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ON£ MORE PROOF OF SIEGEL'S THEOREM 

By K. RAMACHANDRA 

To the Academician Ivan Matveevich Vinogradov 
A Humble Dedication on his Ninetieth Birthda~ 

§ I. Introduction 

The object of this note is to give a trivial proof of tbe 
following theorem and apply it to obtain slightly a sharper 
ver~ion of Siegel's T!;teorem on D I. Xl for real characters X 
mod k. See Theorem 2 at the end of this section. 

Theorem I 

Let a
1

, a2, .•. be an infinite uquence of complex numbers 

sa.tisfying I ~ an I < C x1', where C and 1' are positive 
n.;;;x 

constants satis!J ing C > 0, 0 < 1' < 1 Let 1' < s < I. 

Then for x > 1, 

-s 
(n 

X 
m..;;;·

n 

00 

-s 
a m ) = m 

1 - s 
X 

1 - s f(l) 

where 101 .;;;;;; 1, fts) = -s 
~ (an n ), 

n = 1 

00 n, + 1 

~ (s) = 2 ( -s J du) I n· - - +-s I- 1 t u . n n = 1. 
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A 
andE = x 

- 3 ( . 96 (1 - <P> 
10 1160 + - ""' + '\. 

(S - <P) XS r A 

. <P+l A bemg -
2

- - s. 

+ _19_2_(l_o=-g _f x_+_3-'-) _l -'(_I _-_<P'--) \ 
(s - <P/ xs - f> .+ A J 

This theorem will be proved in § 2 in a simple way. We 

now state a lemma (to be proved in § 3 in a trivial way). 

Lemma I : Let 3 or;;;; k
1 

or;;;; k
2 

where k
1 

and k2 are two 

integtrs. Let X 
1 

and X 
1 

be two non-principal real .characters 

mod k1 and mod k2 respectively such that the character 

X3 = X 1 X2 defined by x3 (n) = X 1 (n) x2 (n) is non principal 

(we can verify that x
3 

is actually a character mod k
3 

= k
1 

k
2
). 

Then for x ;;;;;. 1 we have, 

~ X1 (n) I < k 1 and 
n.;;;;:. x . · 

I ~ X1{1) X2(m) X3(n) I < 25 .xf (k1 k 2\2 • 
lmn < x 

Remark. The lemma is true for complex characters as 
well. Also the estimate can be improved by the use of the 
Polya-Vinogradov inequality. 

Lemma l: We have, under the assumptions of Lemma 1, 

-s x t- s 

~ CX1 (n) (mn) ) = ~s L 1 mn...;. x 

+ t(s) L(s, X1l + 1000 k 1 £ 1 e, tO< s <I) 

and ~ X {IJXim)Xin> (lmnvJ-s 
lmnv < x 4 

l-s 
X 

= 1-="S L
1 

L
2 

L
3 
+ t s! L(s, X 1> 
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00 s 
where L(s, X .\ = ~ (X .(m) n- ) and 

1 n = 1 J 

L(l, X;)= L1, (j = 1, 2, 3). 

-3. At ( 96 192 log (x + 3) ) 
Also E1 = 10 x 1160 '+ l + z i ' 

· SX S X 

A. I = i --s, 

-3 A.2( 96 7o81bg (x + 3)) 
and E2 = 10 x 1160 + i + 2 1 ' 

. (4s-3)x · (4s-3) x8 • 

7 
A.2 = s- s. 

Proof: We have only to put ~ = 0 and! in Theorem 1 

and use Lemma 1. This proves the lemma. 

From these two lemmas we can deduce in a simple way 

the sharper version of Siegel's theorem, as follows. 

Lemma 3: Let P be the greatest real zero of L(s, X
1
). If 

7 
there is no real zero at all or if P .;;;; -8 we take s in the range 

7 S < s < 1 In the other case we take s ;, the range P ..;; s < 1. 

Put x = (10000 k
1 

)4. Then we have 

I - s 
X 

1 ..;. 
1 - s 

1 
8 
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Proof: Follows from Lemma 2 on using t (s) L (s; X 
1
).;;;0. 

