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Abstract. With the development of the web of data, recent statisti-
cal, data-to-text generation approaches have focused on mapping data
(e.g., database records or knowledge-base (KB) triples) to natural lan-
guage. In contrast to previous grammar-based approaches, this more
recent work systematically eschews syntax and learns a direct mapping
between meaning representations and natural language. By contrast, I
argue that an explicit model of syntax can help support NLG in sev-
eral ways. Based on case studies drawn from KB-to-text generation, I
show that syntax can be used to support supervised training with little
training data; to ensure domain portability; and to improve statistical
hypertagging.

Keywords: Computational Grammars, Natural Language Generation,
Statistical Natural Language Processing, Hybrid Symbolic/Statistical
Approaches

1 Introduction

Given some non-linguistic input, the task of data-to-text generation con-
sists in producing a text verbalisating that input. Data-to-text genera-
tion has been used, e.g., to summarise medical data [31], to generate
weather reports from numerical data [32] and to automatically produce
personalised letters [11].

Earlier statistical work on data-to-text generation has mainly focused on
inducing large probabilistic grammars from treebanks and on using these
grammars to generate from meaning representations derived from those
same treebanks. Thus, [9] induces a Probabilistic Lexical Functional
Grammar (LFG) from the PTB and uses it to generate from f(unctional)-
structures automatically derived from that treebank. [3] uses a large scale
Tree Adjoining Grammar (TAG, [34]) and a tree model trained on the
derivation trees of 1 million words of the Wall Street Journal to map
dependency trees to sentences. And [38] induces a probabilistic Combi-
natory Categorial Grammar (CCG, [33]) from the CCGBank [21] which
is then used to generate from hybrid logic dependency semantics [2].

With the development of the web of data however, interest has recently
shifted to data-to-text generators which can generate from less linguistic,
more data oriented, meaning representations. While logical formulae and
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dependency trees may provide generic meaning representations for natu-
ral language, they typically fail to support a straightforward mapping be-
tween data and natural language (NL) expressions. This is because both
the signature of the meaning representation language and the alignment
between meaning and basic grammar units are specified independently
of the application data. Typically, predicate names are simply lemmas
(each word will be represented by a meaning representation including
its lemma as a predicate symbol) and the alignment between meaning
and string is determined by syntax. When generating from e.g., knowl-
edge or database data, these assumptions generally fail to hold. That
is, lemmas must be disambiguated and mapped to application-specific
predicate symbols while the alignment between meaning representation
sub-units and NL expressions is often at odd with grammar syntax.
To address these issues, recent statistical, data-to-text approaches have
therefore focused on mapping e.g., database records or knowledge-base
(KB) triples to natural language. In particular, data-to-text generators
[1, 10, 39, 24, 23] were trained and developed on datasets from various
domains including the air travel domain [13], weather forecasts [26, 5]
and sportscasting [10]. In contrast to the previous, grammar-based ap-
proaches, this more recent work systematically eschews syntax. Instead,
the dominant approach consists in learning a direct mapping between
meaning representations and natural language.
In this paper, we take a middleroad between these two approaches. We
focus on generating from “real” data i.e., knowledge base data, but we
argue that an explicit model of syntax is valuable in several ways. More
specifically, we argue that syntax:

– can help compensate for the lack of large quantities of training data.
Using an international benchmark consisting of only 207 training in-
stances, we show that inducing a linguistically principled, non prob-
abilistic grammar from this data, allows for the development of a
data-to-text generator which shows good coverage while preserving
output quality. When compared with the other two participating
systems, the approach performs comparably with a rule-based, man-
ually developed system and markedly outperforms an existing sta-
tistical generator.

– can help ensure genericity. Focusing on the task of verbalising user
queries on knowledge bases, we show that a small hand-crafted gram-
mar, combined with an automatically constructed lexicon, permits
verbalising queries independent of which domain the queried KB
bears on.

– can help improve the performance of a statistical, hypertagging mod-
ule designed to reduce the initial search space of the generator. In
particular, we show that the high level linguistic abstractions cap-
tured by the grammar permits developing a hypertagging module
which improves the generator speed, supports sentence segmenta-
tion and preserves output quality.

