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We study the boundary behaviour of the solutions of (E) -∆ p u + |∇u| q = 0 in a domain Ω ⊂ R N , when N ≥ p > q > p -1. We show the existence of a critical exponent q * < p such that if p -1 < q < q * there exist positive solutions of (E) with an isolated singularity on ∂Ω and that these solutions belong to two different classes of singular solutions. If q * ≤ q < p no such solution exists and actually any boundary isolated singularity of a positive solution of (E) is removable. We prove that all the singular positive solutions are classified according the two types of singular solutions that we have constructed.

Introduction

Let N ≥ p > 1, q > p -1 and Ω ⊂ R N (N > 1) be a C 2 bounded domain such that 0 ∈ ∂Ω. In this article we study the boundary behavior at 0 of nonnegative functions u ∈ C 1 (Ω) ∩ C(Ω \ {0}) which satisfy -∆ p u + |∇u| q = 0 in Ω,

where ∆ p u := div |∇u| p-2 ∇u . The two main questions we consider are as follows:

Q-1-Existence of positive solutions of (1.1).

Q-2-Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of

-∆u + |∇u| q = 0 (1.2)
in Ω is provided by Nguyen-Phuoc and Véron [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]. In particular they prove the following series of results in the range of values 1 < q < 2.

1-Any signed solution of (1.3) verifies the estimates |∇u(x)| ≤ c N,q (d(x))

-1 q-1 ∀x ∈ Ω, (1.3) 
where d(x) = dist (x, ∂Ω). As a consequence, if u ∈ C(Ω \ {0}) is a solution which vanishes on ∂Ω \ {0}, it satisfies |u(x)| ≤ c q,Ω d(x)|x|

-1
q-1 ∀x ∈ Ω.

(1.4)

2-If N +1 N ≤ q < 2 any positive solution of (1.3) in Ω which vanishes on ∂Ω \ {0} is identically 0. An isolated boundary point is a removable singularity for (1.2). 3-If 1 < q < N +1 N and k > 0 there exists a unique positive solution u := u k of (1.2) in Ω which vanishes on ∂Ω \ {0} and satisfies u(x) ∼ c N kP Ω (x, 0) as x → 0, where P Ω is the Poisson kernel in Ω × ∂Ω.

4-If 1 < q < N +1

N there exists a unique positive solution u of (1.2) in the half-space R N + := {x = (x , x N ) : x ∈ R N -1 , x N > 0} under the form u(x) = |x| -2-q q-1 ω(|x| -1 x) which vanishes on ∂R N + \{0}. The function ω is the unique positive solution of

-∆ ω + ( 2-q q-1 ) 2 ω 2 + |∇ ω| 2 q 2 -λ N,q ω = 0 in S N -1 + , ω = 0 in ∂S N -1 + , (1.5) 
where S N -1 is the unit sphere of R N , ∂S N -1

+ = ∂R N + ∩ S N -1
, ∆ the Laplace-Beltrami operator and λ N,q > 0 an explicit constant.

5-If 1 < q < N +1

N and u is a positive solution of (1.3) in Ω, which is continuous in Ω \ {0} and vanishes on ∂Ω \ {0} the following dichotomy occurs:

(i) either u(x) ∼ |x| -2-q q-1 ω(|x| -1 x) as x → 0, (ii) or u(x) ∼ kc N P Ω (x, 0) as x → 0 for some k ≥ 0.

The aim of this article is to extend to the quasilinear case 1 < p ≤ N the above mentioned results. The following pointwise gradient estimate valid for any signed solution u of (1.1) has been proved in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear Hamilton-Jacobi equations[END_REF]: if 0 < p -1 < q there exists a constant c N,p,q > 0 such that |∇u(x)| ≤ c N,p,q (d(x)) Concerning boundary singularities, the situation is much more complicated than in the case p = 2 and the threshold of critical exponent less explicit. We first consider the problem in R N + . Assuming p -1 < q ≤ p, separable solutions of (1.1) in R N + vanishing on ∂R N + \ {0} can be looked for in spherical coordinates (r, σ) ∈ R * + × S N -1 (we denote R * + = (0, ∞)) under the form u(x) = u(r, σ) = r -βq ω(σ), r > 0 , σ ∈ S N -1

+ := {S N -1 ∩ R N + }. (1.8)
Then ω is solution of the following problem

-div β 2 q ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β q Λ βq β 2 q ω 2 + |∇ ω| 2 p-2 2 ω + β 2 q ω 2 + |∇ ω| 2 q 2 = 0 in S N -1 + ω = 0 on ∂S N -1 + , (1.9) 
where β q = p -q q + 1 -p and Λ βq = β q (p -1) + p -N, (1.10) and ∇ is the covariant derivative on S N -1 identified to the tangential gradient thanks to the canonical isometrical imbedding of S N -1 into R N , and div the divergence operator acting on vector fields on S N -1 . The existence of a positive solution to this problem cannot be separated from the problem of existence of separable p-harmonic functions which are p-harmonic in R N + which vanish on ∂R N + \ {0} and have the form Ψ(x) = Ψ(r, σ) = r -β ψ(σ) for some real number β. Necessarily such a ψ must satisfy -div

β 2 ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ -βΛ β β 2 ψ 2 + |∇ ψ| 2 p-2 2 ψ = 0 in S N -1 + ψ = 0 on ∂S N -1 + , (1.11) 
where Λ β = β(p -1) + p -N . We will refer to (1.11) as the spherical p-harmonic eigenvalue problem.

The study of this problem has been initiated in the 2-dim case by Krol [START_REF] Kroll | The behaviour of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF] (β < 0) and Kichenassamy and Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF] (β > 0). In this case ω satisfies a completely integrable second order differential equation.

In the case where S N -1 + is replaced by a smooth domain S ⊂ S N -1 with N ≥ 3, Tolksdorf [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] proved the existence of a unique couple ( βs , ψs ) where βs < 0 and ψs has constant sign and is defined up to an homothety. Recently Porretta and Véron [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] gave a simpler and more general proof of the existence of two couples ( βs , ψs ) and (β * s , ψ * s ) where β * s > 0 and ψs and ψ * s are positive solutions of (1.11 ) with β = βs and β = β * s respectively and are unique up to a multiplication by a real number. When p = 2 this problem is an eigenvalue problem for the Laplace-Beltrami operator on a subdomain of S N -1 . If S = S N -1 + , βs and β * s are respectively denoted by β and β * and accordingly ψs and ψ * s by ψ and ψ * . Since x → x N is p-harmonic, β = -1. Except in the cases N = 2 where it is the positive root of some algebraic equation of degree 2, p = 2 where it is N -1 and p = N where it is 1, the value of β * is unknown besides the straightforward estimate β * ≥ max{1, N -p p-1 }. Using the fact that ψ * depends only on the azimuthal variable and satisfies a differential equation, we prove in Appendix II the following new estimate:

Theorem A Let 1 < p ≤ N . (i) If 2 ≤ p ≤ N , then β * ≤ N -1
p-1 with equality only if p = 2 or N . (ii) If 1 ≤ p < 2, then β * > N -1 p-1 . The p-harmonic function Ψ * (x) = Ψ * (r, σ) = r -β * ψ * (σ) endows the role of a Poisson kernel. To this exponent β * is associated the critical value q * of q defined by β * = β q , or equivalently

q * := β * (p -1) + p β * + 1 = p - β * β * + 1 . (1.12) 
The following result characterizes strong singularities.

Theorem B Let 0 < p -1 ≤ N , then (i) If p -1 < q < q * problem (1.9) admits a unique positive solution ω * .

(ii) If q * ≤ q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary isolated singularities.

Theorem C Assume q * ≤ q < p ≤ N . If u ∈ C 1 (Ω \ {0}) is a nonnegative solution of (1.1) in Ω which vanishes on ∂Ω \ {0}, it is identical zero.

As in the case p = 2, there exist positive solutions (1.1) in Ω with weak boundary singularities which are characterized by their blow-up near the singularity. By opposition to the case p = 2 where existence is obtained by use of a weak formulation of the boundary value problem, combined with uniform integrability of the absorption term thanks to Poisson kernel estimates (see [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]), this approach cannot be performed in the case p = 2; the obtention of solutions with weak singularities necessitates a very long and delicate construction of subsolutions and supersolutions. Furthermore, when p = N , the construction is done only if Ω is locally an hyperplane near 0.

In the sequel we denote by B R (a) the open ball of center a and radius R > 0 and B R = B R (0). We also set

B + R (a) := R N + ∩ B R (a), B + R := R N + ∩ B R , B - R (a) := R N -∩ B R (a) and B - R := R N -∩ B R , where R N -:= {x = (x , x N ) : x ∈ R N -1 , x N < 0}. If Ω is an open domain and R > 0, we put Ω R = Ω ∩ B R . Theorem D Let Ω ⊂ R N
+ be a bounded domain such that 0 ∈ ∂Ω. Assume there exists δ > 0 such that Ω δ = B + δ and 0 < p -1 < q < q * < p ≤ N . Then for any k > 0 there exists a unique u := u k ∈ C 1 (Ω \ {0}), solution of (1.1) in Ω, vanishing on ∂Ω \ {0} and such that lim

x → 0 x |x| → σ ∈ S N -1 + |x| β * u k (x) = kψ * (σ).
(1.13)

Furthermore lim k→∞ u k = u ∞ and lim x → 0 x |x| → σ ∈ S N -1 + |x| βq u ∞ (x) = ψ * (σ). (1.14) 
When p = N , then q * = N -1 2 ; in such a range of values we use the conformal invariance of ∆ N and prove that the previous result holds if Ω is any C 2 domain. Finally, the isolated singularities of positive solutions of (1.1) are completely described by the two types of singular solutions obtained in the previous theorem and we prove:

Theorem E Let Ω be a bounded domain such that 0 ∈ ∂Ω. Assume there exists δ > 0 such that

Ω δ = B + δ and 0 < p -1 < q < q * < p ≤ N . If u ∈ C 1 (Ω \ {0}) is a positive solution of (1.1) in Ω which vanishes on ∂Ω \ {0}, then (i) either there exists k ≥ 0 such that lim x → 0 x |x| → σ ∈ S N -1 + |x| β * u(x) = kψ * (σ); (1.15) (ii) or lim x → 0 x |x| → σ ∈ S N -1 + |x| βq u(x) = ψ * (σ). (1.16) 
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A priori estimates 2.1 The gradient estimates and its applications

We recall the following estimate and its consequences which are proved in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear Hamilton-Jacobi equations[END_REF].

Proposition 2.1. Assume q > p -1 and u is a C 1 solution of (1.1) in a domain Ω. Then |∇u(x)| ≤ c N,p,q (d(x)) -1 q+1-p ∀x ∈ Ω. (2.1)
The first application is a pointwise upper bound for solutions with isolated singularities.