Lemma 4: LetL(l,X1) < (60000)-8 (log k
1
) -l .. Then 

there exist real zeros and their maximum p satisfies 1 - p < 
(16 log k

1
) -I and further 

I p L (1, X1 ) - <; ( 10000 k ) 4 (l- ) . . . 
2 1 I- P 

Hence 1 - P ...; 2 ( 10000 k l ) 4 (I _,. p) L ( I, X 
1 

) 

...; 400 L ( I, X 1 ) . 

Proof: Follows from lemma 3 on putting s = I -

(16 Jog k) -I and assuming 1- P > ( 16log k1 )-l, and 

next putting s = P. 

Lemma 5 s Let L ( 1, X
1

) < (60000) -S ( log k
1 

) -I. Then 

if x2 is a. non principal real character mod kl ( 3 ' kl <;k2 ) 

such that X 
3 

= X 
1 
x

2 
is non principal, we must have 

1-P 
1 xo 
2<1=fi LtLX,)L(l.XL)L(I,X 1 X2 ) 

where x
0 

= (86GOOQJ32 ( k 
1 

k
2 

) 32 and Pis given by lemma 4. 

Proof: In the second inequality of lemma 2 we take 

~ = x
0 

and s = P. Plainly ~ (P) L (P, X1 ) L (P, X2 ) 

L (P, X l X 2 ) = o. The term involving 0 is easily seen to be 

1 . 
less than 2 . Hence lemma 5 rs proved. 

Lemma6: LetL(l,X,).;;;; (60000) - 8 (1ogk
1
)-l and let 

X 1 and X, be as in lemma 5. Then we have 
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. Pr~of: Follows by. 'lemma 5 on using 

:x -1 - P .;;,;; x 400 L (I, X1 ) 
. 0 0 

Using L ( 1, X • X 
2 

) .;;,;; 6 log ( k 
1 

k 
2 

) and 

L(J,X1 )-L(P,X1 ) 2 

.• j i 

1 
_ p < 40 ( log k 

1 
) and k 

1 
.;;;; k 

2 
we _ 

-state now our main result. 

Theorem 2. 

Let 3 .;;;; k 1 < k2 where k1 and k2 are two integers. Let 

X 1 •nd x2 be two real non principal characters mod k11 and 

k 2 re1pectively such that ther~ e~lsts an integer n > 0 for 

' eD -1 
whichX1 (n)X2 (n)=-1. PutL1 = -~ (X1 (n)n h : 

. n -1 . 

Qlt . -1 
L 2 = l ( X 2 (n) n · ). 

n = 1 

If L1 < 10-40 (log k
1 

) -I , then, we must have 

necessarily, 

L2 >(logk.z)-1 { 10-4(1ogkl )-:-2k240000Ll }. 

As a corollary we have immediately the following resula 

due to T. TATUZAWA, which is an improvement of a resula 

<Jf C~ L. Slli.GEL. 
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Theorem 3. 

G . 0 1 I . 1· tven any E, < E < 2 t 1e rnequa tiJ' 

00 

l (X ~n) n - 1 ) < k- E where X is a real non principal 
n = 1 
character mod k has only .finitely many solutions. Moreover all 

exceptions to this inequality "can be determined effectiuly" 

with ( essenti•lly) at most one possible exception. 

Remark : The first part of Theorem 3 i!i due to Siegel 
and the second part due to Tatuzawa. We have not bothered 
to economize the constants io Theorem 2. 

§ 2. Proof of Theorem I. The proof is based on 

Lemma I: 

n 
3 ( ma~ I ~ b m I ) 

1<n<N m=1 
max I en I, 

1 ..;;;n ..,;_ N 

where { bn } is a finite sequence of complex numbers and 

{ c } a finite monotonic sequence of re,zl numbers. The 
n 

constant 3 can be improved to 2 if all the en are of the same 

sign. 

Proof: Writing B
0 

= 0, B
11 

N-1 
~ 

n = I 
This proves the lemma . 

n 
l b we have 

n = 1 n 
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Lemma 2 Let 0 < s · < 1 and x > 0. Then 

t-s 
X -s 

n 
1 - s + t (s) + E (x) , 

where t (s) 
00 1 
~ u -1- - - .u 

n=ln · s-1 n f 
n 

3l 

n+l du 

and E (x) = E (x, s) = 
( [x] + 1 ) 1-s -xt-s 

1 - s 

~ un . Further 1 E ( x) 1 <; 2 x- s . 
n>[.tJ +I 

Pl-oof: L H S 

du) - + 
us 

QO 

and here the first term is 2 u n - 2 

[x] + I 

f 4: 
1 

u . 
n 

u 

11 = 1 n >[x) + 1 

( [ x ] + 1 ) 1 - s -:: __ xl- s 
Note that 

J - s 

[x]+1 , 

f -s -s 
v dv ..;; x and 

X 

This proves the lemma. 