The paper is structured as follows. In section 2, we start by introducing
the grammar framework which we use to support data-to-text genera-
tion namely, Feature-Based Lexicalised Tree Adjoining Grammar (FB-
LTAG). We then explain the generation algorithm which permits gen-



Syntax and Data-to-Text Generation 3

erating sentences given some input data and an FB-LTAG. Sections 3,
4 and 5 illustrate how an explicit model of syntax can help improve
generation. Section 6 concludes with pointers for further research.

2 Feature-Based Lexicalised Tree Adjoining

Grammar

In this section, we start by defining the grammar formalism (Section 2.1)
and the lexicon (Section 2.2) we use to mediate between data and natural
language. We then describe the generation algorithm which exploits these
lexicon and grammar to map data into text (Section 2.3).

NP[idx:j]

John

john(j)

S[idx:b]

NP↓[idx:j] VP
[idx:b]

[idx:a]

V[idx:a]

runs

run(a,j)

VP[idx:a]

often VP*[idx:a]
often(a)

named(j,john), run(a,j), often(a)

Fig. 1. Derivation and Semantics for “John often runs”

2.1 Grammar

Following [17], we use a Feature-Based Lexicalised Tree Adjoining Gram-
mar (FB-LTAG) augmented with a unification based semantics for gen-
eration. For a precise definition of FB-LTAG, we refer the reader to [36].
In essence, an FB-LTAG is a set of trees whose nodes are decorated with
feature structures and which can be combined using either substitution
or adjunction. Substitution of tree γ1 at node n of the derived tree γ2
rewrites n in γ2 with γ1. n must be a substitution node (marked with a
downarrow). Adjunction of the tree β at node n of the derived tree γ2
inserts β into γ2 at n (n is spliced to “make room” for β). The adjoined
tree must be an auxiliary tree that is a tree with a foot node (marked
with a star) and such that the category of the foot and of the root node
is the same.

In an FB-LTAG with unification semantics, each tree is furthermore
associated with a semantics and shared variables between syntax and
semantics ensure the correct mapping between syntactic and semantic
arguments. As trees are combined, the semantics of the resulting derived
tree is the union of their semantics modulo unification.
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The semantic representation language used to represent meaning in the
grammar is a flat semantics language [6, 12] which consists of a set of
literals and can be used e.g., to specify first order logic formulae or
RDF triples. For a precise definition of the syntax and semantics of that
language, see [18].
Figure 1 shows an example toy FB-LTAG with unification semantics.
The dotted arrows indicate possible tree combinations (substitution for
John, adjunction for often). Thus given the grammar and the derivation
shown, the semantics of John often runs is as shown namely, named(j
john), run(a,j), often(a).

2.2 Lexicon

Semantics: run
Tree: nx0V
Syntax: Canonical
Anchor: runs

Semantics: sleep
Tree: nx0V
Syntax: Canonical
Anchor: sleep

S[idx:E1]

NP↓[idx:A] VP
[idx:E1]
[idx:E]

V[idx:E]

⋄

R(E,A)

Fig. 2. FB-LTAG tree schema nx0V and two Lexical Entries associated with that tree
schema.

The Lexicon permits abstracting over lexical and semantic information
in an FB-LTAG tree and relating a single tree schema to several lexical
items. For instance, the lexical entries shown on the left of Figure 2 relates
the predicate symbols run and sleep to the TAG tree nx0V shown on the
right. During generation, these relation predicate symbols will be used
to instantiate the predicate variable R in the semantic schema R(E,A)
associated with that tree; and the anchor values (runs/sleeps) to anchor
this tree i.e., to label the terminal node marked with the anchor sign (⋄).
That is, the ⋄ node will be labelled with the terminal runs/sleeps.

2.3 Surface Realisation

For surface realisation, we use the chart-based algorithm described in
[19]. This algorithm proceeds in four main steps as follows.