Corollary 2.2. Assume q > p -1 > 0, R * > 0 and Ω is a domain containing 0 such that d(0) ≥ 2R * . Then for any x ∈ B R * \ {0}, and

0 < R ≤ R * , any u ∈ C 1 (Ω \ {0}) solution of (1.1) in Ω \ {0}) satisfies |u(x)| ≤ c N,p,q |x| q-p q+1-p -R q-p q+1-p + max{|u(z)| : |z| = R}, (2.2 
)

if p = q, and |u(x)| ≤ c N,p (ln R -ln |x|) + max{|u(z)| : |z| = R}, (2.3) 
if p = q.

The second application corresponds to solutions with boundary blow-up. For δ > 0 small enough we set Ω δ := {z ∈ Ω : d(z) < δ}.

Corollary 2.3. Assume q > p -1 > 0, Ω is a bounded domain with a C 2 boundary. Then there exists δ 1 > 0 which depends only on Ω such that any u ∈ C 1 (Ω) solution of (1.1) in Ω satisfies

|u(x)| ≤ c N,p,q (d(x)) q-p q+1-p -δ q-p q+1-p 1 + max{|u(z)| : d(z) = δ 1 } ∀x ∈ Ω δ 1 (2.4) if p = q, and |u(x)| ≤ c N,p,q (ln δ 1 -ln d(x)) + max{|u(z)| : d(z) = δ 1 } ∀x ∈ Ω δ 1 (2.5) if p = q.
Remark. As a consequence of (2.4) there holds for p > q > p -1

u(x) ≤ (c N,p,q + K max{|u(z)| : d(z) ≥ δ 1 }) (d(x)) q-p q+1-p ∀x ∈ Ω (2.6) 
where K = (diam(Ω))

p-q q+1-p , with the standard modification if p = q.

As a variant of Corollary 2.3 the following upper estimate of solutions in an exterior domain will be used in the sequel.

Corollary 2.4. Assume q > p -1 > 0, R > 0 and u ∈ C 1 (B c R 0 ) is any solution of (1.1) in B c R 0 . Then for any R > R 0 there holds |u(x)| ≤ c N,p,q (|x| -R 0 ) q-p q+1-p -(R -R 0 ) q-p q+1-p + max{|u(z)| : |z| = R} ∀x ∈ B c R (2.7) if p = q and |u(x)| ≤ c N,p,q (ln(|x| -R 0 ) -ln(R -R 0 )) + max{|u(z)| : |z| = R} ∀x ∈ B c R (2.8) if p = q.
Proof. The proof is a consequence of the identity

u(x) = u(z) + 1 0 d dt u(tx + (1 -t)z)dt = 1 0 ∇u(tx + (1 -t)z), x -z dt
where z = R |x| x. Since by (2.1)

|∇u(tx + (1 -t)z)| ≤ C N,p,q (t |x| + (1 -t)R -R 0 ) -1 q+1-p ,
(2.7) and (2.8 ) follow by integration.

Boundary a priori estimates

The next result is the extension to isolated boundary singularities of a previous regularity estimate dealing with singularity in a domain proved in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear Hamilton-Jacobi equations[END_REF]Lemma 3.10].

Lemma 2.5. Assume p -1 < q < p, Ω is a bounded C 2 domain such that 0 ∈ ∂Ω. Let u ∈ C 1 (Ω \ {0}) be a solution of (1.1) in Ω which vanishes on ∂Ω \ {0} and satisfies

|u(x)| ≤ φ(|x|) ∀x ∈ Ω, (2.9) 
where φ : R * + → R + is continuous, nonincreasing and satisfies φ(rs) ≤ γφ(r)φ(s) and r

p-q q+1-p φ(r) ≤ c, (2.10) 
for some γ, c > 0 and any r, s > 0. There exist α ∈ (0, 1) and c 1 = c 1 (p, q, Ω) > 0 such that

(i) |∇u(x)| ≤ c 1 φ(|x|) |x| -1 ∀x ∈ Ω, (ii) |∇u(x) -∇u(y)| ≤ c 1 φ(|x|) |x| -1-α |x -y| α ∀x, y ∈ Ω, |x| ≤ |y| . (2.11) Furthermore u(x) ≤ c 1 φ(|x|) d(x) |x| ∀x ∈ Ω. (2.12) 
Proof. For > 0, we set Ω := 1 Ω. If ∈ (0, 1] the curvature of ∂Ω remains uniformly bounded. As in [5, p 622], there exists 0 < δ 0 ≤ 1 and an involutive diffeomorphism

ψ from B δ 0 ∩ Ω δ 0 into B δ 0 ∩ (Ω δ 0 ) c
which is the identity on B δ 0 ∩ ∂Ω δ 0 and such that Dψ(ξ) is the symmetry with respect to the tangent plane T ξ ∂Ω for any ξ ∈ ∂Ω ∩ B δ 0 . We extend any function v defined in B δ 0 ∩ Ω δ 0 and vanishing on

B δ 0 ∩ ∂Ω δ 0 into a function ṽ defined in B δ 0 by ṽ(x) = v(x) if x ∈ B δ 0 ∩ Ω δ 0 -v • ψ(x) if x ∈ B δ 0 ∩ (Ω δ 0 ) c , (2.13) 
If v ∈ C 1 (B δ 0 ∩ Ω δ 0 ) is a solution of (1.1) in B δ 0 ∩ Ω δ 0 which vanishes on ∂Ω δ 0 ∩ B δ 0 , ṽ satisfies - j ∂ ∂x j Ãj (x, ∇ṽ) + B(x, ∇ṽ) = 0 in B δ 0 . (2.14)
As in [5, (2.37)] the A j and B satisfy the following estimates

(i) Ãj (x, 0) = 0 (ii) i,j ∂ ∂η i Ãj (x, η)ξ i ξ j ≥ C 1 |η| p-1 |ξ| 2 (iii) i,j ∂ ∂η j Ãj (x, η) ≤ C 2 |η| p-2 , (2.15) 
and

|B(x, η)| ≤ C 3 (1 + |η|) p , (2.16) 
where the C j are positive constants. These estimates are the ones needed to apply Tolksdorf's result [START_REF] Tolksdorf | Regularity for a More General Class of Quasilinear Elliptic Equations[END_REF]Th 1,[START_REF] Bidaut-Véron | Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations[END_REF]. There exists a constant C, such that for any ball B 3R ⊂ B δ 0 , there holds

∇ṽ L ∞ (B R ) ≤ C, (2.17) 
where C depends on the constants C k (k = 1, 2, 3), N , p and ṽ L ∞ (B 3R ) . We define

Φ [u](y) := u = 1 φ( ) u( y) ∀y ∈ Ω . (2.18) Then |u (y)| ≤ φ( |y|) φ( ) ≤ γφ(|y|) ∀y ∈ Ω (2.19) and -∆ p u + ( βq φ( )) q+1-p |∇u | q = 0 in Ω . (2.20) 
Using formula (2.13) we extend u into a function ũ which satisfies 

- j ∂ ∂y j Ãj (y, ∇ũ ) + ( βq φ( )) q+1-p B(y, ∇ũ ) = 0 in B δ 0 . ( 2 
|∇u(x)| ≤ cγ * δ 0 φ( 2 δ 0 )φ(|x|)|x| -1 ∀x ∈ Ω ∩ B δ 0 , (2.22) 
which is (2.11)-(i). Moreover, by standard regularity estimates [START_REF] Lieberman | The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations[END_REF], there exists α ∈ (0, 1) such that |∇ũ (y) -∇ũ (y )| ≤ c |y -y | α for all y and y belonging to B R (z). This implies (2.11)-(ii).

Next we prove (2.12). Let 0 < δ 1 ≤ δ 0 such that at any boundary point z there exist two closed balls of radius δ 1 tangent to ∂Ω at z and which are included in Ω ∪ {z} and in Ω c ∪ {z} respectively (δ 1 corresponds to the maximal radius of the interior and exterior sphere condition). Let x ∈ Ω such that d(x) ≤ δ 1 (this is not a loss of generality) and z x be the projection of x on ∂Ω. We first assume that x does not belong to the cone Σ π 4 with vertex 0, axis -n 0 , where n 0 is the normal outward unit vector at 0, and angle π 4 . Consider the path ζ from z x to x defined by Lemma 2.6. Assume p -1 < q ≤ p, Ω is a bounded C 2 domain such that 0 ∈ ∂Ω and R 0 = max{|z| :

ζ(t) = tx + (1 -t)z x with 0 ≤ t ≤ 1. Then u(x) = 1 0 d dt u • ζ(t)dt = 1 0 ∇u • ζ(t), x -z x dt ( 
z ∈ Ω}. If u ∈ C(Ω \ {0}) ∩ C 1 (Ω) is a positive solution of (1.1) which vanishes on ∂Ω \ {0}, it satisfies u(x) ≤      c 2 |x| q-p q+1-p -R q-p q+1-p 0 if q < p (p -1) ln R 0 |x| if q = p (2.26)
for all x ∈ Ω, where c 2 = c 2 (p, q) > 0.

Proof. For > 0 we denote by P : R → R + the function defined by

P (r) =    0 if 0 ≤ r ≤ -r 4 2 3 + 3r 3 2 -6r 2 + 5r -3 2 if < r < 2 r -3 2 if r ≥ 2 , (2.27)
and by u the extension of P (u) by zero outside Ω. There exists R 0 such that Ω ⊂ B R 0 . Since 0 ≤ P (r) ≤ |r| and P is convex, u ∈ C(R N \ {0}) ∩ W 1,p loc (R N \ {0}) and

-∆ p u + |∇u | q ≤ 0 in R N . Let R > R 0 . If p -1 < q < p U ,R (|x|) = c 2 (|x| -) q-p q+1-p -(R -) q-p q+1-p in B R \ B , (2.28) 
with c 2 = (p -q) -1 (q + p -1)

q-p q+1-p . Then -∆ p U ,R + |∇U ,R | q ≥ 0.
Since u vanishes on ∂B R and is finite on ∂B , it follows u ≤ U ,R . Letting successively → 0 and R → R 0 yields to (2.26). If q = p we take

U ,R (|x|) = (p -1) ln R - |x| - in B R \ B , (2.29) 
which turns out to be a supersolution of (1.1); the end of the proof is similar.

As a consequence of Lemma 2.5 and Lemma 2.6, we obtain.

Corollary 2.7. Let p, q Ω and u be as in Lemma 2.6. Then there exists a constant Integrating this relation as in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear Hamilton-Jacobi equations[END_REF], we derive that for any x ∈ B δ 0 2

c 3 = c 3 (p, q, Ω) > 0 such that |∇u(x)| ≤ c 3 |x| -1 q+1-p ∀x ∈ Ω (2.30) and u(x) ≤ c 3 d(x) |x| -1 q+1-p ∀x ∈ Ω \ {0}. ( 2 
∩ Ω, there holds

|u(x)| ≤    c N,p,q |x| -βq -( δ 0 2 ) -βq + max{|u(z)| : |z| = δ 0 2 } if p = q c N,p ln δ 0 2|x| + max{|u(z)| : |z| = δ 0 2 } if p = q.
(2.33)

In the next result we allow the boundary singular set to be a compact set.

