =
w3

v
= t, F2|Ω+ = w = s.

On the second step let us fix t ∈ [0, 2N ]. After taking an scaled variation with respect to s, the
relative cycle δdiv(s, t) is replaced by a figure eight cycle which can be moved along the complex line
Ct

div = {x = 0, G1 = t} of the foliation σ∗
1F . This case is similar to the classical situation which is

studied by Bobieński and Mardešić in [2].
Now using the analycity of the lifting σ−1F with respect to s, the scaled variation of the cycle of

integration δ(s, t) with respect to s is equal to the scaled variation with respect to s of the following
difference δ+div(s, t)− δ−div(s, t) which is equal, modulo homotopy, to the cycle θ1θ

−1
3 , where θ−1

3 is the
inverse of the loop θ3. Shematically, the loop θ1θ

−1
3 is a figure eight cycle.

Remark 3.

• In the local chart (V +
div, (u, v, w)) (resp V −

div, (u, v, w)), the loop θ1 (resp θ3) generating the fun-
damental group of the complex plane {u = w = 0} \ {p1} (resp {u = w = 0} \ {p2}) with base
point p3.

• By the univalness of the blown-up one form σ∗
1η2, we have

Var(t,α)
∫

δ(s,t)

σ∗
1η2 =

∫

Var(t,α)δ(s,t)

σ∗
1η2.

5 Proof of the Theorem

In this section we first take benefit from the blowing-up in the family to prove our principal theorem.
the proof is analoguous of the following :

Theorem 2. There exists a bound of the number of zeros of the function t 7→ J(s, t), for t ∈ [0,+∞]
and s > 0 sufficiently small. This bound is locally with respect to all parameters uniform, in particular
with respect to s.

Let β = (β1, . . . , βk+2) where β1 = 3, β2 = −1, β3 = −α1, . . . , βk+2 = −αk. Let D1 is slit
annulus in the complex plane C∗

t with boundary ∂D1. This boundary is decomposed as follows
∂D1 = CR1 ∪Cr1 ∪C±, where CR1 = {|t| = R1, | arg t| ≤ απ}, C± = {r1 < |t| < R1, | arg t| = ±α} and
Cr1 = {|t| = r1, | arg t| ≤ απ}.

Petrov’s method gives us that the number of zeros #Z(J(s, t)) of the function J(s, t) in slit annulus
D1 is bounded by the increment of the argument of J(s, t) along ∂D1 divided by 2π i.e.

#Z(J(s, t)|D1 ) ≤
1

2π
∆arg(J(s, t)|∂D1 ) =

1

2π
∆arg(J(s, t)|CR1

)

+
1

2π
∆arg(J(s, t)|C±) +

1

2π
∆arg(J(s, t)|Cr1

)

(A) The increment of argument ∆arg(J(s, t)|CR1
) is uniformly bounded by Gabrielov’s theorem [6].
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(B) We use the Schwartz’s principle

Im(J(s, t))|C± = ∓2iVar(t,α)J(s, t).

Thus, the increments of argument along segmentsC± are bounded by zeros of the variation Var(t,α)J(s, t)
on segment (r, R). By identity (18), the function Var(t,βi)J(s, t) can be written as follows

Var(t,βi)J(s, t) = K(t
β1
βi , . . . , t

βk+µ
βi , s; log s)

= K(e
β1
βi

log t
, . . . , e

βk+µ
βi

log t
, elog s; log s)

where K is a meromorphic function. The function Var(t,βi)J(s, t) is logarithmico-analytic function of

type 1 in the variable s (see [9]). Then, there exist a finit recover of Rk+µ+1 × R by a logarithmico-
exponential cylinders, using Rolin-Lion’s theorem [9], such that on each cylinder of this family we
have

Var(t,βi)J(s, t) = yr00 y
r1
1 A(t)U(t, y0, y1),

with y0 = s − θ0(t), y1 = log y0 − θ1(t), where θ0, θ1, A are logarithmico-exponential functions and U
is a logarithmico-exponential unity function. As the number of zeros of a logarithmico-exponential
function is bounded, the number of zeros of Var(t,βi)J(s, t) is bounded.