– Lexical Selection. Retrieves from the grammar all grammar units
whose semantics subsumes the input semantics. Fo instance, given
the semantics named(j john), run(a,j), often(a), lexical selection will
return the three trees shown in Figure 1.
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– Tree Combination. Substitution and adjunction are applied on the
set of selected trees and on the resulting derived trees until no further
combination is possible. For instance, the three trees selected in the
previous lexical selection step will be combined to yield a complete
phrase structure tree.

– Sentence Extraction. all syntactically complete trees which are rooted
in S and associated with exactly the input semantics are retrieved.
Their yields provide the set of generated (lemmatised) sentences e.g.,
John run often in our running example.

– Morphological Realisation. Lexical lookup and unification of the fea-
tures associated with lemmas in the generated lemmatised sentences
yield the final set of output sentences e.g., John runs often

3 Grammar as a Means to Compensate for the

Lack of Training Data

The kbgen task1 was introduced as a new shared task at Generation
Challenges 2013 [4] to evaluate and compare systems that generate text
from knowledge base data. Figure 3 shows an example input and output.

:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Gated-Channel64605| |has-function||Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

:INSTANCE-TYPES

(|Particle-In-Motion64582| |instance-of| |Particle-In-Motion|)

(|Endoplasmic-Reticulum64603| |instance-of| |Endoplasmic-Reticulum|)

(|Gated-Channel64605| |instance-of| |Gated-Channel|)

|Release-Of-Calcium646| |instance-of| |Release-Of-Calcium|))

:ROOT-TYPES (

(|Release-Of-Calcium646| |instance-of| |Event|)

(|Particle-In-Motion64582| |instance-of| |Entity|)

(|Endoplasmic-Reticulum64603| |instance-of| |Entity|)

(|Gated-Channel64605| |instance-of| |Entity|)))

The function of a gated channel is to release particles from the endoplasmic reticulum

Fig. 3. Example KBGEN Input and Reference Sentence

One characteristic of the KBGen shared task is that the size (207 in-
put/output pairs) of the training data is relatively small which makes it
difficult to learn efficient statistical approaches. In what follows, we show
that, by inducing a linguistically principled grammar from the training
data, we can develop a generator which performs well on the test data.
While fully automatic, our approach produces results which are compa-
rable to those obtained by a hand written, rule based system; and which
markedly outperform a data-driven, generate-and-rank approach based
on an automatically induced probabilistic grammar.
Grammar induction generally relies on large syntactically annotated cor-
pora (treebank) and results in large grammars whose combinatorics are
constrained by the probability estimates derived from the treebank. In
contrast, we define a grammar induction algorithm which yields compact,

1 http://www.kbgen.org
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Algorithm 1 Grammar Induction Algorithm

Require: An input semantics (set of triples) φ with variables Vφ, reference sentence
S and parse tree τS.

1: Variable/String Alignment Align each variable in Vφ with one or more tokens
in S

2: Variable Projection Use the Variable/String alignment and a set of hand-written
rules to project the input semantics variables onto non terminal nodes in the parse
tree τS of the reference sentence.

3: Extracting Trees Extract NP and relational (prepositions, verbs, conjunctions,
etc.) trees from τS using the variables labelling the nodes of the parse tree. NP
trees are NP subtrees whose root node are labelled with an input variable (v ∈ Vφ).
Relational trees are subtrees containing all and only input variables that are related
to each other by relations in φ (cf. [20] for a more precise definition).

4: Associating Trees with Semantics. Each subtree is assigned a set of input
triples based on the input variables it is labeled with. An NP tree labeled with
input variable v is associated with all input literal whose first argument is v. Each
relational tree is associated with all literals whose argument variables are variables
labelling this tree.

5: Generalising from Trees to Tree Schemas Isomorphic trees which differ only
in their semantics and lexical content are converted to a single tree schema and
several lexical entries capturing the multiple possible instantiations of that tree
schema.

6: Generalising from Bigger to Smaller Trees Large Verb trees are used to
derive smaller more general trees e.g., by deriving an intransitive verb tree from a
transitive one; or by splitting a tree containing a PP into one tree without that PP
and a PP tree.