Proposition 2.8. Let p -1 < q < p and δ 1 as above. There exist r * ∈ (0, δ 1 ] and c 4 = c 4 (N, p, q) > 0 such that for any nonempty compact set K ⊂ ∂Ω, K = ∂Ω and any positive solution u ∈ C(Ω \ K) ∩ C 1 (Ω) of (1.1) which vanishes on ∂Ω \ K, there holds

u(x) ≤ c 4 d(x)(d K (x)) -1 q+1-p ∀x ∈ ∂Ω s.t. d(x) ≤ r * , (2.34 
)

where d K (x) = dist (x, K).
Proof.

Step 1: Tangential estimates. Let x ∈ Ω such that d(x) ≤ δ 1 . We denote by σ(x) the projection of x onto ∂Ω, unique since d(x) ≤ δ 1 . Let r , r , τ > 0 such that 3 4 r < r < 7 8 r and 0 < τ ≤ r 2 and put ω τ,x = σ(x) + τ n σ(x) . Since ∂Ω is C 2 , there exists 0 < r * ≤ δ 1 depending on Ω such that d K (ω τ,x ) > 7 8 r whenever d(x) ≤ r * . Let a > 0 and b > 0 to be specified later on; we define ṽ(s) = a(r -s) q-p q+1-p -b and v(y) = ṽ(|y -ω τ,x |) in [0, r ) and B r (ω τ,x ) respectively. Then

|ṽ | p-2 |ṽ | q+2-p -(p -1)ṽ - N -1 s ṽ = a p-1 p -q q + 1 -p p-1 (r -s) -q q+1-p X(s) where X(s) = a p -q q + 1 -p q+1-p - p -1 q + 1 -p - (N -1)(r -s) s .
For any τ ∈ (0, r ) there exists a > 0 such that

a p -q q + 1 -p q+1-p ≥ p -1 q + 1 -p + (N -1)(r -s) s ∀τ ≤ s ≤ r .
This implies

-∆ p v + |∇v| q ≥ 0 in B r (ω τ,x ) \ B τ (ω τ,x ). (2.35) Next we take b = a(r -τ ) q-p q+1-p , thus v = 0 on ∂B τ (ω τ,x ). Clearly B τ (ω τ,x ) ⊂ Ω c since τ < δ 1 . Therefore v ≥ 0 = u on ∂Ω ∩ B r (ω τ,x ) and u ≤ v = ∞ on Ω ∩ ∂B r (ω τ,x ). By the comparison principle, v ≥ u in Ω ∩ B r (ω τ,x ). In particular u(x) ≤ v(x) ≤ a(r -τ -d(x)) q-p q+1-p -a(r -τ ) q-p q+1-p .
We take now τ = r 2 and d(x) ≤ r 4 and we derive by the mean value theorem

u(x) ≤ c 4 r -1 q+1-p d(x) = c 4 d(x)(d K (x)) -1 q+1-p , (2.36) 
with c 4 = c 4 (p, q) > 0 Letting r → 7 8 r, we get (2.12).

Step 2: Global estimates. If d(x) ≥ 1 4 d K (x), there holds

d(x)(d K (x)) -1 q+1-p ≥ 2 -2 q+1-p (d(x)) q-p q+1-p .
Combining this inequality with (2.6) and obtain (2.34).

Remark. Under the assumption of Proposition 2.8, it follows from the maximum principle that u is upper bounded in the set Ω r * := {x ∈ Ω : d(x) > r * } = Ω \ Ω r * by the solution w of

-∆ p w + |∇w| q = 0 in Ω r * w = c 4 d(x)(d K (x)) -1 q+1-p in ∂Ω r * , (2.37) 
and w itself is bounded by

d * = max{cd(x)(d K (x)) -1 q+1-p : d(x) = r * }.
Next we prove a boundary Harnack inequality. We recall that δ 1 has been introduced at Corollary 2.3, and that the interior and exterior sphere conditions hold in the set {x ∈ R N : d(x) ≤ δ 1 }. Theorem 2.9. Let q > p -1 and 0 ∈ ∂Ω. Then there exists c 5 = c 5 (N, p, q, Ω) > 0 such that for any positive solution u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2δ 1 ) ∩ C 1 (Ω) of (1.1) in Ω, vanishing on ∂Ω \ {0}) ∩ B 2δ 1 , there holds u(y)

c 5 d(y) ≤ u(x) d(x) ≤ c 5 u(y) d(y) (2.38) for all x, y ∈ B 2δ 1 3 ∩ Ω such that 1 2 |x| ≤ |y| ≤ 2 |x|.
For proving Theorem 2.9 we need some intermediate lemmas. First we recall the following result from [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints Ark[END_REF].

Lemma 2.10. Assume that a ∈ ∂Ω, 0 < r < δ 1 and h > 1 is an integer. There exists an integer N 0 , depending only on δ 1 , such that for any points x and y in Ω∩B 3r 2 (a) verifying min{d(x), d(y)} ≥ r/2 h , there exists a connected chain of balls B 1 , ..., B j with j ≤ N 0 h such that

x ∈ B 1 , y ∈ B j , B i ∩ B i+1 = ∅ for 1 ≤ i ≤ j -1 and 2B i ⊂ B 2r (Q) ∩ Ω for 1 ≤ i ≤ j.
(2.39)

The next result is a standard Harnack inequality.

Lemma 2.11. Assume a ∈ (∂Ω \ {0}) ∩ B 2δ 1 3 and 0 < r ≤ |a| /4. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2δ 1 )) ∩ C 1 (Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩ B 2δ 1 .
Then there exists a positive constant c 6 > 1 depending on N, p, q and δ 1 such that

u(x) ≤ c h 6 u(y), (2.40) 
for every x, y ∈ B 3r 2 (a) ∩ Ω such that min{d(x), d(y)} ≥ r/2 h for some h ∈ N.

Proof. For > 0, we define T [u] by

T [u](x) = p-q q+1-p u( x), (2.41) 
and we notice that if u satisfies (1.1) in Ω, then T [u] satisfies the same equation in Ω := -1 Ω. If we take in particular = |a|, we can assume |a| = 1, thus the curvature of the domain Ω |a| remains bounded. By Proposition 2.8

u(x) ≤ c 6 ∀x ∈ B 2r (a) ∩ Ω (2.42)
where c 6 depends on N , q, δ 1 . Then we proceed as in [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF], using Lemma 2.10 and internal Harnack inequality as quoted in [16, Corollary 10].

Since the solutions are Hölder continuous, the following statement holds as in [16, Theorem 4.2]:

Lemma 2.12. Let the assumptions on a and u of Lemma 2.11 be fulfilled. If b ∈ ∂Ω ∩ B r (a) and 0 < s ≤ 2 -1 r, there exist two positive constants δ and c 7 depending on N , p, q and Ω such that

u(x) ≤ c 7 |x -b| δ s δ max{u(z) : z ∈ B r (b) ∩ Ω} (2.43) for every x ∈ B s (b) ∩ Ω.
As a consequence we derive the following Carleson type estimate. 

u(x) ≤ c 8 u(a -r 2 n a ) ∀x ∈ B r (a) ∩ Ω. (2.44)
Proof. By Lemma 2.11 it is clear that for any integer h and

x ∈ B r (a) ∩ Ω such that d(x) ≥ 2 -h r, there holds u(x) ≤ c h 6 u(a -r 2 n a ). (2.45) 
Therefore u satisfies inequality (2.43) as any Hölder continuous function does. The proof that the constant is independent of r and u is more delicate. It is done in [1, Lemma 2.4] for linear equations, but it is based only on Lemma 2.12 and a geometric construction, thus it is also valid in our case.

Lemma 2.14. Assume a ∈ (∂Ω \ {0}) ∩ B 2δ 1 3 and 0 < r ≤ |a| /8. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2δ 1 )) ∩ C 2 (Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩ B 2δ 1 .
Then there exist α ∈ (0, 1/2) and c 9 > 0 depending on N , p and q such that

1 c 9 t r ≤ u(b -tn b ) u(a -r 2 n a ) ≤ c 9 t r (2.46)
for any b ∈ B r (a) ∩ ∂Ω and 0 ≤ t < α 2 r.

Proof. It is similar to the one of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]Lemma 3.15].

Proof of Theorem 2.9. Assume x ∈ B 2δ 1

3

∩ Ω and set r = |x| 8 .

Step 1: Tangential estimate: we suppose d(x) < α 2 r. Let a ∈ ∂Ω\{0} such that |a| = |x| and x ∈ B r (a). By Lemma 2.14,

8 c 9 u(a -r 2 n a ) |x| ≤ u(x) d(x) ≤ 8c 9 u(a -r 2 n a ) |x| . (2.47)
We can connect a -r 2 n a with -2rn 0 by m 1 (depending only on N ) connected balls

B i = B r 4 (x i ) with x i ∈ Ω and d(x i ) ≥ r 2 for every 1 ≤ i ≤ m 1 . It follows from (2.44) that c -m 1 6 u(-2rn 0 ) ≤ u(a -r 2 n a ) ≤ c m 1 6 u(-2rn 0 ),
which, together with (2.47) leads to

1 c 10 u(-2rn 0 ) |x| ≤ u(x) d(x) ≤ c 10 u(-2rn 0 ) |x| , (2.48) 
with c 10 = 8c 9 c m 1 6 .

Step 2: Internal estimate: we suppose d(x) ≥ α 2 r. We can connect -2rn 0 with x by m 2 (depending only on N ) connected balls 

B i = B αr 4 (x i ) with x i ∈ Ω and d(x i ) ≥ α 2 r for every 1 ≤ i ≤ m 2 .
α 4c m 2 6 u(-2rn 0 ) |x| ≤ u(x) d(x) ≤ 4c m 2 6 α u(-2rn 0 ) |x| .
(2.49)

Step 3: End of proof.

Suppose |x| 2 ≤ s ≤ 2 |x|, we can connect -2rn Q with -sn Q by m 3 (depending only on N ) connected balls B i = B r 2 (x i ) with x i ∈ Ω and d(x i ) ≥ r for every 1 ≤ i ≤ m 3 .
This fact, jointly with (2.48) and (2.49), yields to

1 c 11 u(-sn 0 ) |x| ≤ u(x) d(x) ≤ c 11 u(-sn 0 ) |x| (2.50)
where

c 11 = c 11 (N, q, Ω). Finally, if y ∈ B 2r 0 3 ∩ Ω satisfies |x| 2 ≤ |y| ≤ 2 |x|, then by applying twice (2.50) we get (2.38) with c 5 = c 2 11 .
The following inequality is a consequence of Theorem 2.9.

