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Robust control of an inclined cable

using a partial differential equation model
Lucie Baudouin, Aude Rondepierre, Simon Neild.

Abstract—This paper presents a detailed study of the robust
control of an inclined cable’s vibrations, with emphasis on
considering a model of infinite dimension. Indeed, considering the
partial differential equation model of the vibrations of an inclined
cable with sag, we are interested in illustrating the application of
H∞-robust feedback control to this infinite dimensional system.
The approach relies on Riccati equations to stabilize the system
under measurement feedback when it is submitted to external
disturbances. Henceforth, our study focuses on the construction
of a standard linear infinite dimensional state space description
of the inclined cable under consideration before writing its
approximation of finite dimension and studying the H∞ feedback
control of vibrations with partial observation of the state in
both cases. The closed loop system is numerically simulated to
demonstrate the effectiveness of the resulting control law.

Keyword: robust control, inclined cable, partial differential

equations, state-space model, measurement feedback.

I. INTRODUCTION

Inclined cables are common and critical components in

a lot of civil engineering’s structures and a large range of

applications, from cable stayed bridges to telescopes and

spacecraft [SBP11]. Since cables are very flexible and lightly

damped, one of the major issues related to such structures

involving cables is the control of vibrations induced by any

exterior perturbation [Reg05]. Their modeling is therefore

very important in predicting and controlling the response

to excitation. Many cable models exist, see for instance

[Irv81]. Of interest here is the modal formulation developed in

[WFS95]. This model has been partly validated experimentally

in [GBNWM08] and [MDN+10]. Vibration suppression in

civil structures is also well documented, see [SSL06] and

[Pre97] and reference therein. Passive dampers are the usual

devices in civil structures but active control is potentially more

effective and adaptive [FS94].

In this paper we study the design of robust control laws for

a vibrating system composed of an inclined cable connected at

its bottom end to an active control device in the framework of

distributed parameter systems. More precisely, we work on a

linearized model using partial differential equations (PDE) and

choose a model-based feedback approach to disturbance re-

jection, namely the H∞ measurement feedback control of the
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vibrating inclined cable. We can mention here [BD90] which

consider the suppression of vibrations in flexible structures

with similar H∞-approaches, but in the finite dimensional

setting.

The contribution of our article is first to illustrate with a

specific application, namely the control of an inclined cable,

a theoretical result presented in [BB93] and [vK93] that

gives the H∞-robust control of infinite dimensional systems

in terms of solvability of two coupled Riccati equations.

Adopting this approach, we detail the PDE modeling of

the system so that it fits into the appropriate state-space

framework. Then, recalling the key aspects of the control

theorem, we demonstrate that the required assumptions are

met. Secondly, we approach the infinite-dimensional robust

control problem by appropriate finite-dimensional robust

control problems and perform numerical simulations.

Before treating any robust control issues, we focus in

Section II on the modeling of the inclined cable in the

state-space framework. The first step is the construction of

a mechanical model of the inclined cable, subject to gravi-

tational effects (hence termed a cable rather than a string, a

designation corresponding to a situation without sag). Among

the numerous possibilities for modeling the motion of in-

clined cables with small sag, we adopt an approach largely

inspired from that presented in [WN10], which is based on

the derivation of [WFS95]. In this model, the cable response

is decomposed into a modal component which captures the

dynamic response of the cable with fixed ends, and a quasi-

static component which satisfies the boundary conditions but

has no significant dynamic response. In a second step we

describe how to control the inclined cable system by the mean

of an active tendon, bringing active damping into the cable

structure [BP01]. Lastly, we reformulate the robust control

problem into an appropriate state-space framework. Section

III is devoted to robust control issues. We first recall the H∞
robust control theorem for infinite dimensional systems stated

in [vK93] and [BB93]. Then, this is applied to the inclined

cable control system once we prove the required assumptions

in terms of stabilizability and detectability of the system. In

Section IV, we explore an early lumping approach: the infinite-

dimensional control system is approximated by a sequence

of finite dimensional systems (each corresponding to a finite

number of modes of the inclined cable) that will be robustly

controlled using usual H∞ tools of automatic control. This

section is then dedicated to show some numerical experiments.
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II. INFINITE DIMENSIONAL MODEL

As described in Figure 1, we consider a cable of length ℓ,
supported at end points a and b, such that the direction of

the chord line from a to b is defined as x, and the angle of

inclination relative to the horizontal is denoted θ.

l
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v(x,t)

(ub, wb)b

a

u
controller

Fig. 1. Inclined Cable

Moreover we set ρ to be the density of the cable, A the

cross-sectional area, E Young’s modulus and g the gravity.

We then define ̺ = ρg cos θ as the distributed weight perpen-

dicular to the cable chord. The cable equilibrium sag position

and the chord line both lie in the gravity plane, namely the

xz-plane.

A. Modeling of an inclined cable

The modeling of an inclined cable presented hereafter is

largely inspired from those detailed in [WN10, sections 7.2

and 7.3], but the final equations of the motion are not exactly

the same. Indeed, using a similar approach to [WN10], but

with an emphasis on the perturbed dynamics, rather than

nonlinearity, we now derive a model that satisfies the time

dependent boundary constraints.

Here, we will only recall the main outlines of the modeling

hereafter and highlight the main differences from what pre-

sented in [WN10]. Let us start by introducing the notations:

• u(x, t) is the dynamic axial displacement of the cable (in

x-direction).

• v(x, t) is the dynamic out-of-plane transverse displace-

ment (in y-direction).

• w(x, t) is the dynamic in-plane transverse displacement

(in z-direction).

• Ts is the static tension of the cable and is assumed to be

constant (w.r.t. x and t).
• ws(x) = ̺A

(
ℓx− x2

)
/2Ts is the static in-plane dis-

placed shape of the cable.

• T (x, t) is the dynamic tension of the cable. As long as

the cable remains within its elastic range, we have the

nonlinear equation:

T = AE
[
∂xu+

1

2
(∂xv)

2 +
1

2
(∂xw)

2 +
dws

dx
∂xw

]
.