7: return An FB-LTAG with unification semantics and a lexicon mapping semantic
triples to FB-LTAG trees

linguistically principled, FB-LTAG grammars. The induction process is
informed by the two main principles underlying the linguistic design of
an FB-LTAG namely, the extended domain of locality and the semantic
principle. The extended domain of locality principle requires that elemen-
tary TAG trees group together in a single structure a syntactic functor
and its arguments while the semantic principle requires that each elemen-
tary tree captures a single semantic unit. Together these two principles
ensure that TAG elementary trees capture basic semantic units and their
dependencies.

Figure 1 gives a high level description of our grammar algorithm (see
[20] for a more detailed description). In brief, the algorithm takes as
input a set of (φ, S) pairs provided by the KBGen challenge where φ is
a set of triples and S is a sentence verbalising φ. First, input variables
in φ are aligned with word forms in S. Variables are then projected
on non terminal nodes of S parse tree and used to constrain both tree
extraction and the association of syntactic trees with semantics. Steps 5
and 6 of the algorithm generalise the extracted grammar by abstracting
away from specific lexical and predicative information (Step 5) and by
deriving smaller trees from extracted ones (Step 6).
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S

NP VP

NP PP VBZ S

DT NN IN NPGC VPRoC

DT NN NN TO VB NPPM PP

IN NPER

DT NN NN

the fn of a gated channel is to release particles from the endoplasmic reticulum

instance-of(GC,Gated-Channel),instance-of(RoC,Release-of-Calcium)
instance-of(PM,Particle-In-Motion),instance-of(ER,Endoplasmic-Reticulum)

Fig. 4. Parse Tree with Projected Semantic Variables. Input Variables are first aligned
with word forms (Step 1) and then projected onto parse tree nodes (Step 2).

Figure 4 shows a parse tree after variable projection and Figure 5 shows
the grammar produced by Step 4. Generalisation is illustrated in Fig-
ure 6.

As illustrated by Figures 5 and 6, the grammars extracted by our gram-
mar induction algorithm are FB-LTAGs which conform with the seman-
tic and the extended domain locality principle. In [20], we show that
inducing such grammars help compensate the small size of the training
data. Tables 7 and 8 show the results obtained on the KBGen data and
compare them with those of the other two participating systems namely,
a symbolic system based on hand written rules (UDEL) and a statisti-
cal system (IMS) based on a probabilistic grammar extracted from the
KBGen training data. As the results show, our approach provides an
interesting middle way between the two approaches. On the one hand, it
produces sentences that are comparable in quality with those generated
by the symbolic UDEL system but it produces them in a fully automatic
manner thereby eschewing the need for highly skilled and time consum-
ing manual labour. On the other hand, it generates sentences of much
higher quality than those output by the statistical system. In sum, by
extracting a linguistically principled grammar, we achieved good quality
output while eschewing the need for manual grammar writing.

4 Grammar as a Means to increase Domain

Independence

We now turn to a second data-driven NLG application namely, the task of
verbalising knowledge-base queries. Interfaces to knowledge bases which
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SRoC3

NP VPRoC3
RoC2

NP PP VBZ SRoC2
RoC1

DT NN IN NP↓GC is VPRoC1
RoC

the fn of TO VBRoC NP↓PM PP

to release IN NP↓ER

from

instance-of(RoC,Release-of-Calcium)
object(RoC,PM)
base(RoC,ER)

has-function(GC,RoC)
agent(RoC,GC)

NPGC

DT NN NN

a gated channel

instance-of(GC,Gated-Channel)

NPPM

particles

instance-of(PM,Particle-In-Motion)

NPER

DT NN NN

the endoplasmic reticulum

instance-of(ER,Endoplasmic-Reticulum)

Fig. 5. Extracted Grammar for “The function of a gated channel is to release particles
from the endoplasmic reticulum”. Variable names have been abbreviated and the kbgen
tuple notation converted to terms so as to fit the input format expected by our surface
realiser.
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SRoC3

NP VPRoC3
RoC2

NP PP VBZ SRoC2
RoC1

DT NN IN NP↓GC is VPRoC1
RoC

the fn of TO VBRoC NP↓PM

to release

instance-of(RoC,Release-of-Calcium)
object(RoC,PM)

has-function(GC,RoC)
agent(RoC,GC)

