On the Riesz means of nϕ(n)
Résumé
Let ϕ(n) denote the Euler-totient function. We study the error term of
the general k-th Riesz mean of the arithmetical function
nϕ(n) for any positive integer k≥1, namely the error
term Ek(x) where
1k!∑n≤xnϕ(n)(1−nx)k=Mk(x)+Ek(x).
The upper bound for |Ek(x)| established here thus improves the earlier known upper bound when k=1.
Origine | Accord explicite pour ce dépôt |
---|
Loading...