Note that the sag is assumed small in comparison to the length

of the cable. Still, the sag affects the static deflexion of the

cable so that ws can be calculated precisely [WN10].

In our study the cable is excited vertically at its lower end.

This yields the following boundary conditions corresponding

to the support motion: for all t > 0





u(0, t) = 0, u(ℓ, t) = ub(t),
v(0, t) = 0, v(ℓ, t) = 0,
w(0, t) = 0, w(ℓ, t) = wb(t).

(1)

To satisfy these time-varying conditions, we assume that the

cable response can be decomposed into a modal compo-

nent (denoted by the subscript m, as in um, wm, Tm) which

captures the dynamic response of the cable with fixed ends

(boundary conditions equals to zero), and a quasi-static com-

ponent (denoted by the subscript q, as in uq, wq, Tq) which

corresponds to the displacements of the cable moving as an

elastic tendon due to support movement, and satisfies the

boundary conditions (1).

In this paper we are interested in studying the robust control

of the linear PDE approximation. Therefore, we will ignore the

non-linearities of the cable dynamics that are often included in

the literature, see for instance [NP04], [WFS95]. In [WN10,

section 7.2], linearizing the equations enables the authors to

completely decouple the quasi-static and modal terms under

the assumption that quasi-static and modal motions are small

compared with the static sag. Here we choose a slightly

different approach: we first write and solve the quasi-static

equations of motion as done in [WN10, section 7.2], and then

we reinject these solutions in the complete equations of motion

to obtain the modal PDE.

Let us first linearize the dynamic tension: T is then given

by, for all (x, t) in (0, ℓ)× (0,∞),

T (x, t) = AE
[
∂xu(x, t) +

dws

dx
(x)∂xw(x, t)

]
. (2)

As with [WFS95] and others, we assume that there is no

significant dynamic response along the x-axis (meaning that

we do not consider any evolution equation on the variable u,

i.e. in particular um = 0) as the axial vibrations are usually

excluded from models since the frequency of oscillations

is much faster and of smaller amplitude than that in the

other directions. Assuming a small linearized dynamic tension

compared to the static tension (i.e. T << Ts), the equations

of motion for the dynamic analysis of the inclined cable are

given, for all (x, t) in (0, ℓ)× (0,∞), by:





ρA∂ttv(x, t) = Ts∂xxv(x, t),

ρA∂ttw(x, t) = Ts∂xxw(x, t) + T (x, t)
d2ws

dx2
.

Observe that when linearizing the dynamic tension of the

cable, we lose the sole coupling between v and w. The out-

of-plane motion v satisfies a conservative wave equation that

could only be influenced by coupling nonlinearities we don’t

consider here. Since the control and the perturbations will only

act in the gravity plane (xz), we can not consider the out-

of-plane motion v as a part of our control system anymore.

Therefore v will not appear in the construction of our state

space model.
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We now focus on the in-plane motion for the dynamic

analysis of the inclined cable:

ρA∂ttw(x, t) = Ts∂xxw(x, t) + T (x, t)
d2ws

dx2
(3)

along with the boundary conditions (1) corresponding to the

support motion and some appropriate initial data. On the one

hand, we will calculate the quasi-static components uq and

wq corresponding to the motion of the cable without taking

into account any dynamic response, but using the boundary

conditions (1). On the other hand, homogeneous Dirichlet

boundary conditions along with the initial data allow to write

a well-posed Cauchy problem for the modal components.

As detailed in [WN10], we first have to solve the quasi-

static equations with time dependent boundary conditions, i.e.

precisely, for all (x, t) in (0, ℓ)× (0,∞):




Tq = AE
[
∂xuq +

dws

dx
(x)∂xwq

]
,

Ts∂xxwq + Tq
d2ws

dx2
= 0,

uq(0, t) = 0, uq(ℓ, t) = ub(t),
wq(0, t) = 0, wq(ℓ, t) = wb(t),

(4)

whose solutions are:




uq(x, t) =
Eq

E
ub(t)

x

ℓ
− ̺Aℓ

2Ts
wb(t)

[
x

ℓ
−
(x
ℓ

)2
]

+
λ2Eq

4E
ub(t)

[
x

ℓ
− 2

(x
ℓ

)2

+
4

3

(x
ℓ

)3
]
,

wq(x, t) = wb(t)
x

ℓ
− ̺EqℓA2

2T 2
s

ub(t)

[
x

ℓ
−

(x
ℓ

)2
]
,

Tq(t) =
AEq

ℓ
ub(t),

(5)

where Eq = E/(1 + λ2/12) is the equivalent modulus of the

cable and λ2 = E̺2ℓ2A3/T 3
s the Irvine’s parameter.

Then, because um = 0, the modal dynamic tension satisfies

Tm = AEdws

dx
∂xwm =

̺A2E

2Ts
(ℓ− 2x) ∂xwm

and from (3) and (4), the in-plane modal displacement is

solution of the following PDE on (0, ℓ)× (0,∞):

ρA∂tt(wq + wm) = Ts∂xxwm + Tm
d2ws

dx2
,

submitted to homogeneous Dirichlet boundary conditions

wm(0, t) = 0, wm(ℓ, t) = 0 for all t ∈ (0,∞) and initial

conditions equal to zero.

Since one can calculate easily ∂ttwq from (5) and since

d2ws/dx
2 = −̺A/Ts, we obtain the self-contained equation

on (0, ℓ)× (0,∞)

∂ttwm =
Ts
ρA∂xxwm − ̺2A2E

2ρT 2
s

(ℓ− 2x) ∂xwm

− ξ∂twm − x

ℓ
w′′

b +
̺EqℓA2

2T 2
s

[
x

ℓ
−
(x
ℓ

)2
]
u′′b . (6)

One can notice that we added to our hyperbolic equation a

realistic viscous damping term ξ∂twm, ξ being a positive

diagonal bounded operator, that will take the shape of a modal

damping when translated in the finite dimensional system

constructed in Section IV.