Corollary 2.15. Assume q > p -1 and 0 ∈ ∂Ω. Then there exists c 12 > 0 depending on p, q and Ω such that for any positive solutions

u 1 , u 2 ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2δ 1 )) ∩ C 1 (Ω) of (1.1) in Ω, vanishing on (∂Ω \ {0}) ∩ B 2δ 1 , there holds sup u 1 (y) u 2 (y) : y ∈ B r \ B r 2 ≤ c 12 inf u 1 (y) u 2 (y) : y ∈ B r \ B r 2 .
(2.51)

3 Boundary singularities

Strongly singular solutions

In this section we consider the equation (1.1) in R N + . We denote by (r, σ) ∈ R + × S N -1 the spherical coordinates in R N and

S N -1 + = (sin φσ , cos φ) : σ ∈ S N -2 , φ ∈ [0, π 2 ) . If v(x) = r -β ω(σ) satisfies (1.1) in R N + and vanishes on ∂R N + \ {0}, then β = β q and ω is a solution of -div β 2 q ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β q Λ βq β 2 q ω 2 + |∇ ω| 2 p-2 2 ω + β 2 q ω 2 + |∇ ω| 2 q 2 = 0 in S N -1 + ω = 0 on ∂S N -1 + . (3.1)
where β q and Λ βq have been defined in (1.10). We denote by

(β * , ψ * ) ∈ R * + × C 2 (S N -1 + ) the unique couple such max ψ * = 1 with the property that the function (r, σ) → r -β * ψ * (σ) is positive, p-harmonic in R N + and vanishes on ∂R N + \ {0}. Then ψ * = ψ satisfies -div β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ -β * Λ β * β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ = 0 in S N -1 + ψ = 0 on ∂S N -1 + . (3.2) 
Since the function ψ * is unique it depends only on the azimuthal variable θ N -1 = cos -1 ( x N |x| ) (see Appendix II). Our first result is the following Theorem 3.1. If q ≥ q * , or equivalently β q ≤ β * , there exists no positive solution to problem (3.1).

Proof. Suppose such a solution ω exists and put θ = β q /β * , then 0 < θ ≤ 1. Set η = ψ θ , where ψ is a positive solution of (3.2), and define the operator T by

T (η) = -div β 2 q η 2 + |∇ η| 2 p-2 2 ∇ η -β q Λ βq β 2 q η 2 + |∇ η| 2 p-2 2 η + β 2 q η 2 + |∇ η| 2 q 2 . (3.3) 
Since ∇η = θψ θ-1 ∇ψ,

β 2 q η 2 + |∇ η| 2 p-2 2 = θ p-2 ψ (θ-1)(p-2) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 , β 2 q η 2 + |∇ η| 2 p-2 2 ∇ η = θ p-1 ψ (θ-1)(p-1) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ, therefore T (η) = -θ p-1 ψ (θ-1)(p-1) div β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ -θ p-1 (θ -1)(p -1)ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p-2 2 |∇ ψ| 2 -β q Λ βq θ p-2 ψ (θ-1)(p-1) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ + θ q ψ (θ-1)q β 2 * ψ 2 + |∇ ψ| 2 q 2 . But β q Λ βq θ p-2 = β * Λ βq θ p-1 ≤ β * Λ β * θ p-1 since β q ≤ β * . Using (3.2), we see that T (η) ≥ 0. Because Hopf Lemma is valid, there holds ∂ n ψ < 0 on ∂S N -1 + . Since ω is C 1 in S N -1 +
and ψ is defined up to an homothety, there exists a smallest function ψ such that η ≥ ω, and the graphs of η and ω over S N -1 + are tangent, either at some α ∈ S N -1

+

, or only at a point α ∈ ∂S N -1 + . We put w = η -ω. Then

T (η) = T (η) -T (ω) = Φ(1) -Φ(0), (3.4) 
where

Φ(t) = T (ω t ) with ω t = ω + tw.
We use local coordinates (σ 1 , ..., σ N -1 ) on S N -1 near α. We denote by g = (g ij ) the metric tensor on S N -1 and by g jk its contravariant components. Then, for any ϕ ∈ C 1 (S N -1 ),

|∇ϕ| 2 = j,k g jk ∂ϕ ∂σ j ∂ϕ ∂σ k = ∇ϕ, ∇ϕ g . If X = (X 1 , ...X d ) ∈ C 1 (T S N -1
) is a vector field, we lower indices by setting X = i g i X i and define the divergence of X by

div g X = 1 |g| ∂ ∂σ |g|X = 1 |g| ,i ∂ ∂σ |g|g i X i .
We write

Φ(t) = Φ 1 (t) + Φ 2 (t) + Φ 3 (t)
where

Φ 1 (t) = -β q Λ βq β 2 q ω 2 t + |∇ ω t | 2 p-2 2 ω t , Φ 2 (t) = β 2 q ω 2 t + |∇ ω t | 2 q 2 and Φ 3 (t) = -div β 2 q ω 2 t + |∇ ω t | 2 p-2 2 ∇ ω t . Then Φ 1 (1) -Φ 1 (0) = - j a j ∂w ∂σ j -bw and Φ 2 (1) -Φ 2 (0) = j c j ∂w ∂σ j + dw, where b = β q Λ βq β 2 q ω t 2 + |∇ω t | 2 p 2 -2 (p -1)β 2 q ω 2 t + |∇ω t | 2 , a j = (p -2)β q Λ βq β 2 q ω t 2 + |∇ω t | 2 p 2 -2 ω t k g jk ∂ω t ∂σ k , d = qβ 2 q β 2 ω t 2 + |∇ω t | 2 q 2 -1 ω t ,
and

c j = q β 2 q ω t 2 + |∇ω t | 2 q 2 -1 k g jk ∂ω t ∂σ k . Furthermore Φ 3 (1) -Φ 3 (0) = -(p -2)div β 2 q ω 2 t + |∇ ω t | 2 p-4 2 β 2 q ω t w + ∇ ω t , ∇ w g ∇ ω t -div β 2 q ω 2 t + |∇ ω t | 2 p-2 2 ∇ w .
Therefore we can write Φ(1) -Φ(0) under the form

Φ(1) -Φ(0) = -div (A∇ w) + B, ∇ w g + Cw := Lw (3.5)
where

AX, X g = β 2 q ω 2 t + |∇ ω t | 2 p-4 2 p -2) ∇ ω t , X 2 g + |∇ ω t | 2 |X| 2 ≥ β 2 q ω 2 t + |∇ ω t | 2 p-4 2 min{1, p -1}|∇ ω t | 2 |X| 2 . (3.6)
and B and C can be computed from the previous expressions. It is important to notice that β 2 q ω 2 t +|∇ ω t | 2 is bounded between two positive constants m 1 and m 2 in S N -1 + . Thus the operator L is uniformly elliptic with bounded coefficients. Since w is nonnegative and either at some point α, ∇ w(α) = 0 and w(α) > 0, or at some boundary point α where w(α) = 0 and ∂ n w(α) < 0, it follows from the strong maximum principle or Hopf Lemma (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that w = 0, contradiction. Theorem 3.2. Assume q < q * or equivalently β q > β * . There exists a unique positive solution ω * to problem (3.1).

Proof. Existence. It will follow from [START_REF] Boccardo | Résultats d'existence pour certains problèmes elliptiques quasilinéaires[END_REF]. Indeed problem (3.1) can be written under the form

A(ω) := -div a(ω, ∇ ω) = B(ω, ∇ ω) in S N -1 + ω = 0 on ∂S N -1 + , (3.7) 
where

a(r, ξ) = β 2 q r 2 + |ξ| 2 p-2 2 ξ, B(r, ξ) = β q Λ βq β 2 q r 2 + |ξ| 2 p-2 2 r -β 2 q r 2 + |ξ| 2 q 2 .
(3.8)

The operator A is a Leray-Lions operator which satisfies the assumptions (1.6)-(1.8) of [4, Theorem 2.1], and the term B satisfies (1.9),(1.10) in the same article. Therefore the existence of a positive solution

ω ∈ W 1,p 0 (S N -1 + ) ∩ L ∞ (S N -1 +
) is ensured whenever we can find a supersolution ω ∈ W 1,p (S N -1

+ ) ∩ L ∞ (S N -1 + ) and a nontrivial subsolution ω ∈ W 1,p (S N -1 + ) of (3.7) such that 0 ≤ ω ≤ ω in S N -1 + . (3.9)
First we note that η = η 0 is a supersolution if the positive constant η 0 is large enough. In order to find a subsolution, we set again η = ψ θ with θ = β q /β * and ψ as in (3.2). Now θ > 1, thus η ∈ W 1,p 0 (S N -1

+

). As above we have

T (η) = -θ p-1 ψ (θ-1)(p-1) div β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ -θ p-1 (θ -1)(p -1)ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p-2 2 |∇ ψ| 2 -β q Λ βq θ p-2 ψ (θ-1)(p-1) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ + θ q ψ (θ-1)q β 2 * ψ 2 + |∇ ψ| 2 q 2 . Now β q Λ βq θ p-2 = β * Λ βq θ p-1 = β * (Λ βq -Λ β * )θ p-1 +β * Λ β * θ p-1 and Λ βq -Λ β * = (β q -β * )(p-1) = β * (p -1)(θ -1), hence T (η) = -θ p-1 ψ (θ-1)(p-1) div β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ∇ ψ -θ p-1 (θ -1)(p -1)ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p-2 2 |∇ ψ| 2 -β * (Λ βq -Λ β * )θ p-1 ψ (θ-1)(p-1) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ -β * Λ β * θ p-1 ψ (θ-1)(p-1) β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ + θ q ψ (θ-1)q β 2 * ψ 2 + |∇ ψ| 2 q 2 .
Using the equation satisfied by ψ yields to the relation

T (η) = -θ p-1 (θ -1)(p -1)ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p-2 2 |∇ ψ| 2 -β 2 * (p -1)(θ -1)θ p-1 ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p-2 2 ψ 2 + θ q ψ (θ-1)q β 2 * ψ 2 + |∇ ψ| 2 q 2 = -θ p-1 (θ -1)(p -1)ψ (θ-1)(p-1)-1 β 2 * ψ 2 + |∇ ψ| 2 p 2 + θ q ψ (θ-1)q β 2 * ψ 2 + |∇ ψ| 2 q 2 .
If we replace η := η 1 = ψ θ by η := η m = (mψ) θ in the above computation, the inequality T η m ) ≤ 0 will be true provided

m θ(q+1-p) ψ (θ-1)(q+1-p)+1 ≤ θ p-1-q (θ -1)(p -1) β 2 * ψ 2 + |∇ ψ| 2 p-q 2 ,
which is satisfied if we choose m small enough so that (mψ) θ ≤ η 0 and satisfying

m θ(q+1-p) ≤ β (θ-1)(q+1-p)+1 * θ p-1-q (θ -1)(p -1) min x∈S N -1 + β 2 * ψ 2 + |∇ ψ| 2 p-q 2 max x∈S N -1 + ψ (θ-1)(q+1-p)+1 .
Therefore 0 < η m ≤ η 0 and standard regularity implies that the solution

ω is C 1 in S N -1 +
. Actually ω is C ∞ since the operator is not degenerate.