(C) Finally, we estimate the increment of argument of J along the small arc Cr1 . Then, it is necessarily
to study the increment of argument of the leading term of the function J at t = 0.

Lemma 1. The increment of the argument of J(s, t) along the small circular arc Cr1 can be esti-
mated by the increment of the argument of a some meromorphic function F (s, t).

Proof. The problem of the estimation of the increment of the argument of J(s, t) along the circular
arc Cr1 consist that the principal part of the function J contains the term log s → −∞ as s → 0. To
resolve this problem we make a blowing-up at the origin in the total space with coordinates (x, y, z)
where

x = J1(s, t), y = J2(s, t), z = (log s)−1.

The function J(s, t) can be rewritten as follows

J(s, t) = J1(s, t) + J2(s, t) log s = ((log s)−1J1(s, t) + J2(s, t)) log s = (zx+ y)z−1.

Thus, for z−1 ∈ R be sufficiently small, we have

arg(J(s, t)) = arg((zx+ y)z−1) = arg(zx+ y).

To estimate the increment of argument of zx+ y uniformly with respect to s > 0 we make a quasi-
homogeneous blowing-up π1 with weight (12 , 1,

1
2 ) of the polynomial zx+ y at C1 = {x = y = z = 0}

(the centre of blowing-up). The explicit formula of the quasi-homogeneous blowing-up π1 in the affine
charts T1 = {x 6= 0}, T2 = {y 6= 0} and T3 = {z 6= 0} is written respectively as

π11 : x =
√
x1, y = y1x1, z = z1

√
x1,

π12 : x = x2
√
y2, y = y2, z = z2

√
y2,

π13 : x = x3
√
z3, y = y3z3, z =

√
z3.

The pull-back π∗
1(zx+ y) is given, in different charts, by

π∗
11(zx+ y) = x1(z1 + y1) = d1P1(x1, y1, z1),

π∗
12(zx+ y) = y2(x2z2 + 1) = d2P2(x2, y2, z2),

π∗
13(zx+ y) = z3(x3 + y3) = d3P3(x3, y3, z3).
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where di = 0 and Pi = 0 are equations of exceptional divisor and the strict transform of zx + y = 0
respectively.

Observe that Pi = 0, i = 1, 3 has not a normal crossing with tha exceptional divisor di = 0, i = 1, 3.
To resolve this problem we make a second blowing-up π2 with centre a subvariety C2 which is given,
in differents charts, as following:

1. In the chart T1, choose a local coordinate chart with coordinates (x1, y1, z1) in which C2 =
{y1 = z1 = 0}. Then π−1

2 (C2) is covred by two coordinates charts Uy1 and Uz1 with coordinate
(x̃1, ỹ1, z̃1) where in y1-chart Uy1 the blowing-up π2 is given by x1 = x̃1, y1 = ỹ1, z1 = z̃1ỹ1 and
in z1-chart Uz1 the blowing-up π2 is given by x1 = x̃1, y1 = ỹ1z̃1, z1 = z̃1.

2. In the chart T2, the blowing-up π2 is a biholomorphism (π2 is a proper map).

3. In this chart T3, choose a local coordinate chart with coordinates (x3, y3, z3) in which C2 =
{x3 = y3 = 0}. Then π−1

2 (C2) is covred by two coordinates charts Ux3 and Uy3 with coordinate
(x̃3, ỹ3, z̃3) where in x3-chart Ux3 the blowing-up π2 is given by x3 = x̃3, y3 = ỹ3x̃3, z3 = z̃3 and
in y3-chart Uy3 the blowing-up π2 is given by x3 = x̃3ỹ3, y3 = ỹ3, z3 = z̃3.

The pull-back π∗
1(zx+ y) is given, in different charts, by

• In the y1-chart Uy1, the transformation of the pull-back π∗
1(zx+ y) by the blowing-up π2 is given

by

π∗
2 ◦ π∗

1(zx+ y) = π∗
2(d1P1(x1, y1, z1)) = x̃1ỹ1(z̃1 + 1)

0≈ x̃1ỹ1 = J2(s, t) = F (s, t).