B. Modeling of the measurement and control terms

The inclined cable device pictured in Figure 1, is perturbed

by in-plane oscillations (ub, wb) and connected at its bottom

end with an active tendon. Using a support motion at the

cable’s anchorage is a natural choice of active control since

the installation of the proper device can be done with small

modifications of the lower end of the cable [FS94]. Moreover,

we aim to obtain good results when considering robust control

with partial observation using an active tendon since the collo-

cation of actuator and sensor has proved great effectiveness in

active damping of cables, as presented in [BP01] and [SSL06].

An active tendon can be described as a displacement actua-

tor collocated with a force sensor (see e.g. [PB00]). Therefore,

on the one hand, the force sensor allows to define the dynamic

tension at the location of the tendon T (ℓ, t) as the observation

we can measure to build our feedback. On the other hand, even

if the action of a tendon is principally meant to be an axial

movement [Pre97], a careful consideration of the projection

of the tendon’s displacement on the x and z-axis shows that

its action can be written in terms of the angle α it makes

with the chord line (see Fig. 1). It gives easily a control of

coordinates (u cosα,u sinα). Approximating cosα and sinα
since α should be very small (as the sag is small), this means

we have to consider two different contributions of the control

of intensity u in equation (6): one is an additive displacement

term to the perturbation u′′b and writes αc(1 − α2

2 )u′′ with

αc =
̺EqℓA2

2T 2
s

[
x

ℓ
−
(x
ℓ

)2
]

; the other one takes the shape

αu′′ added to the perturbation w′′
b .

Remark 1: Using the denominations given in [FS94] or

[Pre97] for instance, the axial part of the control we use is

actually an inertial control αcu
′′ and if we have this sole

contribution, we only have access to half of the modes of

vibration (the symmetric ones). A parametric control, that

would take the shape uwm in the equation if it hasn’t been

linearized, usually gives access to the control of all the

vibration modes. But the linear framework we work with has

lost track of this bilinear control. Therefore, to overcome this,

we consider that the active tendon also acts through the in-

plane bottom displacement as a small proportion of u′′ added

to the perturbation wb as explained above. It has the additional

advantage of illustrating the alignment defect of the active

tendon with the cable’s chord.

Let us now translate this information into the equations. We

now consider the following state equation on (0, ℓ)× (0,∞):

∂ttwm =
Ts
ρA∂xxwm − ̺2A2E

2ρT 2
s

(ℓ− 2x) ∂xwm

+
̺EqℓA2

2T 2
s

[
x

ℓ
−
(x
ℓ

)2
]
(u′′b + (1− α2

2
)u′′) (7)

− ξ∂twm − x

ℓ
(w′′

b + αu′′)
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with the localized measurement output

T (ℓ, t) = Tq(t) + Tm(ℓ, t)

=
AEq

ℓ
ub(t)−

̺A2Eℓ

2Ts
∂xwm(ℓ, t). (8)

C. State space model of the robust control system

In order to fit in the classical state space formalism, we

now introduce the following notations: the state is X =
(wm, ∂twm)⊤ ; the exogenous disturbance, which include the

time dependent boundary conditions, is W = (Wmod, ub, w
′′
b )

⊤

where Wmod gathers uncertainty on the model (e.g. the ne-

glected nonlinearities) and we assume that u′′b = −ωuub ; the

control input U = u
′′ is the acceleration of the displacement

actuator ; the measurement output Y = T (ℓ, ·) is given by

the force sensor (and is the sum of the modal tension Tm(ℓ) -

captured by C2X - and of the quasi-static tension Tq - captured

by D21W ) ; the “to be controlled” output Z will gather wm

and u
′′ in appropriate ways according to the robust control

objectives.

The linear infinite-dimensional state-space model takes the

usual shape (see [DZG96]), for all t > 0




X ′(t) = AX(t) +B1W (t) +B2U(t),
Z(t) = C1X(t) +D12U(t),
Y (t) = C2X(t) +D21W (t),

(9)

with X(0) = 0, and is also formally described by the closed

loop system sketched by the standard Figure 2.

P

K

W Z

U Y

Fig. 2. Closed-loop system, Plant P , controller K.

Mainly based on equations (7)-(8), the operator matrices

involved in (9) are therefore given by:

A =




0 I
Ts
ρA∂xx − ̺2A2E

2ρT 2
s

(ℓ− 2x) ∂x −ξ


 ,

B1 =




0 0 0

d1 −ω2
u

̺EqℓA2

2T 2
s

[
x

ℓ
−
(x
ℓ

)2
]

−x
ℓ


 ,

B2 =




0(
1− α2

2

)
̺EqℓA2

2T 2
s

[
x

ℓ
−
(x
ℓ

)2
]
− α

x

ℓ


 ,

C2 =

(
−̺A

2Eℓ

2Ts
∂x ·

∣∣
x=ℓ

0

)
,

D21 =

(
d2

AEq

ℓ
0

)
,

where the linear application d1 and the real number d2 are

tuning parameters and ξ is the modal damping operator. Then,

depending on the control objectives of performance, we can

choose for instance

C1 =

(
I 0
0 0

)
, D12 =

(
0
I

)

that describes the objective of reducing the in-plane movement

of the cable, while limiting the amplitude of the control, since

here, Z = (wm,u
′′)⊤. But other objectives can and will be

studied in numerical experiments later on.

The appropriate functional Hilbert spaces associated with

the infinite-dimensional model are now precisely defined. We

consider the state space

X = H1
0 (0, ℓ)× L2(0, ℓ)

and the input or output spaces U = R, W = R
3, Y = R,

Z = H1
0 (0, ℓ)× R

2.

The operator A of domain D(A) = (H2 ∩ H1
0 )(0, ℓ) ×

H1
0 (0, ℓ) is the infinitesimal generator of a C0-semigroup

T (t) = eAt on the space X , since −∂xx is a self-adjoint,

non-negative and coercive operator, and (ℓ− 2x)∂x is a linear

bounded perturbation of it. One can rely on the classical theory

of semi-groups as in [Paz83] or refer to the book [TW09].