VPRoC

VP∗,RoC PP

IN NP↓ER

from

base(RoC,ER)

Fig. 6. Deriving Smaller from Larger Trees

System All Covered Coverage # Trees

IMS 0.12 0.12 100%

UDEL 0.32 0.32 100%

AutExp 0.29 0.29 100% 477

Fig. 7. BLEU scores and Grammar Size (Number of Elementary TAG trees

Fluency Grammaticality Meaning Similarity

System Mean Homogeneous Subsets Mean Homogeneous Subsets Mean Homogeneous Subsets

UDEL 4.36 A 4.48 A 3.69 A

AutExp 3.45 B 3.55 B 3.65 A

IMS 1.91 C 2.05 C 1.31 B

Fig. 8. Human Evaluation Results on a scale of 0 to 5. Homogeneous subsets are
determined using Tukey’s Post Hoc Test with p < 0.05
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make use of Natural Language Generation have been shown to success-
fully assist the user by allowing her to formulate a query while know-
ing neither the formal query language nor the content of the KB being
queried. In these interfaces, the user never sees the formal query. Instead,
at each step in the query process, the generator verbalises all extensions
of the current query which are consistent with this query and with the
knowledge base. The user then chooses from among the set of generated
NL queries, the query she intends.

One issue with such NLG based interfaces is that they should be do-
main independent. They should be usable for various KBs and various
domains. Moreover, they should allow for an incremental processing of
the user query. That is, they should support the user in incrementally
refining her queries in a way that is consistent with the KB content.

While most previous work on generating from knowledge bases has as-
sumed a restricted syntax and used either templates or a procedural
framework (Definite Clause Grammars) to model the interaction between
syntax, NL expressions and semantics, we developed an approach which
uses a small hand-written FB-LTAG with unification semantics to sup-
port query verbalisation [30]. In essence, this approach consists in im-
plementing a small hand-written FB-LTAG with unification semantics;
in automatically constructing a lexicon which maps concept and relation
names to trees in the FB-LTAG; and in adapting an Earley style parsing
algorithm to support the incremental revision of a user queries.

In [30], we showed that this approach has several advantages.

First, because it does not rely on the existence of a training corpus, it is
generic i.e., it results in a KB query system which can be used with differ-
ent KBs on different domains. The key to developing a generic approach
lies in combining a generic grammar which captures syntactic variations
(canonical clauses, relative clauses, ellipses etc) with an automatically
extracted lexicon which captures the lexicalisation of concepts and rela-
tions. While the grammar is hand written, the lexicon is automatically
extracted from each ontology using the methodology described in [35].
When tested on a corpus of 200 ontologies, this approach was shown to
be able to provide appropriate verbalisation templates for about 85% of
the relation identifiers present in these ontologies. 12 000 relation identi-
fiers were extracted from the 200 ontologies and 13 syntactic templates
were found to be sufficient to verbalise these relation identifiers (see [35]
for more details on this evaluation).

Thus, in general, the extracted lexicons permit covering about 85% of
the ontological data. We further evaluated the coverage of our approach
by running the generator on 40 queries generated from five distinct on-
tologies. The domains observed are cinema, wines, human abilities, dis-
abilities, and assistive devices, e-commerce on the Web, and a fishery
database for observations about an aquatic resource. The extracted lexi-
cons contained 453 lexical entries in average and the coverage (proportion
of formal queries for which the generator produced a NL query) was 87%.
Fuller coverage could be obtained by manually adding lexical entries, or
by developing new ways of inducing lexical entries from ontologies (c.f.
e.g. [37]).
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A second advantage of the grammar based approach is that because
it uses a well-defined grammar framework rather than e.g., templates
or a procedural framework, it allows for the use of existing generation
techniques and algorithms. In particular, we showed that the Earley style
generation algorithm proposed in [8] could straightforwardly be adapted
to support the incremental generation of user queries.
Finally, using a fully blown approach to syntax rather than templates or
programs allows for more syntactic variability and better control on syn-
tactic and lexical interactions (e.g., by using features to ensure number
agreement or control the use of elliptical constructions). In comparison,
template based approach often generate one clause per relation2. Thus
for instance, the template-based Quelo system [16] will generate (1a)
while our grammar based approach supports the generation of arguably
more fluent sentences such as (1b).

