Syntax and Data-to-Text Generation
Résumé
With the development of the web of data, recent statisti-cal, data-to-text generation approaches have focused on mapping data (e.g., database records or knowledge-base (KB) triples) to natural lan-guage. In contrast to previous grammar-based approaches, this more recent work systematically eschews syntax and learns a direct mapping between meaning representations and natural language. By contrast, I argue that an explicit model of syntax can help support NLG in sev-eral ways. Based on case studies drawn from KB-to-text generation, I show that syntax can be used to support supervised training with little training data; to ensure domain portability; and to improve statistical hypertagging.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...