Indeed, let us briefly study the well-posedness of equation (7),

giving the regularity of its solutions. Under any initial data

wm(t = 0) = w0 ∈ H1
0 (0, ℓ) and ∂twm(t = 0) = w1 ∈

L2(0, ℓ), assuming that ub, wb and u belong to W 2,∞(R+)
and that ξ ∈ L(L2(0, ℓ);R∗

+), there exists a unique solution

wm ∈ C(R+;H
1
0 (0, ℓ)) ∩ C1(R+;L

2(0, ℓ)).

One can also prove that operators B1 ∈ L(W,X ), B2 ∈
L(U ,X ), C1 ∈ L(X ,Z), D12 ∈ L(U ,Z) and D21 ∈
L(W,Y) are bounded. We have to make a specific comment

about the measurement output operator C2. As long as we

decide to rely only on a boundary observation (in x = ℓ) of

the cable’s tension, C2 does not belong to L(X ,Y). Instead,

one can confirm that C2 ∈ L(D(A),Y).

III. ROBUST CONTROL ISSUES

In this section, we first recall the H∞-robust control theo-

rem for infinite-dimensional systems proved in [vK93] and

revisited in [BB93] and [vK94] that we will apply in a

second step to the PDE model of the inclined cable derived

in Section II.

As its usual finite-dimension counterpart presented in a

standard state-space approach (see for instance [DZG96] and

[Tad90]), this result gives an equivalence between the H∞-

robust control with measurement-feedback of a PDE system

and the solvability of two Ricatti equations. A survey of

the H∞-control theory with state-feedback in the infinite-

dimensional case can also be read [vKPC93] and we specif-

ically refer to [vK94] for the case of unbounded observation

operator as it is our situation here.
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A. H∞-control with measurement feedback

Let us first give some details about what we meant by

H∞-optimal control (or robust control) with measurement

feedback. We assume that A is the infinitesimal generator of

a C0-semigroup on the space X and B1, B2, C1, C2, D12

and D21 are bounded (or even unbounded, e.g. [vK94]) oper-

ators in the appropriate functional spaces. We can also make

the normalization assumptions D∗
12 [C1 D12] = [0 I] and

D21[D
∗
21 B

∗
1 ] = [I 0] in order to simplify the formulation

of the problem, but it is not mandatory (a change of variables

can deal with the situation).

The state-space description (9) of the system, as implied

by Figure 2, allows the plant P to be controlled with the

knowledge of the partial observation Y = C2X +D21W and

under the cost function (corresponding to the norm of output

Z)

J0(U,W ) =

∫ ∞

0

(
‖C1X(t)‖2Z + ‖U(t)‖2U

)
dt.

The objective is to construct a feedback controller K =
(AK, BK, CK, DK) of shape, for all t > 0

{
Φ′(t) = (A+AK)Φ(t) +BKY (t),
U(t) = CKΦ(t) +DKY (t),

(10)

with Φ(0) = 0 where Φ, the adjoint state, depends on the

measurement Y and leads to the control U . Thus, the coupled

system is written as follows:




X ′ = (A+B2DKC2)X +B2CKΦ
+(B1 +B2DKD21)W

Φ′ = BKC2X + (A+AK)C2Φ+BKD21W

and introduces an operator

Λ =

(
A+B2DKC2 B2CK

BKC2 A+AK

)
.

The goal is to find a dynamic measurement-feedback con-

troller K that exponentially stabilizes this system (meaning

that Λ is exponentially stable, and also yield to a finite cost

J0(CKΦ + DKY,W )) and ensures that the influence of the

disturbances on the “to be controlled output” Z, i.e. the ratio

ρ(K) = sup
W∈W

J0(CKΦ+DKY,W )

‖W‖2W
is smaller than some specific bound.

The result we will apply to the dynamic measurement

feedback control of an inclined cable is the following.

Theorem 1: (Proof in [BB93] or [vK93])

Let γ > 0 and assume that the pair (A,B1) is stabilisable

and the pair (A,C1) is detectable. The following assertions

are equivalent:

(i) The γ2-robustness property with partial observation

hold for the system (9) : there exists an exponentially

stabilising dynamic output-feedback controller K of the

form (10) such that Λ is exponentially stable and

ρ(K) < γ2.

(ii) There exist two nonnegative definite symmetric operators

P,Σ ∈ L(X ) solutions of the Riccati and compatibility

equations:

• ∀X ∈ D(A), PX ∈ D(A∗),

(
PA+A∗P + P (B2B

∗
2 − γ−2B1B

∗
1)P + C∗

1C1

)
X = 0

and A − (B2B
∗
2 − γ−2B1B

∗
1)P generates an exponentially

stable semigroup ;

• ∀X ∈ D(A∗), PX ∈ D(A),

(
ΣA∗ +AΣ+ Σ(C∗

2C2 − γ−2C∗
1C1)Σ +B1B

∗
1

)
X = 0

and A∗ − (C∗
2C2 − γ−2C∗

1C1)Σ generates an exponentially

stable semigroup ;

• I − γ−2PΣ is invertible and

Π = Σ
(
I − γ−2PΣ

)−1 ≥ 0.

Moreover, if these three conditions hold, then the feedback

controller K specified by

AK = −(B2B
∗
2 − γ−2B1B

∗
1)P −ΠC∗

2C2

BK = ΠC∗
2 , CK = −B∗

2P, DK = 0
(11)

gives an exponentially stable operator Λ and guarantees that

ρ(K) < γ2. Finally, if the solutions to the Riccati equations

exists, then they are unique.

We will not discuss the technical assumptions given in

[vK93] (or [vKPC93], [vK94]), leading specially to simplify

the formulas. One will also find a slightly different formulation

of this result in [Mor01]. Finally, another detailed proof is

given in [Bar95], for the state-feedback case, allowing to

consider the boundary control (thus unbounded) of hyperbolic

equations.

One can notice that the feedback controller K given in (11)

is actually sub-optimal and known as the central controller.

