On the Riesz means of $\frac{n}{\phi(n)}$
Résumé
Let $\phi(n)$ denote the Euler-totient function. We study the error term of
the general $k$-th Riesz mean of the arithmetical function
$\frac {n}{\phi(n)}$ for any positive integer $k \ge 1$, namely the error
term $E_k(x)$ where
\[
\frac{1}{k!}\sum_{n \leq x}\frac{n}{\phi(n)} \left( 1-\frac{n}{x} \right)^k
= M_k(x) + E_k(x).
\]
The upper bound for $\left | E_k(x) \right |$ established here thus improves the earlier known upper bound when $k=1$.
Origine | Accord explicite pour ce dépôt |
---|
Loading...