Robust control of a cable from a hyperbolic partial differential equation model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Robust control of a cable from a hyperbolic partial differential equation model

Résumé

This paper presents a detailed study of the robust control of a cable’s vibrations, with emphasis on considering a model of infinite dimension. Indeed, using a partial differential equation model of the vibrations of an inclined cable with sag, we are interested in studying the application of H∞-robust feedback control to this infinite dimensional system. The approach relies on Riccati equations to stabilize the system under measurement feedback when it is subjected to external disturbances. Henceforth, our study focuses on the construction of a standard linear infinite dimensional state space description of the cable under consideration before writing its approximation of finite dimension and studying the H∞ feedback control of vibrations with partial observation of the state in both cases. The closed loop system is numerically simulated to illustrate the effectiveness of the resulting control law.
Fichier principal
Vignette du fichier
PDEinclinedcable.pdf (1.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01096851 , version 1 (18-12-2014)
hal-01096851 , version 2 (22-01-2018)

Identifiants

  • HAL Id : hal-01096851 , version 1

Citer

Lucie Baudouin, Aude Rondepierre, Simon Neild. Robust control of a cable from a hyperbolic partial differential equation model. 2014. ⟨hal-01096851v1⟩
810 Consultations
531 Téléchargements

Partager

More