B. Controllability and observability assumptions

This subsection is devoted to the verification of the

assumptions of Theorem 1 in the context where we wish

to apply it, namely our inclined cable. We are therefore

interested in proving the stabilizability of the pair (A,B1)
and the detectability of the pair (A,C1) given in Section II-C.

Since it is well-known that regarding PDE’s (see [CZ95]),

exact controllability implies exponential stabilizability, as

well as for the dual properties we have exact observability

implying exponential detectability, we actually focus instead

on these specific properties.

In fact, using a result proved in [Rus67], we will precisely

obtain that the wave equation X ′ = AX + B1W is exactly

controllable through W = (Wmod, ub, w
′′
b )

⊤, which will

imply the exponential stabilizability of the pair (A,B1). The

specificity of the controllability result we need relies on the

force distribution functions (e.g. x 7→ −x/ℓ) through which

the controls (e.g. w′′
b ) are acting on the cable. On the other

hand, the exponential detectability of the pair (A,C1) will

stem from the exact observability property easily proved

through the method described in [TW09].



6

a) Observability of the pair (A,C1): According to the

ideas about perturbed operators or semi-groups presented in

[TW09], (see also [Kom89] or [LTY99]), the observability of

(A,C1) defined in Section II-C can be deduced for instance

from the observability of the simplified (undamped and unper-

turbed) pair (A0, C0) defined by

A0 =

(
0 I
∂xx 0

)
, C0 =

(
I 0

)
.

The Hilbert space X = H1
0 (0, ℓ)× L2(0, ℓ) is given with the

scalar product
〈(

f1
g1

)
,

(
f2
g2

)〉

X
= 〈∂xf1, ∂xf2〉L2 + 〈g1, g2〉L2

=

∫ ℓ

0

∂xf1(x)∂xf2(x) dx+

∫ ℓ

0

g1(x)g2(x) dx.

On the one hand, defining D(A) = H2(0, ℓ) ∩H1
0 (0, ℓ) ×

H1
0 (0, ℓ), we have

A0 : (f, g) ∈ D(A) 7→ (g, ∂xxf) ∈ X
whose eigenvalues are λn = inπ/ℓ and eigenvectors take the

shape, ∀n ∈ Z
∗:

φn =
1√
2

(
ℓ

inπ
ϕn

ϕn

)
, ϕn =

√
2

ℓ
sin

(nπx
ℓ

)
. (12)

The operator A0 is well known to generate a unitary group T0
on X (e.g. semi-group theory or separation principle) given

by, ∀(f, g) ∈ X :

T0(t)
(
f
g

)
=

∑

n∈Z∗

eλnt

〈(
f
g

)
, φn

〉

X
φn

=
1

2

∑

n∈Z∗

e
inπ

ℓ
t (i 〈∂xf, ψn〉L2 + 〈g, ϕn〉L2)

(
ℓ

inπ
ϕn

ϕn

)
.

where ψn =

√
2

ℓ
cos

(nπx
ℓ

)
for all n ∈ Z.

On the other hand, C0 ∈ L(X , H1
0 (0, ℓ)) is defined by

C0 : (f, g) ∈ X 7→ f ∈ H1
0 (0, ℓ)

and it is easy to prove that the pair (A0, C0) is exactly

observable in time T > 2ℓ. It requires for instance to prove

there exists k > 0 such that for all (f, g) ∈ D(A),
∫ 2ℓ

0

∥∥∥∥C0T0(t)
(
f
g

)∥∥∥∥
2

H1

0
(0,ℓ)

dt ≥ k

∥∥∥∥
(
f
g

)∥∥∥∥
2

X
. (13)

Following [TW09], first we have

4C := 4

∫ 2ℓ

0

∥∥∥∥C0T0(t)
(
f
g

)∥∥∥∥
2

H1

0

dt =

∫ 2ℓ

0

∥∥∥∥∥
∑

n∈Z∗

e
inπ

ℓ
t (i 〈∂xf, ψn〉L2 + 〈g, ϕn〉L2)

ℓϕn

inπ

∥∥∥∥∥

2

H1

0

dt

and then, using the orthonormality of the family{
t 7→ exp( inπ

ℓ
t)√

2ℓ
, n ∈ Z

∗
}

in L2(0, 2ℓ), and the fact that
∥∥ ℓ
inπ

ϕn

∥∥
H1

0
(0,ℓ)

= 1, we can write

C =
ℓ

2

∑

n∈Z∗

|i 〈∂xf, ψn〉L2 + 〈g, ϕn〉L2 |2 .

Using that ϕ−n = −ϕn, ψ−n = ψn and the parallelogram

identity (|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2), it follows

C = ℓ
∑

n∈N

(
|〈∂xf, ψn〉L2 |2 + |〈g, ϕn〉L2 |2

)
.

This last relation, together with the fact that the families

{ψn, n ∈ N} and {ϕn, n ∈ N
∗} are hilbertian (orthonormal)

basis of L2(0, ℓ), implies (13) since

C =

∫ 2ℓ

0

∥∥∥∥C0T0(t)
(
f
g

)∥∥∥∥
2

H1

0
(0,ℓ)

dt = ℓ

∥∥∥∥
(
f
g

)∥∥∥∥
2

X
.

b) Stabilizability of the pair (A,B1): If we decide to

apply the same method in order to prove the stabilizability of

the pair (A,B1), the best we obtain is strong stabilizability,

instead of exponential stabilizability.

First, as mentioned before, the exact observability of the

dual pair (A∗, B∗
1) can be deduced from the exact observability

of the simplified (undamped and unperturbed) pair (A0, B
∗
0),

A0 being skew-adjoint, and B0 satisfying

B0 =




0 0 0

1 µ(x) =

[
x

ℓ
−
(x
ℓ

)2
]

ν(x) = −x
ℓ


 .

One can easily calculate that for all W ∈ R
3, ∀(f, g) ∈ X ,

〈
B0W,

(
f
g

)〉

X
= 〈Wmod + µub + νw′′

b , g〉L2

=

〈
W,B∗

0

(
f
g

)〉

R3

where B∗
0 =



0 〈1, ·〉L2

0 〈µ(x), ·〉L2

0 〈ν(x), ·〉L2


 .

