Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations

Résumé

We study the boundary behaviour of the solutions of (E) $\;-\Gd_p u+|\nabla u|^q=0$ in a domain $\Gw \sbs \BBR^N$, when $N\geq p> q>p-1$. We show the existence of a critical exponent $q_* < p$ such that if $p-1 < q < q_*$ there exist positive solutions of (E) with an isolated singularity on $\prt\Gw$ and that these solutions belong to two different classes of singular solutions. If $q_*\leq q < p$ no such solution exists and actually any boundary isolated singularity of a positive solution of (E) is removable. We prove that all the singular positive solutions are classified according the two types of singular solutions that we have constructed.
Fichier principal
Vignette du fichier
Bound21.pdf (486.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01095162 , version 1 (15-12-2014)
hal-01095162 , version 2 (12-02-2015)
hal-01095162 , version 3 (28-02-2015)
hal-01095162 , version 4 (23-07-2015)
hal-01095162 , version 5 (09-09-2015)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Véron. Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations. 2015. ⟨hal-01095162v5⟩
357 Consultations
223 Téléchargements

Altmetric

Partager

More