Uniqueness. We use the tangency method developed in the proof of Theorem 3.1. Assume ω 1 and ω 2 are two positive solutions of (3.2), then they are positive in S N -1

+ and ∂ n ω i < 0 on ∂S N -1 + .
Either the ω i are ordered and ω 1 ≤ ω 2 , or their graphs intersect. In any case we can define

τ = inf{s > 1 : sω 1 ≥ ω 2 }.
We set ω * = τ ω 1 . Then either the graphs of ω 2 and ω * are tangent at some interior point α, or they are not tangent in S N -1

+ , ∂ n ω * ≤ ∂ n ω 2 < 0 on ∂S N -1 + and there exists α ∈ ∂S N -1 + such that ∂ n ω * (α) = ∂ n ω 2 (α) < 0. Furthermore T (ω * ) ≥ 0. If we set w = ω * -ω 2 , then, as in Theorem 3.1, -div ( Ã∇ w) + B, ∇ w g + Cw = Lw ≥ 0 where ÃX, X g = β 2 q ω 2 t + |∇ ω t | 2 p-4 2 p -2) ∇ ω t , X 2 g + |∇ ω t | 2 |X| 2 ≥ β 2 q ω 2 t + |∇ ω t | 2 p-4 2 min{1, p -1}|∇ ω t | 2 |X| 2 , (3.10) 
in which ω t = ω 2 + t(ω * -ω 2 ) and t ∈ (0, 1) is obtained by applying the mean value theorem and B and C are defined accordingly. Since L is uniformly elliptic and has bounded coefficients, it follows from the strong maximum principle that w = 0. Thus ω * = τ ω 1 = ω 2 and τ = 1 from the equation. This ends the proof.

Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid in the general case, but with a local geometric constraint.

Theorem 3.3. Assume q * ≤ q < p ≤ N , Ω is a C 2 bounded domain with 0 ∈ ∂Ω, such that Ω ∩ B δ = B + δ for some δ > 0. If u ∈ C 1 (Ω \ {0}) is a nonnegative solution of (1.1) in Ω which vanishes on ∂Ω \ {0}, then it is identically 0. Proof. Step 1: Assume Ω ⊂ R N + . For > 0, we set Ω = Ω ∩ B c and H = R N + ∩ B c . For k, n ∈ N * , n ≥ diam (Ω), we denote by v k,n, (n ∈ N * ) the solution of the problem -∆ p v + |∇v| q = 0 in H ∩ B n v = kχ R N + ∩∂B on ∂(H ∩ B n ).
(3.11)

If k > c 2 q-p q+1-p for a suitable c 2 = c 2 (p, q) > 0 (see Lemma 2.6), then v k,n, ≥ u in Ω . Moreover there holds v k,n, ≤ v k ,n , for n ≤ n and k ≤ k . Furthermore the function

U ,n (x) = c 2 (|x| -) q-p q+1-p -(n -) q-p q+1-p
is a supersolution in B n \ B , and there holds v k,n, ≤ U ,n . By monotonicity and standard a priori estimate, we obtain that v k,n, → v when n, k → ∞ and that the function v = v is solution of

-∆ p v + |∇v| q = 0 in H lim |x|→ v(x) = ∞ v = 0 on ∂R N + ∩ B c . (3.12) Furthermore u(x) ≤ v (x) ≤ c 2 (|x| -) q-p q+1-p in Ω .
(3.13)

The function v may not be unique, however it is the minimal solution of the above problem since the v k,n, is unique, and monotonicity in n and k holds. Actually, v ≤ v if 0 ≤ ≤ . For > 0, we recall that the transformation v → T [v] defined by (2.41) leaves equation (1.1) invariant. As a consequence of the uniqueness of the approximations we have

T [v k,n, ] = v p-q q+1-p k, -1 n, -1
, which implies

T [v ] = v -1 . (3.14) 
Letting → 0, we derive from the monotonicity with respect to and standard C 1,α estimates, that the following identity holds:

T [v 0 ] = v 0 ∀ > 0. (3.15)
The function v 0 is a positive and separable solution of (1.1) in R N + which vanishes on ∂Ω\{0}. It follows from Theorem 3.1 that v 0 = 0, and so is u.

Step 2: The general case. We assume that Ω ∩ B δ ⊂ R N + and we denote by M the maximum of u on ∂B δ ∩Ω. Then the function (u-M ) + is a subsolution of (1.1) in Ω∩B δ which vanishes on ∂Ω∩B δ \{0}. By Step 1, it is dominated by v 0 , which ends the proof.

Remark. The previous result is valid if u is a subsolution with the same regularity. If u is no longer assumed to be nonnegative, only u + vanishes. Furthermore, the regularity of the boundary has not been used, but only the fact that Ω is locally contained into a half space to the boundary of which 0 belongs.

Remark. If no geometric assumption is made on ∂Ω, we can prove that u(x) = o(|x| -βq ) near 0. The next result shows that the removability holds if q > q * . Theorem 3.4. Assume q * < q < p ≤ N and Ω is a C 2 bounded domain with 0 ∈ ∂Ω. If u is a nonnegative solution of (1.1) in Ω which belongs to C 1 (Ω \ {0}) and vanishes on ∂Ω \ {0}, it is identically 0.

Proof. As it is proved in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF], for any smooth subdomain S ⊂ S N -1 , there exists a unique β * s > 0 and ψ * s > 0, unique up to an homothety, such that

x → |x| -β * s ψ * s (|x| -1 x) is p harmonic in the cone C S = {x ∈ R N \ {0} : |x| -1 x ∈ S} and ψ * s satisfies -div β 2 * s ψ * 2 s + |∇ ψ * s | 2 p-2 2 ∇ ψ * s -β * s Λ β * s β 2 * s ψ * 2 + |∇ ψ * s | 2 p-2 2 ψ * s = 0 in S ψ * s = 0 on ∂S, (3.16 
) Furthermore S ⊂ S ⊂ S N -1 implies β * s ≤ β * s . Using the system of spherical coordinates defined in (6.5) in Appendix II, for > 0 we denote by S := S the spherical shell with vertex the north pole N and latitude angle θ

N -1 ∈ [0, π 2 + ]. Because of uniqueness of β * s , β * s ↑ β * as → 0. Therefore, if q > q * , or equivalently β q < β * , there exists δ, > 0 such that Ω ∩ B δ ⊂ C S ∩ B δ and β q < β * s . Since Theorem 3.1 is valid if S N -1
+ is replaced by S and β q < β * s it follows that u = 0 as in the proof of Theorem 3.3, Steps 1 and 2.

The next result, valid in the case p = N , is based upon the conformal invariance of the N-Laplacian. In this case the exponent β * corresponding to the first spherical N-harmonic eigenvalue is equal to 1 and the corresponding spherical N-harmonic eigenfunction in S N -1

+ is x N / |x| 2 .
Theorem 3.5. Assume N -1 2 ≤ q < N , Ω is a bounded domain and 0 ∈ ∂Ω is such that there exists a ball B ⊂ Ω c to the boundary of which 0 belongs. If u is a nonnegative solution of

-∆ N u + |∇u| q = 0 in Ω, (3.17) 
which belongs to C(Ω \ {0}) ∩ W 1,N 0 (Ω \ B (0)) for any > 0, it is identically 0.

Proof. We assume that the inward normal unit vector to ∂Ω at 0 is e N = (0, 0, ..., 1) and that the ball

B = B 1 2
(a) of center a = -1 2 e N and radius 1 2 touches ∂Ω at 0 and is exterior to Ω (this can be assumed up to a rotation and a dilation). This is the consequence of the exterior sphere condition at the point 0. It is always valid if ∂Ω is C 2 . We denote by I ω the inversion of center ω = -e N and power 1, i.e. I ω (x) = ω + x-ω |x-ω| 2 . Under this transformation, the complement of the ball B 1 2 (a), which contains Ω, is transformed into the half space R N -which contains the image Ω of Ω. Since u satisfies (3.17

), ũ = u•I ω satisfies -∆ N ũ + |x -ω| 2(q-N ) |∇ũ| q = 0 in Ω. (3.18) Furthermore since 0 = I ω (0) and I ω is a diffeomorphism, ũ ∈ C( Ω \ {0}) ∩ C 1 ( Ω)
and it vanishes on ∂ Ω \ {0}. Since |x -ω| ≤ 1 and q < N , ũ is a subsolution for (3.17) in G. By Theorem 3.4, ũ = 0.

Weakly singular solutions

The main result of this section is the following existence and uniqueness result concerning solutions of (1.1) with a boundary weak singularity. We recall that ψ * is unique positive solution of (1.11) such that sup ψ * = 1. Our first result is valid for any 1 < p ≤ N but it needs a geometric constraint on Ω.

Theorem 3.6. Let p -1 < q < q * < p ≤ N and Ω ⊂ R N + be a bounded C 2 domain such that 0 ∈ ∂Ω. Assume that there exists δ > 0 such that Ω δ := Ω ∩ B δ = B + δ . Then for any k > 0 there exists a unique positive solution u := u k of (1.1) in Ω, which belongs to C 1 (Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies

lim x→0 u k (x) Ψ * (x) = k (3.19)
in the C 1 -topology of S N -1

+

, where

Ψ * (x) = |x| -β * ψ * (|x| -1 x).
The proof of this theorem is long and difficult and requires a certain number of intermediate results.

Lemma 3.7. Let the assumptions on p, q and Ω of Theorem 3.6 be satisfied. There exists a unique positive p-harmonic function Φ * in Ω, which is continuous in Ω \ {0}, vanishes on ∂Ω \ {0} and satisfies

lim x→0 Φ * (x) Ψ * (x) = 1. (3.20)
Proof. For 0 < < δ let v be the unique nonnegative p-harmonic function in Ω\B + which is continuous in Ω \ B + , vanishes on ∂Ω \ B and achieves the value

Ψ * on ∂B ∩ Ω. Since Ω ⊂ R N + , v ≤ Ψ * in Ω \ B + . Hence inequalities 0 < < ≤ δ imply v ≤ v in Ω \ B + . Because Ψ * ≤ δ -β * , there holds v + δ -β * ≥ Ψ * , (3.21) 
in Ω \ B + δ . Since v and Ψ * coincide on ∂B + and vanish on ∂R N + ∩ (B + δ \ B + ), (3.21) holds also in B + δ \ B + . Because v ≥ 0 there holds Lemma 3.8. Let the assumptions on p, q and Ω of Theorem 3.6 be satisfied. If for some k > 0 there exists a solution u k of (1.1) in Ω, which belongs to C 1 (Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies (3.19), then for any k > 0 there exists such a solution.