-s 
X 
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t.emma 3. Let tp < s < 1 and x ;;;..-1. Then, we have, 

-s 
a (mn) = 

n 
mn< x 

1- s 00 

; - s 2 
n = 1 

a 00 4 a n 
2 

n 
I + t ( s) + T 

n' n s 
n = 1 

n 
n = 1 

1-s a 
X - 1 

I 
1'1 

s- 1 n 
n>x 

I log n 

~1f ( 
a 

) I 
n 

T2 
nu 

du, 

s n>x 

( ~) I 
-s 

T -t(s)+ (a n ) 
3 n 

n>x 

and T 
4 

= I . a n n- s E ( : ) , 

nr;;;;;x 

~ ( x) b1ing defined in lemma 2 • Also 1 E ( x) 1 < 2 x- s • 

Proof: L H S = ~ (an n- s ~ 
nr;;;;;x m.:;;; .r f n 

a 
- S ( ( n -I X )J- S · (X)) 

n n 1-s +t(s)+E--;; 
n<;x 

.xl-s ( 
00 

1- s I 
n = 1 

+ t (s) ( 

an 

n 

00 

n>x 

an 

ns 
n =I 

by lemma 2 

T4 
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1- s 
X an 

l1 -n - t (s) ~ 
1 - s n > x n > x n1 

This proves lemma 3. 

Lemma 4. We have, 

( 
xl- s 1 ·) - (1 - </>) ¢' - I 

IT1i:E0;6C - ~-~ (1-2 )x • 

12C log (x + 3) ~-s 
IT I "' -- - - ·- - X 

2 (1-2¢-s? 

6 C x<l>- s 
IT I < - -- ·--- . 

3 (l-2¢-:-sJ 

Proof: Follows from lemma 1 since 

( 
xi-s -1) 2oo C (2n-l x)<l> 

IT I< 3 ---- • 
1 1- s ?n 

n=O - x 

~6C 2 
n=-0 

00 

~ C (2n+l x)<l> n+l 
~ n u log (2 x) du 

n=O ( 2 x) 

(~_ -j-_1)_~?~~-t_!__~~ + 31 

( 2n xl-<1> 

(_ 2n~ I XJ¢ 

( 2n x,S 
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0
_ 2fl-s) ' 

CID CCI 

~ "n <; ~ ( nl" - I ) -= I. 
n=l n=l (n+l)s 

Lemma 5. We hav~, 

( 
6 ) ! ( I + f> - 2.r) 

iT41<;;32 9+ 1 _ 2~-l Cx 

Proof 1 

L (onn-sE-(:)) 
2m<;;n<2m+l . 

= 2 S (U) say, where U = 2m 

2m <;;x 

We have trivially 

iS(U)I< ~ · (2(2U/cu- 8 2(2~)-s) U <;;.n <2U 

-s s+~ I+t/> 
= 4C.x 2 U . 

Also E(:) is monotonic except for those n for which [:] 

has a change. Hence I ~ an n- s E ( : ) I 
ul < n < u2 

does not exceed 

3 ( max IE (~)I max 1 I a n n- s I ) 
U1 ..;; n < u

2 
n u

3 
u1 ..;;n~ U

3
<2U 
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is an interval contained in U .,.;; n < 2U over which [:] does 

not change . This in turn does not exceed (we have used lemma 

1 above and we use it again) 

6 max j E (-.:! \) I t2 C (2UlJ U-s 
U ~ n < 2U n 

< 24 (2s+~ x-s ufi>J C. 

Since there are not more than 

X X X 
U - 20 + 1 = 2u + 1 intervals we have 

( 
I 1+~ J2x )) s+~ -s 

!S(U)I~ min~U 'ul-tp 4C2 x . 