We are seeking for exponential stabilizability of the pair

(A0, B
∗
0) and one can prove it following [Rus67]. This refer-

ence, specifically dealing with the control theory of hyperbolic

PDEs, is concerned with the case of control parameters which

are function of time only, and proves null-controllability

results through resolution of moments problems in L2(0, T ).
Relying on the result of exact controllability in time T > 2ℓ
the article [Rus67] presents, we only have to check the

assumption that the control, written v(x)u(t), has to satisfy:

lim inf
n→∞

n| 〈v, ϕn〉L2(0,ℓ) | > 0,

and 〈v, ϕn〉L2(0,ℓ) 6= 0, ∀n ∈ N
∗.

Since we have indeed, even with the simple control term

ν(x)w′′
b :

lim inf
n→∞

n| 〈ν, ϕn〉L2 | =
√
2ℓ

π
,

and 〈ν, ϕn〉L2 6= 0, ∀n ∈ N
∗,

the assumption on the pair (A0, B0), thus on the pair (A,B1)
is proved, thanks to this w′′

b control contribution.

Remark 2: In order to re-emphasis Remark 1, since the

calculation of 〈µ, ϕn〉L2 gives 2
√
2ℓ (1− (−1)n) /n3π3, we

can prove that the ub control contribution has no influence on

even-indexed modes.
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Remark 3: The very same argument can also prove the

stabilizability of the pair (A,B2) for instance. This is one

of the assumptions in [Mor01] to obtain convergence of the

solution of the robust control - a subject that we will not tackle

here.

Remark 4: One should notice that since we are considering

a lightly damped wave equation (term −ξ∂twm), it gives an

intrinsically stable system. But as commonly acknowledged

(e.g. in [LGM99, chapter 4.3]) one shouldn’t rely on this

natural damping property of a lot of mechanical systems to

study their stabilizability properties through active control.

We have now verified the main assumptions of Theorem 1

for the inclined cable model system under study. The theo-

retical analysis of the robust control of our infinite dimen-

sional system then ends with the application of Theorem 1.

Nevertheless, the difficulty of solving the operator Riccati

equations is well known. Since we aim also at performing

numerical simulations of the robust control, we will now

consider a truncated model built on the PDE system we

have described and theoretically controlled as a disturbance-

attenuation problem.

IV. TOWARDS NUMERICAL SIMULATIONS

We demonstrated in the previous sections that a state-space

based controller for the infinite-dimensional H∞-control

problem may be calculated by solving two Riccati equations.

However, these operator Riccati equations can rarely be

solved exactly [Mor01]. Therefore, we choose to approximate

the original infinite-dimensional system by a sequence of

finite-dimensional systems that we will robustly control with

the usual tools of automatic control (H∞-synthesis). We

will perform a modal decomposition of our linear partial

differential equation model, so that system (9) of infinite

dimension becomes a classical state space system suitable for

Matlab c© simulations.

Remark 5: One can also mention other studies of inclined

cables in finite dimension. For instance, in [WFS95], a

non-linear PDE model is decomposed into the two first

vibration modes from which the precise non-linear coupling

between in-plane w and out-of-plane v vibrations can be seen

and studied. Besides, a finite element modeling approach has

been used in [Pre97], where one can also find an introduction

to active tendon control of cables. It won’t be our approach

here. We finally refer to [BBC07] for a detailed study of

several computational methods for the stabilization in a

flexible structure modeled by the beam equation.

A. Finite dimensional model, by modal truncation

We consider the hermitian base (ϕn)n∈N∗ of L2(0, ℓ) de-

fined in (12) and given by the eigenfunctions of the (compact

self-adjoint) operator Ts

ρA∂xx:

Ts
ρA∂xxϕn(x) = −ω2

nϕn(x),

for all x ∈ (0, ℓ) and n ∈ N
∗ and where ωn = nπ

ℓ

√
Ts

ρA denote

the eigenvalues of the operator. We choose here to achieve

the modal decomposition through the separation of variables,

which meets the Galerkin method used in [WN10, chap 7].

The modal in-plane movement wm can be decomposed in

the base (ϕk)k∈N⋆ i.e.:

wm(x, t) =

+∞∑

k=1

zk(t)ϕk(x),

where zk(t) = 〈wm(·, t), ϕk〉L2 and since we assume initial

conditions equal to zero, we have zn(0) = z′n(0) = 0, ∀n ≥ 1.

The first step is to rewrite the modal equation (7) as a

linear system of ordinary differential equations in (zn)n≥1.

One should note in advance that the viscous damping term

ξ∂twm will be translated in a modal damping shape in the

process:

ξ∂twm =

∞∑

k=1

2ωkξkz
′
k(t)ϕk(x)

where ξk < 1 is the ratio of the actual damping over the

critical damping. In an unperturbed hyperbolic system, the

critical damping represents the smallest amount of damping

for which no oscillations occurs in the free vibration response.

Therefore, by projection on the chosen hermitian base, we

obtain: ∀n ≥ 1,

z′′n(t) = −ω2
nzn(t)− 2ωnξnz

′
n(t)

−̺
2A2E

2ρT 2
s

+∞∑

k=1

〈(ℓ− 2x) ∂xϕk, ϕn〉L2 zk(t)

+αnu
′′
b + βnw

′′
b +

(
(1− α2

2
)αn + αβn

)
u
′′,

(14)

where

αn =
̺EqℓA2

2T 2
s

〈
x

ℓ
−
(x
ℓ

)2

, ϕn

〉

L2

and βn =
〈
−x
ℓ
, ϕn

〉

L2

(15)

The measurement output Y then becomes:

Y (t) =
AEq

ℓ
ub(t)−

̺A2Eℓ

2Ts

+∞∑

k=1

zk(t)∂xϕk(ℓ).