(Ψ * -δ -β * ) + ≤ v ≤ Ψ * in Ω \ B + . ( 3 
Proof. We notice that for any c < 1 (resp c > 1), cu k is a subsolution (resp. supersolution) of (1.1) in Ω. Let Φ * be as in Lemma 3.7. If c < 1, the function ckΦ * is a supersolution of (1.1) which vanishes on ∂Ω \ {0}. Furthermore

lim x→0 cu k (x) Ψ * (x) = ck = lim x→0 ckΦ * (x) Ψ * (x) .
Then there exists a solution u ck of (1. . Therefore there exists a solution u ck of (1.1) in Ω which satisfies (u * -m) + ≤ u ck ≤ ckΦ * , and in particular it vanishes on ∂Ω \ {0} and belongs to C 1 (Ω \ {0}). By [START_REF] Pucci | A strong maximum principle and a compact support principle for singular elliptic inequalities[END_REF], u ck is positive in Ω. Thus u ck belongs to C 1,α (B + δ (0) \ {0}) and satisfies

|x| β * |u ck (x)| + |x| 1+β * |∇u ck (x)| + |x| 1+β * +α sup |y| ≤ |x| x = y |∇u ck (x) -∇u ck (y)| |x -y| α ≤ M
by (2.11). Therefore the set of functions {r β * +1 ∇u ck (r, .)} r>0 is uniformly relatively compact in the topology of uniform convergence on S N -1 +

. Since it converges to ck∇ ψ * uniformly on compact subsets of S N -1 + as r → 0, this convergence holds in C(S N -1

+

). This implies

lim x→0 u ck (x) Ψ * (x) = ck. (3.23)
The next Lemma is the keystone of our construction. Its proof is very delicate and needs several intermediate steps.

Lemma 3.9. Under the assumptions of Theorem 3.6 there exists a real number R 0 such that 0 < R 0 ≤ δ and a positive subsolution ũ of (1.1)

in B + R 0 which is Lipschitz continuous in B + R 0 \ {0}, vanishes on B + R 0 ∩ ∂R N + \ {0}, is smaller than Ψ * and satisfies lim x→0 ũ(x) Ψ * (x) = 1. (3.24)
Proof. The construction of the function ũ. We look for a subsolution under the form ũ = Ψ * -w for a suitable nonnegative function w.

Step 1: reduction of the problem. We use spherical coordinates for a C 1 function u :

x → u(x) = u(r, σ), r = |x|, σ = x |x| . Then ∇u = u r e + r -1 ∇ u where e = |x| -1 x, |∇u| 2 = u 2 r + r -2 |∇ u| 2 and |∇u| q = u 2 r + r -2 |∇ u| 2 q 2
. The expression of the p-Laplacian in spherical coordinates is

-∆ p u = -u 2 r + r -2 |∇ u| 2 p-2 2 u r r - N -1 r u 2 r + r -2 |∇ u| 2 p-2 2 u r - 1 r 2 div u 2 r + r -2 |∇ u| 2 p-2 2 ∇ u .
Put v(t, σ) = r β * u(r, σ) with t = ln r ∈ (-∞, ln δ], then v satisfies

Q[v] := - (v t -β * v) 2 + |∇ v| 2 p-2 2 (v t -β * v) t -div (v t -β * v) 2 + |∇ v| 2 p-2 2 ∇ v + Λ β * (v t -β * v) 2 + |∇ v| 2 p-2 2 (v t -β * v) + e νt (v t -β * v) 2 + |∇ v| 2 q 2 = 0 (3.25) in (-∞, ln δ) × S N -1 + where ν = 1 -(q + 1 -p)(β * + 1) = 1 -β * +1 βq+1 > 0 and Λ β * = β * (p -1) + p -N . Notice that ψ * satisfies -div β 2 * ψ 2 * + ∇ ψ * 2 p-2 2 ∇ ψ * -β * Λ β * β 2 * ψ 2 * + ∇ ψ * 2 p-2 2 ψ * = 0, (3.26) 
hence it is a supersolution for (3.25). We look for a subsolution under the form

V (t, σ) = ψ * -a(t)g(ψ * )
where g is a continuous increasing function defined on R + , vanishing at 0 and smooth on R * + and a(t) = e γt with γ > 0 to be chosen. Thus a = γa, a = γ 2 a,

V t = -γag(ψ * ), V t -β * V = -β * ψ * + a(β * -γ)g(ψ * ), ∇ V = (1 -ag (ψ * ))∇ ψ * and (V t -β * V ) 2 + |∇ V | 2 = (-β * ψ * + a(β * -γ)g(ψ * )) 2 + (1 -ag (ψ * )) 2 |∇ ψ * | 2 = β 2 * ψ 2 * + 2aβ * (γ -β * )g(ψ * )ψ * + (1 -2ag (ψ * )) |∇ ψ * | 2 + O(a 2 g(ψ) C 1 ) = β 2 * ψ 2 * + |∇ ψ * | 2 + 2a β * (γ -β * )ψ * g(ψ * ) -g (ψ * ) |∇ψ * | 2 + O(a 2 g(ψ * ) C 1 ).
Therefore

(V t -β * V ) 2 + |∇ V | 2 p-2 2 = β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 1 + (p -2)a β * (γ -β * )ψ * g(ψ * ) -g (ψ * ) |∇ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 + O(a 2 g(ψ) C 1 ), and 
e νt (V t -β * V ) 2 + |∇ V | 2 q 2 = e νt β 2 * ψ 2 * + |∇ ψ * | 2 q 2 1 + qa β * (γ -β * )ψ * g(ψ * ) -g (ψ * ) |∇ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 + O(e νt a 2 g(ψ * ) C 1 ), thus (V t -β * V ) 2 + |∇ V | 2 p-2 2 (V t -β * V ) = -β * β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 ψ * + a(β * -γ) β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 g(ψ * ) -aβ * (p -2) β * (γ -β * )ψ * g(ψ * ) -g (ψ * ) |∇ψ * | 2 (β 2 * ψ 2 * + |∇ ψ * | 2 ) 4-p 2 ψ * + O(a 2 g(ψ * ) C 1 ).
Finally,

- (V t -β * V ) 2 + |∇ V | 2 p-2 2 (V t -β * V ) t = a (γ 2 -β * γ) β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 g(ψ * ) +β * (p -2) β * (γ 2 -β * γ)ψ * g(ψ * ) -γg (ψ * ) |∇ψ * | 2 (β 2 * ψ 2 * + |∇ ψ * | 2 ) 4-p 2 ψ * + O(a 2 g(ψ * ) C 2 ). (3.27) Since (V t -β * V ) 2 + |∇ V | 2 p-2
In this expression we have in particular

-div β 2
and

Q 1 [V ] = (γ -Λ β * )(γ -β * ) 1 + (p -2) β 2 * ψ 2 * β 2 * ψ 2 * + |∇ ψ * | 2 -(p -1)β * Λ β * ψ * g (ψ * ) g(ψ * ) + [(p -4)β * Λ β * ψ * -2∆ ψ * ] γ -β * 1 - ψ * g (ψ * ) g(ψ * ) β * ψ * β 2 * ψ 2 * + |∇ ψ * | 2 -(p -2) ψ * g (ψ * ) g(ψ * ) ((β * + 1)γ -β * Λ β * + β * ) + γ -β * + β * ψ 2 * g (ψ * ) g(ψ * ) |∇ ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 + (p -1) g (ψ * ) g(ψ * ) |∇ ψ * | 2 .
(3.35) In this expression the difficult term to deal with is [(p -4)β * Λ β * ψ * -2∆ ψ * ] since it has not a prescribed sign. However ∆ ψ * = O(ψ * ) by (6.19) in Appendix II.

Step 2: The perturbation method and the computation with g(ψ * ) = ψ * . With such a choice of function g

Q 1 [V ] = (γ -Λ β * )(γ -β * ) 1 + (p -2) β 2 * ψ 2
Using the fact that

β * > N -1 p-1 if 1 < p < 2 and 1 < β * < N -1 p-1 if 2 < p < N (see Theorem 6.1 in Appendix II), we have Λ β * + β * + (p -2)(β * + 2) ≥ Λ β * + β * (p -1) if p ≥ 2 N + 3(p -2) > N -3 if 1 < p < 2. (3.38) When N = 2, we have explicitly β * = 1+2 √ p 2 -3p+3 3(p-1)
(see [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF]Th 3.3]). Therefore for all N ≥ 2 and p > 1, there holds

Λ β * + β * + (p -2)(β * + 2) > 0. (3.39)
We fix 0 > 0 such that, whenever ψ * ≤ 0 , there holds

Λ β * + β * + (p -2)(β * + 2) + O(ψ 2 * ) > 1 2 (Λ β * + β * + (p -2)(β * + 2)) . (3.40)
If we fix γ 0 > 0 such that

γ 0 < min 1 2 (Λ β * + β * + (p -2)(β * + 2)) , ν, β * , (3.41) we obtain Q 1 [V ] ≤ -min{1, p -1}γm 2 ∀ 0 < γ ≤ γ 0 , (3.42) 
whenever ψ * ≤ 0 , for some m depending only on p, q and N (through ψ * and ν), which, in the same range of value of ψ * , yields to

β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 g(ψ * )Q 1 [V ] ≤ -c 17 ψ * ∀ 0 < γ ≤ γ 0 , (3.43) 
for some c 17 > 0 depending on N, p, q. This estimate is valid whatever is p > 1, but only in a neighborhood of ψ * = 0. If we replace g(ψ * ) = ψ * by g k (ψ * ) = ψ * e -kψ * for 0 < k < 1, and denote by

Q 1,k [V ] the corresponding expression of Q 1 [V ] which becomes now Q 1,0 [V ]. We define similarly Q k [V ],
and

Q[V ] becomes Q 0 [V ]. Since g k (ψ * ) = e -kψ * -kg k (ψ * ) and g k = -2ke -kψ * + k 2 g k (ψ * ), we obtain Q 1,k [V ] = Q 1,0 [V ] + k(p -1)β * Λ β * ψ * + (p -1) - 2k ψ * + k 2 |∇ ψ * | 2 + (2 -p)β * -2k + k 2 ψ * + O(ψ 2 * ) (3.44)
Notice that ∇ ψ * vanishes only at the North pole e N , thus there exists k 0 ∈ (0, 1] such that

k(1 -p)β * Λ β * ψ * + (p -1) 2k ψ * -k 2 ∇ ψ * 2 ≥ 1 2 (2 -p) + β * -2k + k 2 ψ * ∀k ≤ k 0 whenever ψ * ≤ 0 which yields to β 2 * ψ 2 * + |∇ ψ * | 2 p-2 2 g k (ψ * )Q 1,k [V ] ≤ -c 18 k ∀k ≤ k 0 (3.45)
for some c 13 = c 13 (N, p, q, 0 ). There exists c 14 = c 14 (N, p, q) > 0 such that

β 2 * ψ 2 * + |∇ ψ * | 2 q 2 1 + qe γt β * (γ -β * )ψ * g k (ψ * ) -g k (ψ * ) |∇ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 ≤ c 14 (3.46) in S N -1 + × (-∞, ln δ]. Moreover O(a g(ψ * ) C 2 ) ≤ e γt ck (3.47)
for some ck = ck (N, p, q) > 0. We derive from (3.45)-(3.47)

e -γt Q k [V ] ≤ -c 13 k + c 14 e (ν-γ)t + e γt ck ∀k ≤ k 0 (3.48)
Thus there exists T k ≤ ln δ such that Q k [V ] ≤ 0, for all t ≤ T k and provided ψ * ≤ 0 . This local estimate will be used in the construction of the subsolution when p ≥ 2.