(1) a. I am looking for a car. Its make should be a Land Rover. The
body style of the car should be an off-road car. The exterior color
of the car should be beige.

b. I am looking for car whose make is a Land Rover, whose body
style is an off-road car and whose exterior color is beige.

A human-based experiment indicate that the queries generated by our
grammar based approach are perceived as more fluent than those pro-
duced by the Quelo template based approach (1.97 points3 in average
for the grammar based approach against 0.72 for the template based
approach).

5 Grammar as a Means to Improve Statistical

Disambiguisation

The generation algorithm described in Section 2.3 (i) explores the whole
search space and (ii) is limited to generating a single sentence at a time.
Generation from flat semantics is NP-complete however [7, 22] and ex-
isting algorithms for realization from a flat input semantics all have run-
times which, in the worst case, are exponential in the length of the input.
Moreover, user queries can typically require the generation of several sen-
tences. For instance, the query in (2) is better verbalised as (2a) than as
(2b).

(2) a. CarMake(x) isMakeOf(x y) CrashCar(y) DemonstrationCar(y)
hasCarBody(y z) OffRoad(z) soldBy(z w) CarDealer(w)

b. I am looking for a car make which should be the make of a crash
car, a demonstration car. The body style of the crash car should
be an off road and it should be sold by a car dealer.

c. I am looking for a car make which should be the make of a crash
car which is a demonstration car and whose body style should be
an off road and should be sold by a car dealer.

2 This is modulo aggregation of relations. Thus two subject sharing relations may be
realised in the same clause.

3 Fluency was rated on a scale from 0 to 5.
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In [29], we present a hypertagger which (i) restricts the search space out-
put by the lexical selection step and (ii) segments the input into sentence
size chunks. That is, our hypertagger not only restricts the initial search
space thereby reducing timeouts and generation time, but it also permits
a joint modelling of surface realisation and sentence segmentation. This is
possible because, in contrast to approaches such as [27, 14, 24, 23] which
directly map semantics to strings, we mediate this relation using a gram-
mar which differentiates between sentence starting (e.g., nx0VVVpnx1
in Figure 1) and clause extending trees (e.g., relative clauses, sentence
and VP coordination, PPs and elliptical clauses). Thus, a tagging se-
quence in effect determines sentence segmentation. For instance, given
the query shown in (3a), if the hypertagger returns the sequence of tree
tags shown in (3b), the output verbalisation will be (3d) because the
tag Tnx0VVpnx1 indicates a sentence starting tree thereby forcing the
segmentation of the input into two sentences.
(3) a. CarDealer(x) locatedIn(x,y) City(y) sell(x z) Car(z) runOn(z w)

Diesel(w)
b. (Trees) Tnx betanx0VPpnx1 nx ANDWHnx0VVnx1 nx nx0VVpnx1

nx
c. (Synt.Classes) NP ParticipialOrGerund NP SubjRelAnd NP Canon-

ical
d. I am looking for a car dealer located in a city and who should sell

a car. The car should run on a diesel.
In practice however, we do not use tree names as hypertags because of
data sparsity. The hypertagger is a model learned on a parallel corpus
of NL and formal queries. Creating such a corpus is labour intensive
and we only collected 145 training instances. A first experiment which
predicts tree as labels yielded a tagging accuracy on complete inputs of
57.86 when considering the 10 best outputs. More importantly, the model
often failed to predict a sequence which would allow for generation even
when inputing to the tree combination phase the 10 best tree sequences
predicted by the hypertagger.
The tags learned by our hypertagger are therefore not tree names but
more general syntactic classes which capture the syntactic realisation of
a semantic token independent of its lexical class. Thus, the input query
in (3a) will, in fact, be tagged with the syntactic classes shown in (3c).
Table 1 shows the tree names and the syntactic classes associated with
each tree selected by the equippedWith relation while Table 2 shows
example tree names for lexical classes with distinct subcategorisation
patterns. As can be seen, while a tree name describes both the lexical
and the syntactic pattern of a lexical item (e.g, nx0VVVnx1 describes a
transitive verb with canonical subject and object NPs), syntactic classes
capture syntactic generalisations which cut across all subcategorisation
patterns (e.g.,the Canonical class is true of all realisations with canonical
subject and object NPs). Since in our grammar, each tree is automati-
cally associated by the grammar compilation process with its syntactic
class, we first use the hypertagger to predict the syntactic class of an
input literal. We then restrict the set of trees that were lexically se-
lected by that literal to only those trees which have the syntactic class
returned by the hypertagger. For instance, given the literal equipped-
With, while lexical selection will return the set of trees shown in Table 1,
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if the hypertagger predicts the SubjRelAnd class for this literal given the
overall input, then the tree combination step of the generation algorithm
will only consider the tree labeled with that syntactic class namely, the
W0nx0VVVpnx1 tree.

