On a problem of Ivi\'c. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2000

On a problem of Ivi\'c.

Résumé

Let $\gamma$ denote the imaginary parts of the nontrivial zeros of the Riemann zeta-function $\zeta(s)$. For sufficiently large $T$ and $\varepsilon>0$, Ivi\'c proved that $\sum_{T<\gamma\leq2T} \vert\zeta(\frac{1}{2}+i\gamma)\vert^2 <\!\!\!<_{\varepsilon} (T(\log T)^2\log\log T)^{3/2+\varepsilon},$ where the implicit constant depends only on $\varepsilon$. In this paper, this result is improved by (i) replacing $\vert\zeta(\frac{1}{2}+i\gamma)\vert^2$ by $\max\vert\zeta(s)\vert^2$, where the maximum is taken over all $s=\sigma+it$ in the rectangle $\frac{1}{2}-A/\log T\leq\sigma\leq2,\, \vert t-\gamma\vert\leq B(\log\log T)/\log T$ with some fixed positive constants $A, B,$ and (ii) replacing the upper bound by $T(\log T)^2\log\log T$. The method of proof differs completely from Ivi\'c's approach.
Fichier principal
Vignette du fichier
23Article2.pdf (4.77 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01109635 , version 1 (26-01-2015)

Identifiants

Citer

K Ramachandra. On a problem of Ivi\'c.. Hardy-Ramanujan Journal, 2000, Volume 23 - 2000 (2), pp.10-19. ⟨10.46298/hrj.2000.142⟩. ⟨hal-01109635⟩
284 Consultations
540 Téléchargements

Altmetric

Partager

More