Given N ∈ N
⋆, we can thus construct a finite dimensional

model using the truncated basis (ϕn)n=1,...,N of the N first

modes. As in part II-C, the control input is the acceleration of

the displacement actuator:

U = u
′′ ∈ R.

The choice of the state variables is not unique but numerically

it is convenient to choose:

XN = (z′1, ω1z1, . . . , z
′
N , ωNzN )⊤ ∈ R

2N . (16)

Beware of the difference with X = (wm, ∂twm)⊤. The finite

dimensional model takes the usual shape:




X ′
N = ANXN +B1,NW +B2,NU,

ZN = C1,NXN +D12,NU,
YN = C2,NXN +D21W,

(17)
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with XN (0) = 0, and where the operators of system (9)

are replaced by real-valued matrices AN , B1,N , B2,N , C1,N ,

C2,N , and D12,N computed on a truncated basis (ϕn)n=1,...,N

as detailed hereafter. The measurement output YN is obtained

by truncation of Y on the first N vibration modes. The

controlled output vector ZN will be defined accordingly to

the expected performance objectives. Note that the exogenous

perturbation vector W = (Wmod, ub, w
′′
b ) ∈ R

3 remains

unchanged.

The advantage of this representation where XN is defined

by (16) is that all the state variables express a velocity. Thus,

in (17), AN is dimensionally homogeneous, which should

improve the conditioning of the system.

Let us now define precisely the matrices involved in (17).

The dynamic matrix AN , of size 2N × 2N , is given by:

AN = blockn,k

([
−2ωnξnδnk ank
ωnδnk 0

])
,

where δnk is the Kronecker symbol, ξn are the modal damping

ratios and

ank = −ωnδnk − ̺2A2E

2ωkρT 2
s

〈(ℓ− 2x) ∂xϕk, ϕn〉

Moreover, we assume that d1n, d
2 ∈ R are tuning parameters

defining the respective weights of the disturbance signals.

The choice of diagonal matrices corresponds to a decoupling

assumption of the different modes. They could refer for

instance to the neglected non-linearities. Therefore, we can

gather the following expressions.

By construction, B1,N is a matrix of size 2N ×3 and B2,N

is a column of size 2N :

B1,N = vectn

([
d1n −ω2

uαn βn
0 0 0

])
,

B2,N = vectn






(
1− α2

2

)
αn + αβn

0




 ,

with αn and βn defined in (15). The line matrix C2,N is of

size 2N :

C2,N =

(
vectk

([
ck
0

]))⊤
,

where

ck = −̺A
2Eℓ

2ωkTs
∂xϕk(ℓ) = (−1)k+1 ̺A2E

Ts

√
ρℓA
2Ts

.

Finally, depending on the control objectives of performance,

we can choose for instance to stabilize each of the N first

modes of vibration and the amplitude of the control, i.e.:

ZN = (z1, . . . , zN ,u
′′)⊤.

With this choice, C1,N is a (N + 1)× 2N matrix and D12,N

is a column matrix of size (N + 1):

C1,N =

(
diagn

(
[0 ω−1

n ]
)

0

)
, D12,N =

(
0

1

)
.

B. First H∞-control numerical simulations

We simulate a ℓ = 1.98m long steel cable inclined at θ =
20◦ to the horizontal. The cable has a diameter of 0.8 mm and

a mass of 0.67 kg.m−1. We also have ρ = 1.34×106 kg.m−3,

A = 0.5× 10−6 m3, Ts = 205 N and E = 200× 109 N.m−2.

This gives the following parameters: Eq = 174 × 109

N.m−2, λ2 = 1.74 and ̺ = ρg cos θ = 12.35 × 106

kg.s−2.m−2. These values were chosen to match at best a

typical full-scale bridge cable of length 400 m, mass per unit

length 130 kg.m−1 and tension 8000 kN [GBNWM08].

The theoretical natural frequencies of the cable are the

following for the 3 first vibration in-plane modes (in rad.s−1):

ω1 = 27.7, ω2 = 55.5, ω3 = 83.3.

A realistic mean value of the cable’s damping ratio for

each mode can be taken as ξn = 0.2% and as explained

in [GBNWM08], if needed, natural frequencies and damping

ratios could be identified numerically using free vibration tests.

Moreover, we choose for instance α = 0.1 rad, which is a

reasonable estimation of the tendon’s angle.

In the numerical experiments, we take ωu ≃ ω1 in order to

ensure disturbance rejection near the vibration mode we want

to dampen the most, i.e. the first in-plane mode frequency.

Besides, we take the respective weights of the disturbance

signals such that: d1n = 10−3, n ∈ {1, . . . , N} and d2 = 10−3.

The cable is excited vertically at its bottom end (point b in

Figure 1). In the experiments we will consider two different

excitations: first we will focus on the response of the system

to a step excitation, and then to a sinusoidal excitation of

amplitude 1 (our framework is linear) and angular frequency

Ω which can be expressed as:

ub(t) = cos(Ωt) sin(θ), wb(t) = cos(Ωt) cos(θ).

No external forces are applied along the cable.

All our computations will be done with hinfstruct

from the Matlab c© Robust Control Toolbox.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

100

200

300

 

 

H  norm:  = 777.2413

Frequency (rad/s)

S
in

g
u

la
r 

V
a

lu
e

s
 (

d
B

)

Open loop

Closed loop

Fig. 3. Singular values: open-loop and closed-loop with no damping (ξn = 0).

We obtain the results presented in Figures 3, 4 and 5. We

observe in Figure 3 that the first and most important mode is

well attenuated. The effect in closed-loop of the synthesized
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controller is shown in time domain (and compared to the open-

loop) considering the step excitation (Figure 4) or a sinusoidal

excitation (Figure 5): the vibration reduction is clearly visible

from the beginning of the control action.
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Fig. 4. Open-loop and closed-loop time response of the first three modes to
a step excitation on each perturbation input Wi, i = 1, 2, 3, with no damping
(ξn = 0).
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Fig. 5. Open-loop and closed-loop time response of the first three modes to
a sinusoidal excitation with damping.