Step 3: The case 1 < p < 2. Since the function ψ * depends only on the azimuthal angle θ ∈ (0; π 2 ] we will write ψ * (σ) = ψ * (θ) and ∇ ψ * (σ) = ψ * θ (θ)n where n is the downward unit vector tangent to S N -1 in the hyperplane going through σ and the poles. From (6.8), 

(p -4)β * Λ β * ψ * -2∆ ψ * = (p -2) β * Λ β * ψ * + 2 β 2 * ψ * + ψ * θθ β 2 * ψ 2 * + ψ 2 ≥ c 15 (Λ β * + β * (p -1) + 2(p - 2 
≤ T k . Therefore Q k [V ] ≤ 0.
Step 4: The case p ≥ 2. For c > 0 to be fixed and ψ * ≥ 0 , γ ∈ (0, γ 0 ], we take g(ψ * ) = cψ

1-γ β * *
. Then we derive from (3.35):

Q 1 [V ] = (γ -Λ β * )(γ -β * ) (p -1)β 2 * ψ 2 * + |∇ ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 -(p -1)β * Λ β * 1 - γ β * -(p -1) γ(β * -γ) β 2 * ψ -1-γ β * * |∇ ψ * | 2 -(p -2)(β * -γ)(γ -Λ β * ) |∇ ψ * | 2 β 2 * ψ 2 * + |∇ ψ * | 2 = (1 -p) γ(β * -γ) + γ(β * -γ) β 2 * ψ -1-γ β * * |∇ ψ * | 2 .
(3.53)

For k ≤ k 0 we fix c such that c

1-γ β * 0 = 0 e -k 0 ⇐⇒ c = γ β *
0 e -k 0 and we define g by

g(ψ * ) = min ψ * e -kψ * , γ β * 0 e -k 0 ψ 1-γ β * * =    ψ * e -kψ * if 0 ≤ ψ * ≤ 0 γ β * 0 e -k 0 ψ 1-γ β * * if 0 ≤ ψ * ≤ 1, (3.54) and we set V (t, σ) = ψ * (σ) -a(t)g(ψ * (σ)) with (t, σ) ∈ (-∞, T k ] × S N -1 + and define ũ(r, σ) = r -β * (ψ * (σ) -a(ln r)g(ψ * (σ))) accordingly for (r, σ) ∈ (-∞, e T k ] × S N -1 + . Since ψ * is a decreasing function the coincidence set {σ ∈ S N -1 + : ψ * (σ) = 0 } is a circular cone Σ θ 0 with vertex 0, axis e N and angle θ 0 . We set R 0 = e T k Γ 1 = x = (r, θ) ∈ B + R 0 : θ 0 < θ < π 2 = (r, σ) ∈ [0, R 0 ) × S N -1 + : 0 < ψ * (σ) < 0 , Γ 2 = x = (r, θ) ∈ B + R 0 : 0 < θ < θ 0 = (r, σ) ∈ [0, R 0 ) × S N -1 + : 0 < ψ * (σ) < 1 ,
and define

ũ(r, σ) = r -β * (ψ * (σ) -r γ g(ψ * (σ))) =      u 1 (r, σ) = r -β * (1 -r γ e -kψ * (σ) )ψ * (σ) if (r, θ) ∈ Γ 1 u 2 (r, σ) = r -β * 1 -r γ γ β * 0 e -k 0 (ψ * (σ)) 1-γ β * ψ * (σ) if (r, θ) ∈ Γ 2 .
The function ũ is a subsolution separately on Γ 1 and Γ 2 and is Lipschitz continuous in Ω \ {0}. If we denote by g 1 and g 2 the restriction of g to Γ 1 and Γ 2 respectively, that is to

Ω 1 and Ω 2 , then g 1 ( 0 ) > g 2 ( 0 ) > 0. Let ζ ∈ C 1 c (B + R 0 ) which vanishes in neighborhoods of 0 and ∂B + R 0 , ζ ≥ 0, then Γ i |∇ũ| p-2 ∇ũ.∇ζdx + Ω i |∇ũ| q ζdx ≤ Σ θ 0 |∇u i | p-2 ∂ n i u i ζdS, (3.55)
where n i is the normal unit vector on Σ θ 0 outward from Γ i . Actually,

n 2 = -n 1 = n thus ∇ũ = ũr e + r -β * -1 (1 -r γ g (ψ * ))∇ ψ * = ũr e + r -β * -1 (1 -r γ g (ψ * ))ψ * θ n.
and on Σ θ 0 ,

∇ũ = ũr e -r -β * -1 (1 -r γ g 1 ( 0 ))ψ * θ n in Γ 1 ũr e + r -β * -1 (1 -r γ g 2 ( 0 ))ψ * θ n in Γ 2 Therefore |∇u 1 | p-2 ∂ n 1 u 1 = -r -β * -1 (1 -r γ g 1 ( 0 )) ũ2 r + r -2β * -2 (1 -r γ g 1 ( 0 )) 2 ψ 2 * θ p-2 2 ψ * θ in Γ 1 and |∇u 2 | p-2 ∂ n 2 u 2 = r -β * -1 (1 -r γ g 2 ( 0 )) ũ2 r + r -2β * -2 (1 -r γ g 2 ( 0 )) 2 ψ 2 * θ p-2 2 ψ * θ in Γ 2 .
By adding the two inequalities (3.55)

Ω |∇ũ| p-2 ∇ũ.∇ζdx + Ω |∇ũ| q ζdx ≤ Σ θ 0 |∇u 1 | p-2 ∂ n 1 u 1 + |∇u 2 | p-2 ∂ n 2 u 2 ζdS. (3.56)
By monotonicity of the function X → ũ2 r + X 2 p 2 and since

r -β * -1 (1 -r γ g 2 ( 0 )) ≥ r -β * -1 (1 -r γ g 1 ( 0 )) ≥ 0, we derive r -β * -1 (1 -r γ g 2 ( 0 )) ũ2 r + r -2β * -2 (1 -r γ g 2 ( 0 )) 2 ψ 2 * θ p-2 2 ≥ r -β * -1 (1 -r γ g 1 ( 0 )) ũ2 r + r -2β * -2 (1 -r γ g 1 ( 0 )) 2 ψ 2 * θ p-2 2 
We derive that the right-hand side of (3.56) is nonpositive because ψ * θ ≤ 0, and therefore ũ is a positive subsolution of (1.1) in B + R 0 dominated by Ψ * and satisfying (3.24). Proof of Theorem 3.6. Let M = max{Ψ * (x) : (1.1) in whole Ω where it satisfies u * ≤ Ψ * and it vanishes on ∂Ω \ {0}. Since Φ * is a positive p-harmonic function in Ω which vanishes on ∂Ω \ {0} and satisfies (3.20), it is supersolution of (1.1) and therefore it dominates u * . Therefore there exists a solution u of (1.1) in Ω which vanishes on ∂Ω \ {0} and satisfies u * ≤ u ≤ Φ * . This implies that (3.19) holds with k = 1 and we conclude with Lemma 3.8. This ends the proof of Lemma 3.9.

x ∈ ∂B + R 0 }, then M = R -β * 0 . The function u * defined by u * (x) = (ũ(x) -M ) + if x ∈ B + R 0 0 if x ∈ Ω \ B + R 0 , is indeed a subsolution of
When p = N the statement of Theorem 3.6 holds without the flatness assumption on ∂Ω. The proof of the next theorem is an easy adaptation to the one of Theorem 3.6, provided Lemma 3.7, Lemma 3.8 and Lemma 3.9 are modified accordingly. Theorem 3.10. Assume N -1 < q < N -1 2 and Ω be a bounded C 2 domain such that 0 ∈ ∂Ω. Then for any k > 0 there exists a unique positive solution u := u k of (3.17) in Ω, which belongs to C 1 (Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies uniformly with respect to σ ∈ S N -1

+ lim x → 0 x/ |x| → σ |x| u k (x) = kψ * (σ). (3.57) 
Since p = N , then β * = 1 and ψ * (σ) = x N |x| = cos θ N -1 with the identification of σ and θ N -1 := θ. In a more intrinsic manner (3.57) can be written under the form

lim x → 0 x ∈ Ω |x| 2 u k (x) d(x) = k. (3.58) 
We recall that if ω ∈ R N and I ω denotes the inversion of center ω and power 1, i.e.

I ω (x) = ω + x-ω |x-ω| 2 , then ũ = u • I ω satisfies (3.18).
Lemma 3.11. Assume Ω be a bounded C 2 domain such that 0 ∈ ∂Ω. Then there exists a unique Nharmonic function Φ * in Ω, which vanishes on ∂Ω \ {0} and satisfies

lim x → 0 x/ |x| → σ |x| Φ * (x) = ψ * (σ), (3.59) 
uniformly with respect to σ ∈ S N -1 

+ . Proof. Uniqueness is standard. Let ω = -e N ∈ Ω c ,
-∆ N Φ = 0 in Ω ∩ B c Φ = 0 in (B c 1 2 (a ) ∩ ∂B ) ∪ (∂Ω ∩ B c ) Φ = Ψ ω in B 1 2 (a ) ∩ ∂B . (3.60) If 0 < < , Φ ≥ Ψ ω in B 1 2 (a ) ∩ ∂B , thus Φ ≥ Φ in Ω ∩ B c . We also denote by Û the solution of -∆ N Φ = 0 in Ω ∩ B c Φ = 0 in ∂Ω ∩ B c Φ = Ψ ω in Ω ∩ ∂B c . (3.61) 
In the same way as above

0 < < =⇒ Φ ≤ Φ in Ω ∩ ∂B c
Using the explicit form of Ψ,

I ω : x → ω + x-ω |x-ω| 2 and I ω : x → ω + x-ω |x-ω | 2 we see that Ψ ω B 1 2 (a )∩∂B ≤ 1 + 1 - Ψ ω B 1 2 (a )∩∂B , thus Φ ≤ 1 + 1 - Φ in Ω ∩ B c .
Letting → 0 we conclude that Φ converges uniformly in Ω \ {0} to Φ * which vanishes on ∂Ω \ {0} and satisfies (3.59).