Ht>nce 

+ 

r ..;,; ~ (12 x) 

+ (12 .x) 

2 

1 + 1/> 
2 
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1/>+1 
2 

..;;; (12) 
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c {1-2~(1+1/>, + 1-2-\1-¢).} 
X 4C 2s+; xl (1 + 1/> - 2s) 

1/>+1 

= 32 C X 
!(I + </> - 2 s) { 2s + 1 + 1/> + ¢ - 3 3 2 

1-2-(1+1/>) 

1/1+1 

2s+2¢-2 3 2 

l -- 2-(l_:¢) 
} 

Lemma 6. We have, 

where A. = I (I + ¢ - 2s). 

Proof: We have only to verify that 

1-s ¢-1 

T/ + 6 ( z 1- ~ 1) ( ~-(1-¢)) 
1-2 

12 log (x + 3) ;-s 6 x;-s 
+ X + 

(l +2</'-s )2 (t-l-s, 

{ 
96 (1 - ¢1 

..;;; 640 + 
(s-¢) xs-¢+A. 

+ 192 Oog (x+ 3)) (I-:_ tp) 

(s-l/>)2l.s-¢+A. 
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where T
4

' = 32 ( 9 + ~ 1 _
91 

) x>.. and 
1-2 

A = i (1 + ¢ - 2s). 

fie:l (sincex'- s -1,;;;:; 1- s), 

19! 6 1"¢-I-X. 
788 + + ----- -- -- --

1-2-(l-</>J 1-2-(I-</>J 

J21og (x+ J) x¢ -s-A fiJ¢-s-"A + ----.... --- . + 
(1-2¢-s,z 

11611 91'1 < -- + --~------
1-¢ (s-¢)~s-¢tA 

This is true since 

I 3 ----< --. 
1-2¢-s s- ¢ 

--~-------~ 

1.;. 2¢- s 

11 (lO 

1-</> 
and 

This completes the proof of theorem 1 and its corollary, 

viz. theorem 2 assuming the truth of lemma l. 

§ 3. Proof of lemma 1 : 

kl 
[ t is cle 1r that l X l (II) I = 0 

n = 1 
and so 

n 
: ~ X (n) I < 

n.;;;; ..~: I 
max l ~ X1 <m I< tt 1 .-;;n.-;;k1 m""l 

(it i5 well known, due to L \1. V. and G. P., that this sum is 

in fact 0 lkt log k) 1. Next I l x1 (m) x
2 

(n) I is by a 
mn < .t 
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familiar argument 

li ... - ( 
n"<' v~ 

li x1 (n)) ( ~ Xl.(n) ll 
n.;;.vx n~.vt 

5 l ( kl + k2 ) 25. 
and so does not exceed 3 .x 

2 
+ 36 k1 

k r 
(Here X I and x2 are any two non-principal characters.) 

We can prove lemma 1 by an extension of this argument 

as follows. We have 

+ + ~ ... + J I 
.. , , I 

where J = I- ( ... } + L- c ... ) 
1 • • • 1 1 - • , 1 

l<.x3,m.;;;;;¥3 m'.;;;;; .x 3 , n .;;;;; x 3 

+ I - < ) 
I 

n.;;;.x 3 ,/.;;;x3 

+ 2: 
· · · I 1 

/.;;;;;,x3, m.;;;,~l. nEO;;x3, 

(This is done by counting the (net) number of times a lattice 

point (/, m, n1 appears in these sums. For example a lattice 

point with precbely one co-ordinate say I satisfying 

1 

I < x 3 • Next two co-ordinates and next three co-ordinates) 

and so a bound for the LHS of the second inequality of lemma I 
is 
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+ 2 other 
symmetric 
terms 

( ~ k
3

) + 2 other symmetric terms 

l,;;;;;x3 m<% 3 

125 
+ 216 k1 k2 kr , 

-l J du i 
For x > I we have ~ n <; 1 + \ = 2 x - 1 

n..;; x 1 _u 

and hence the bound above does not exceed 

2 2 
125 - 5 -1 
il6 X 

3 + l (k 1 k2) 
- 2 { 

<;;;X 3 (k k ) 
.l 2 

I 

+ -- X J k + 10 lk k ) 
25 -- -1 -I } 
12 1 1 2 

provided 3 < k1 .0: k2 and k
3 

= k1 k2• Plainly this does 

I 

not exceed (2 k1 k2 
~ 3 ) 2. This proves lemma 1. 

Hence the proof of our main theorem 2 is complete. 
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