We also draw the reader’s attention, in Figure 4 specifically,

to the damping time scale of each mode, which is very

different between even and odd modes. Following the parallel

we made in Remark 1, this corroborates the comparison

between the effect of inertial and parametric control in

[Pre97]. As expected due to the definition of the system

(17) and the content of Remark 2, we also observe that the

perturbation W2 = ub has no influence on even-indexed

modes: the closed loop result shows only the control action.

One can finally observe in Figure 6 that increasing the angle

α between the actuator inclination and the chord line, the

control exerted on the system increases and the stabilization

time of both symmetric and anti-symmetric modes shortens.

Nevertheless we have to make a careful evaluation of the angle

α since, as explain in Section II, the modeling of the inclined

cable presented here is only valid for a small sag of the cable,

i.e. small values of α.
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Fig. 6. Open and closed loop time response of the three first modes to a step
excitation with no damping. α = 0.5.

We conclude this first numerical experiments by observing

that in this approach we do not have access to the real physical

control, namely the displacement u of the actuator, but only

to its acceleration (see Figure 7). In the next subsection we

will slightly change the model in order to have access to the

actuator displacement and to evaluate its movements.
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Fig. 7. Time response of the robust controller when applying a step excitation
on the first input W1, and sinusoı̈dal excitations on the second and third inputs,
W2 and W3, for N = 3, with damping.

C. Mixed PI/strain-control simulations

In practice we want to control not only the vibrations of

the cable, but also reasonably limit the actuator displacement.

For this purpose, we can seek an output feedback controller

(kp, ki,K) such that:

K :

[
ẊK

V

]
=

[
AK BK

CK DK

] [
XK

Y

]
(18)

where XK ∈ R
nK denotes the controller state, and

U(t) = u
′′(t) = −kpu′(t)− kiu(t) + V (t), (19)
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where kp, ki > 0 are feedback gains constants and V (t)
denotes the strain exerted on the cable by the active tendon.

This is a Proportional and Integral (PI) + a strain feedback

control law.

To deal with the chosen control structure, we introduce the

augmented state variable:

X̃N = (X⊤
N ,u,u

′)⊤.

The finite dimensional model can be written as:




X̃ ′
N =



AN −kiB2,N −kpB2,N

0 0 1
0 −ki −kp


 X̃N

+



B1,N

0
0


W +



B2,N

0
1


V,

ZN = C̃1,N X̃N + D̃12,NV,

YN = [ C2,N 0 ]X̃N +D21,NW.

(20)

The “to be controlled output” is now chosen as:

ZN = (z1, . . . , zN ,u,u
′′)⊤.

With this choice, the matrices C̃1,N and C̃2,N are respectively

of size (N +2)× (N +2) and (N +2)× 1 and are given by:

C̃1,N =




diagn
(
[0 ω−1

n ]
)

0 0

0 1 0
0 0 0


 ,

D̃12,N =
(
0 0 1

)⊤
.

The use of hinfstruct from the Matlab c© Robust Con-

trol Toolbox specifically enables us to deal with the best tuning

of parameters ki, kp inside this new state space model (20).
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Fig. 8. Open-loop and closed-loop time response of the first three modes to
a step excitation on each perturbation input Wi, i = 1, 2, 3, with no damping
(ξn = 0). kp = 15.625, ki = 17.809.

Figures 8 and 9 show that the temporal response of the new

model is satisfactory for each kind of excitation. Moreover, as

expected, the actuator displacement is now under control and

stays bounded in reasonable limits, see Figures 10 and 11.
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Fig. 9. Open-loop and closed-loop time response to a sinusoidal excitation
for N = 3 with damping. kp = 15.625, ki = 17.809.

In this second numerical approach, we now have access the

displacement of the actuator and, as expected, the amplitude

of the actuator displacement remains bounded in physically

reasonable limits. One can have a look to the closed-loop time

response of the actuator displacement u to a step excitation

without damping (see Figure 10) and to a sinusoidal excitation

with damping (see Figure 11).
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Fig. 10. Closed-loop time response of the actuator displacement to a step
excitation for N = 3 with no damping. kp = 15.625, ki = 17.809.
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Fig. 11. Closed-loop time response of the actuator displacement to a
sinusoı̈dal excitation for N = 3 with damping. kp = 15.625, ki = 17.809.

We conclude this numerical section by some observation

about the spillover effect. Indeed, with the lack of damping,

controlling the N first modes of the inclined cable system
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does not guarantee the control of the next modes. It is well-

known that for vibration systems (covered by wave or plate

partial differential equations), at least the first neglected mode

is actually excited by the controller of all the previous ones

(see [BD90]). Here, for example, we can numerically observe

that the control synthesized for N = 3 modes fails to stabilize

the 4th mode as shown on Figure 12. In practice, this effect

is easily avoided as soon as a small damping (ξ) is included

in the system.
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Fig. 12. Closed-loop time response of the 4th mode when applying the robust
controller synthesized for N = 3 modes. Spillover phenomenon.

Another strength of the present approach, using the infinite

dimensional system modeling of the situation, is that it can

deal with as many modes as needed. In practice, civil engineers

typically deal with two or three modes (often to be able to keep

track of the nonlinear couplings, which are not considered

here). As illustrated on Figure 13, we can, for example,

robustly control the ten first modes of the inclined cable.
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Fig. 13. Singular values: open-loop and closed-loop for N = 10 modes, with
no damping.

D. Conclusion

In this article, based on an infinite dimensional PDE mod-

eling of an inclined cable, we were able to perform a robust

control analysis of the vibration reduction of a highly flexible

system. Taking advantage of our specific approach, based on

the truncation of our PDE model, the numerical simulations we

carried out allowed us to deal either with the first few modes

(for instance in order, later, to be able to being compared with

results from other approaches, e.g. [GBNWM08], [SBP11],

[WFS95]), or with a lot of modes, which is not usually possible

when considering non-linearities for instance. In both cases,

the numerical illustrations shows the efficiency of the robust

control performed on the system, from localized measurements

and control actions.
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