One more proof of Siegel's theorem - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1980

One more proof of Siegel's theorem

Résumé

This paper gives a new elementary proof of the version of Siegel's theorem on $L(1,\chi)=\sum_{n=1}^{\infty}\chi(n)n^{-1}$ for a real character $\chi(\!\!\!\!\mod k)$. The main result of this paper is the theorem: If $3\leq k_1\leq k_2$ are integers, $\chi_1(\!\!\!\!\mod k_1)$ and $\chi_2(\!\!\!\!\mod k_2)$ are two real non-principal characters such that there exists an integer $n>0$ for which $\chi_1(n)\cdot\chi_2(n)=-1$ and, moreover, if $L(1,\chi_1)\leq10^{-40}(\log k_1)^{-1}$, then $L(1,\chi_2)>10^{-4} (\log k_2){-1}\cdot(\log k_1)^{-2}k_2^{-40000L(1,\chi_1)}$. From this the result of T. Tatuzawa on Siegel's theorem follows.
Fichier principal
Vignette du fichier
3Article2.pdf (3.12 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01103859 , version 1 (15-01-2015)

Identifiants

Citer

K Ramachandra. One more proof of Siegel's theorem. Hardy-Ramanujan Journal, 1980, Volume 3 - 1980, pp.25-40. ⟨10.46298/hrj.1980.89⟩. ⟨hal-01103859⟩
115 Consultations
685 Téléchargements

Altmetric

Partager

More