Example Tree Name Syntactic Class

NP0 should be equipped with NP1 nx0VVVpnx1 Canonical
It0 should be equipped with NP1 PRO0VVVpnx1 SubjPro
and NP0 should be equipped with NP1 sCONJnx0VVVpnx1 Scoord
and it0 should be equipped with NP1 sCONJPRO0VVVpnx1 ScoordSubjPro
NP0 which should be equipped with NP1 W0nx0VVVpnx1 SubjRel
NP0 (...) and which should be equipped with NP1 ANDWHnx0VVVpnx1 SubjRelAnd
NP0 (...), which should be equipped with NP1 COMMAWHnx0VVVpnx1 SubjRelComma
NP0 equipped with NP1 betanx0VPpnx1 ParticipialOrGerund
NP0 (...) and equipped with NP1 betanx0ANDVPpnx1 ParticipialOrGerundAnd
NP0 (...), equipped with NP1 betanx0COMMAVPpnx1 ParticipialOrGerundComma
NP1 with which NP0 should be equipped W1pnx1nx0VV PObjRel
NP0 (equipped with X) and with NP1 betavx0ANDVVVpnx1 SubjEllipAnd
NP0 (equipped with X), with NP1 betavx0COMMAVVVpnx1 SubjEllipComma
Table 1. Verbalisations of the equippedWith relation captured by the lexicon and
the grammar.

Hypertagging is viewed as a sequence labelling task in which the sequence
of semantic input needs to be labelled with appropriate syntactic classes.
The linear order of the semantic input is deterministically given by the
linearisation process of the tree based conjunctive input (see [15] for more
details).
We use a linear-chain Conditional Random Field (CRF, [25]) model to
learn the mapping between observed input features and hidden syntac-
tic classes. This probabilistic model defines the posterior probability of
labels (syntactic classes) y={y1, . . . , yn} given the sequence of input lit-
erals x={x1, . . . , xk} :

P (y | x) =
1

Z(x)

T∏

t=1

exp

K∑

k=1

θkΦk(yt, yt−1,xt
)

Z(x) is a normalisation factor and the parameters θk are weights for the
feature functions Φk.
Given a set of candidate hypertags (syntactic classes) associated with
each literal, the hypertagging task consists into finding the optimal hy-
pertag sequence y∗ for a given input semantics x:

y
∗ = argmaxy∗P (y∗ | x)

whereby the most likely hypertag sequence is computed using the Viterbi
algorithm. We used the Mallet toolkit [28] for parameter learning and
inference.
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NP0 should generate NP1 nx0VVnx1
NP0 should run on NP1 nx0VVpnx1
NP0 should be equipped with NP1 nx0VVVpnx1
NP0 should be the equipment of NP1 nx0VVDNpnx1
NP0 should have access to NP1 nx0VVNpnx1
NP0 should be relevant to NP1 nx0VVApnx1
NP0 should be an N1 product nx0VVDNnx1

Table 2. Example of Canonical Trees for each Subcategorisation Class

We train the CRF on a corpus aligning formal queries with the syntac-
tic classes present in the FB-LTAG grammar. The corpus contains 145
training instance with queries for 9 ontologies for different domains (car,
cinema, wines, assistive devices and fishery).