• In the z1-chart Uz1 , the transformation of the pull-back π∗
1(zx+ y) by the blowing-up π2 is given

by

π∗
2 ◦ π∗

1(zx+ y) = π∗
2(d1P1(x1, y1, z1)) = z̃1x̃1(ỹ1 + 1)

0≈ x̃1z̃1 = (log s)−1J1(s, t) = F (s, t).

• In the chart T2, we have

π∗
2 ◦ π∗

1(zx+ y) = π∗
2(d2P2(x2, y2, z2)) = d2P2(x2, y2, z2) = (log s)−1J1(s, t) + J2(s, t) = F (s, t).

• In the x3-chart Ux3, the transformation of the pull-back π∗
1(zx+y) by the blowing-up π2 is given

by

π∗
2 ◦ π∗

1(zx+ y) = π∗
2(d3P3(x3, y3, z3)) = z̃3x̃3(ỹ3 + 1)

0≈ x̃3z̃3 = (log s)−1J1(s, t) = F (s, t).

• In the y3-chart Uy3, the transformation of the pull-back π∗
1(zx+ y) by the blowing-up π2 is given

by

π∗
2 ◦ π∗

1(zx+ y) = π∗
2(d3P3(x3, y3, z3)) = z̃3ỹ3(x̃3 + 1)

0≈ ỹ3z̃3 = J2(s, t) = F (s, t).

Finally, we distinguish three cases:

1. argCr1
J(s, t) = argCr1

((log s)−1J1(s, t)) = argCr1
J1(s, t), ((log s)−1 ∈ R)

2. argCr1
J(s, t) = argCr1

J2(s, t),

3. In the chart T2, the function F (s, t) = ((log s)−1J1(s, t)) + J2(s, t) is meromorphic.
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Now we define the functional space Pβ which are formed of coefficients of the polynomials Pi of
the Darboux first integral H , the coefficients of the polynomials R,S of the perturbative one forme η,
exponents αi and degrees ni = degPi, n = max(degR, deg S). Consider the following finite dimensional
functional space Pβ

Pβ(mβ ,Mβ;β1, . . . , βk+2) = {
k+2
∑

j=1

∑

n,ℓ

Ajℓn(s)t
βjnsm logℓ(t) :

Ajℓn(s) ∈ C,mβ < Ajℓn < Mβ , 0 ≤ ℓ ≤ k + 1}.

For the first two cases, the function Ji(s, t), i = 1, 2 satisfies the following iterated variations equation
with respect to t

Var(t,β1) ◦ . . . ◦ Var(t,βk+2)Ji(s, t) = 0.

Thus, by Lemma 4.8 from [2], there exists a non zero leading term Piβ ∈ Pβ of Ji(s, t), i=1,2 at t = 0
such that |Ji(s, t)− Piβ(s, t)| = O(tµ1), µ1 > 0, uniformly in s. Moreover, the function Ji(s, t), i = 1, 2
satisfies the iterated variation equation

Var(s,1)Ji(s, t) = 0.

Thus, we have Ji(s, t) = O(sµ2 ), µ2 > 0, uniformly in t.
For each element in the parameter space, we can choose the leading term of Piβ . The increment of

argument of this leading term is bounded by a constant C(Mβ , k+2, βk+2). Since the leading term of
Piβ is also the leading term of Ji(s, t), the limit limr1→0 ∆arg(Ji(s, t)|Cr1) ≤ C(Mβ , k + 2, βk+2).

In the chart T2, the function F is meromorphic. Thus, this function can be rewritten as following

F (s, t) = (log s)−1J1(s, t) + J2(s, t) = G(tβ1 , . . . , tβk , s, (log s)−1)

whereG is meromorphic function. The number #Z(G) of zeros of the function G is uniformly bounded.
The latter claim is a direct application of fewnomials theory of Khovanskii [8]: since the functions
ǫi(t) = tβi , ǫ(s) = (log s)−1 are Pfaffian functions (solutions of Pfaffian equations tdǫi − βiǫidt = 0 and
sdǫ+ǫ2ds, respectively), the upper bound for this number of zeros can be given, using Rolle-Khovanskii
arguments of [7], in terms of the number of zeros of some polynomial and its derivatives. The latter
are uniformly bounded by Gabrielov’s theorem [6].
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