All features are derived from the input semantics i.e., a sequence of inter-
leaved relations and concepts. Since concepts have low lexical ambiguity
(they mostly select NP trees), most of the features are associated with
relations only and in the following, we write Ri−1 to denote the relation
which precedes relation Ri independently of how many concepts inter-
vene between Ri and Ri−1. Features describe (i) the chaining relations
between entities, (ii) the shape of relation names and correspondingly
their lexicalisation properties i.e., the sequence of POS tags and indi-
rectly the TAG tree that will be used to verbalise them, and (iii) global
structural features pertaining to the overall shape of the input.

We evaluate the hypertagging module both in isolation and in interaction
with the generator. The results show that hypertagging with syntactic
classes4 :

– improves hypertagging accuracy. Hypertagging with syntactic classes
rather than tree names improves accuracy by up to 10.62 points
for token accuracy; and by up to 20.77 points for input accuracy
(token accuracy is the proportion of input literals correctly labelled
while input accuracy is the proportion of correctly labelled input
sequences).

– improves generation coverage by up to 17.25 points when compared
with treename-based hypertagging (Generation coverage is the pro-
portion of input for which generation yields an output).

– improves speed both with respect to both a generator using a treename-
based hypertagger (-66ms in average per input) and a symbolic
generator without hypertagging. The symbolic generator repeatedly
times out yielding an average generation time of 17 minutes on 145
inputs.

– preserves output quality. When compared with both a grammar
based and a template based generation system, the output of our
hybrid statistical hypertagging/grammar-based generation system is

4 For all results discussed, we assume a hypertagging module returning up to 20 best
solutions.
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consistently perceived by human raters as clearer and more fluent.
The human based evaluation involved ratings from 12 raters on a
set of 30 input queries related to 9 knowledges bases. In comparison,
the template based system generates one clause per relation and, on
long queries, is judged unnatural (low fluency) by the raters. The
symbolic generator often fails to adequately segment the input or
to score the most fluent output highest. Figure 9 shows an example
input and the corresponding output by each of the three systems
being compared.

Input
Query

Flight hasCurrentDepartureDate.[Date] hasCurrentArrivalDate.[Date]
hasDestination.[Airport hasFlightTo.[Airport]] hasCarrier.[Airline] ha-
sTicket.[AirTicket hasDateOfIssue.[Date]]

Temp I am looking for a flight. Its current departure date should be a date. The
current arrival date of the flight should be a date. The destination of the flight
should be an airport. The airport should have flight to an airport. The carrier
of the flight should be an airline. The ticket of the flight should be an air ticket.
The air ticket should have date of a date.

Hyb I am looking for a flight whose current departure date should be a date, whose
current arrival date should be a date and whose destination should be an
airport. The airport should have flight to an airport. The carrier of the flight
should be an airline. The ticket of the flight should be an air ticket whose date
of issue should be a date.

Symb I am looking for a flight whose current departure date should be a date and
whose current arrival date should be a date and whose destination should be
an airport which should have flight to an airport. Its carrier should be an
airline, the ticket of the flight should be an air ticket and its date of issue
should be a date.

Fig. 9. Example input and outputs. Temp is a template based system, Symb the sym-
bolic generator described in Section 2.3 and Hyb the same generator augmented with
the Hypertagger

6 Conclusion

Syntax describes how words combine together to form complex NL ex-
pressions. Syntax is also often viewed as a scaffold for semantic construc-
tion. In other words, syntax provides both a means to abstract over lexi-
cal units and to mediate between form and meaning. While, when enough
training data is available, statistical approaches can be developed which
directly map meaning to form, there is, linguistically, no good reason to
ignore the wealth of research that has gone into describing the syntax
and the syntax/semantics interface of natural languages. In this paper,
I have argues that syntax is in fact, a valuable compoment of natural
language generation. In particular, I have shown that, by providing a
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higher level of abstraction, syntax permits improving a hypertagger per-
formance; facilitates the development of a generic, domain independent,
query verbaliser; and supports the induction of compact, linguistically
principled grammars which are well suited for data-to-text generation.
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