The proof of the next statement is similar to the one of Lemma 3.8 up to some minor modifications, so we omit it. Lemma 3.12. Let the assumptions on q and Ω of Theorem 3.10 be satisfied. If for some k > 0 there exists a solution u k of (3.17) in Ω, which belongs to C 1 (Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies (3.57), then for any k > 0 there exists such a solution. Lemma 3.13. Under the assumptions of Theorem 3.10 there exists a Lipschitz continuous nonnegative subsolution ũ of (3.17) in Ω which vanishes on ∂Ω \ {0}, is smaller than Φ * and satisfies

lim x → 0 x/ |x| → σ |x| ũ(x) = σ, (3.62) 
uniformly with respect to σ ∈ S N -1

+ .
Proof. Let τ > 0 to be fixed and let w be the solution of

-∆ N w + |∇w| q = 0 in B - 2 (3.63) 
which vanishes on ∂B - 2 \ {0} and satisfies

lim x → 0 x/|x| → σ |x|w(x) = σ (3.64) in the C 1 -topology of S N -1 -
. Its existence follows from Theorem 3.6 and this function is dominated by the N-harmonic function Φ * corresponding to this domain, obtained in Lemma 3.11. By I ω , the half-ball

B - 2 is transform into the lunule G = B 1 2 (a ) \ B 2 3 ( 4 3 ω ) and w = w • I ω satisfies -∆ N w + |x -ω | 2(q-N ) |∇ w| q = 0 in G. (3.65) Since |x -ω | ≤ 1 in G, -∆ N w + |∇ w| q ≤ 0 in G.
We extend w by 0 in Ω \ G and the resulting function ũ is a subsolution of (3.17) in Ω which vanishes on ∂Ω \ {0}), is smaller than the N-harmonic function Φ * obtained in Lemma 3.11, and satisfies (3.62).

Classification of boundary singularities

We assume that Ω ⊂ R N is a C 2 domain and 0 ∈ ∂Ω. Furthermore, in order to avoid extremely technical computations, we shall assume either that ∂Ω is flat near 0 or p = N . We suppose that the tangent plane to ∂Ω at 0 is ∂R N + = {x = (x , 0)} and the normal inward unit vector at 0 is e N , therefore n = -e N in the sequel. We denote by ω s N -1 + the unique positive solution of (3.1) in S N -1 + and by U s N -1 + the corresponding singular solution of (1.1) in R N + defined by

U s N -1 + (x) = |x| -βq ω s N -1 + ( x |x| ). (4.66) 
We recall that ψ * is the unique positive solution of (3.2) with maximum 1 and Ψ * the corresponding p-harmonic function

Ψ * (x) = |x| -β * ψ * ( x |x| ). (4.67) 
4.1 The case 1 < p < N

The first statement points out the link between weak and strong singularities.

Proposition 4.1. Under the assumptions of Theorem 3.6 there exists

lim k→∞ u k = u ∞ which is the unique element of C(Ω \ {0}) ∩ C 1 (Ω) which vanishes on ∂Ω \ {0}, satisfies (1.1) in Ω and lim x→0 u ∞ (x) U s N -1 + (x) = 1. (4.68) 
Proof. Uniqueness follows from (4.68) and the maximum principle. For existence, since the mapping k → u k is increasing and

u k ≤ U s N -1 + , there exists lim k→∞ u k := u ∞ ≤ U s N -1 + and u ∞ ∈ C(Ω\{0})∩ C 1 (Ω). It vanishes on ∂B + δ \ {0} and satisfies (1.1) in B + δ .
In order to take into account the domain B + δ in the notations, we set u k = u k,δ . Since the mapping δ → u k,δ is also increasing and u k,δ ≤ kΨ * , there also exists lim δ→∞ u k,δ := u k,∞ ≤ kΨ * Then, for all > 0,

T [u k,δ ](x) = βq u k,δ ( x) = u k βq , -1 δ (x). (4.69) 
Letting k → ∞, we obtain

T [u ∞,δ ](x) = βq u ∞,δ ( x) = u ∞, -1 δ (x), (4.70) 
and letting δ → ∞, we obtain

T [u ∞,∞ ](x) = βq u ∞,∞ ( x) = u ∞,∞ (x). (4.71) This implies that u ∞,∞ (r, σ) = r -βq ω (σ), (4.72) 
and ω is a positive solution of problem (3.1). Therefore ω = ω s N -1 + by Theorem 3.2. If we let → 0 in (4.69) and take |x| = 1, x = σ, we derive

lim →0 βq u ∞,δ ( , σ) = lim →0 u ∞, -1 δ (1, σ) = u ∞,∞ (1, σ) = ω s N -1 + (σ). (4.73)
This convergence holds in C 1 (S N -1

+

) because of Lemma 2.5. This implies (4.68).

The main classification result is as follows.

Theorem 4.2. Assume 1 < p < N , p -1 < q < q * and ∂Ω ∩ B δ = {x = (x , 0) : |x | < δ}, for some [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints Ark[END_REF] in Ω which vanishes on ∂Ω \ {0}, then we have the following alternative: (i) either there exists k ≥ 0 such that

δ > 0. If u ∈ C(Ω \ {0}) ∩ C 1 (Ω) is a positive solution of (1.
lim x→0 u(x) Ψ * (x) = k, (4.74) 
(ii) or

lim x→0 u(x) U s N -1 + (x) = 1. (4.75) Proof. Step 1. Assume lim inf x→0 u(x) Ψ * (x) < ∞, (4.76) 
then we claim that (4.74) holds. We first note that if (4.76 ) holds, there also holds

lim inf x→0 u(x) u 1 (x) < ∞, (4.77) 
where u 1 is the solution of (1.1) obtained in Theorem 3.6 with k = 1. If {x n } is converging to 0 and such that for some k > 0 lim inf

x→0 u(x) u 1 (x) = k = lim n→∞ u(x n ) u 1 (x n ) ,
there also holds by the boundary Harnack inequality (2.38) applied to both u and u 1 ,

u(x n ) u 1 (x n ) = u(x n ) d(x n ) d(x n ) u 1 (x n ) ≥ c -2 5 u(x) u 1 (x) ∀x s.t. |x| = |x n | .
This implies in particular

u(x) ≤ c 2 5 (k + n )u 1 (x) ∀x s.t. |x| = |x n |
where { n } is converging to 0 + , and by the comparison principle

u(x) ≤ Ku 1 (x) ∀x ∈ R N + s.t. |x n | ≤ |x| ≤ δ 2 ,
for some K > 0 and all n ∈ N * . Therefore

lim sup x→0 u(x) u 1 (x) < ∞. (4.78)
We can assume that k = 0, otherwise (4.74) holds with k = 0 and actually u remains bounded near 0.

As a consequence of the Hopf Lemma and C 1 regularity, there exists K > 0 such that where the operator

u(x) ≤ KΨ * (x) ∀x ∈ B + δ 2 . ( 4 
L = i,j ∂ ∂x i a ij ∂ ∂x j
is uniformly elliptic in a neighborhood of x τ (see [START_REF] Friedman | Singular Solutions of Some Quasilinear Elliptic Equations[END_REF]Lemma 1.3]). Furthermore w ≤ 0 and w(x τ ) = 0 by the strong maximum principle ∇u(x τ ) must vanish, which contradicts the fact that ∇u(x τ ) = ∇w(x τ ) by the tangency condition, and ∇w(x τ ) = 0. Therefore |x τ | = τ and x τ / ∈ ∂R N + . If τ < τ , k τ ≤ k τ , and we set k = lim τ →0 k τ , which is finite because of (4.79). There exists {τ n } such that σ n := τ -1 x τn → σ 0 . Furthermore

r β * u(r, σ) ≤ k τ ψ * (σ) + mr β * if τ ≤ r ≤ δ and τ β * u(τ, σ τ ) = k τ ψ * (σ τ ) + mτ β * . (4.81) Put u τ (x) = τ β * u(τ x) (4.82) Then -∆ p u τ + τ p-q-β * (p+1-q) |∇u τ | q = 0 in B + δ τ \ {0}
and, by (4.79), 0

≤ u τ (x) ≤ K |x| -β * in B + δ 2τ \ {0}.
By Lemma 2.5, the set of functions {u τ (.)} is relatively compact in the C 1 loc topology of R N + \ {0}. Therefore, as q < q * , there exist a sequence {τ n } ⊂ {τ n } converging to 0, and a positive p-harmonic function v in R N + , continuous in R N + \{0} and vanishing on ∂R N + \{0}, such that u τ n → v, and v satisfies . For any > 0, there exists n > 0 such that n ≥ n implies

u k-(τ n , σ) ≤ u(τ n , σ) ≤ u k+ (τ n , σ) By comparison principle, u k-≤ u ≤ u k+ + m in B + δ \ B + τ n , (4.86) 
and finally

u k-≤ u ≤ u k+ + m in B + δ , (4.87) 
Since is arbitrary and using again Theorem 3.6, it implies

lim r→0 u(r, σ) Ψ * (r, σ) = k, (4.88) 
locally uniformly on S N -1 . But since the convergence holds in C 1 (S N -1

+

), (4.74) follows.

Step 2. Assume

lim x→0 u(x) Ψ * (x) = ∞. (4.89)
For any 0 < < δ and k > 0, there holds

u k (x) ≤ u(x) ≤ v (x) in B + δ \ B + (4.90)
where v has been defined in (3.12) and u k is given by Theorem 3.6. Letting → 0, k → ∞, and using Proposition 4.1, we derive

u ∞ (x) ≤ u(x) ≤ v 0 (x) in B + δ \ {0}. (4.91) 
We have seen in Theorem 3.3 that v 0 is a separable solution of (1.1) in R N + which vanishes on

∂R N + \{0}, therefore v 0 (x) = U s N -1 + (x). This implies u ∞ (x) ≤ u(x) ≤ |x| -βq ω s N -1 + ( x |x| ) in B + δ \ {0}. (4.92)
We conclude using Proposition 4.1.

The case p = N

When p = N , the assumption that ∂Ω is an hyperplane near 0 can be removed. The proof of the next results is based upon Theorem 3.10. The following result is the extension to the case p = N of Proposition 4.1. Therefore

T [u B c k ] := u B c βq -β * k ≤ T [u Ω k ] ≤ T [u B k ] := u B βq -β * k , (4.96) 
the domains of validity of these inequalities being modified accordingly. Using again (3.58) we obtain

T [u B c k ] ≤ T [u B c k ] in B c , (4.97) 
for any 0 < ≤ and βq-β * k ≤ βq-β * k. In the same way

T [u B k ] ≥ T [u B k ] in B , (4.98) 
for any 0 < ≤ and βq

-β * k ≥ βq-β * k. Since u Ω k u B k , u B c k are increasing with respect to k, they converge respectively to u Ω ∞ u B ∞ , u B c
∞ and there holds for any > 0

T [u B c ∞ ] ≤ T [u Ω ∞ ] ≤ T [u B ∞ ], (4.99) 
from (4.96) and (i)

T [u B c ∞ ] ≤ T [u B c ∞ ] in B c (ii) T [u B ∞ ] ≥ T [u B ∞ ] in B (4.100) 
for any 0 < ≤ . Notice that , replacing by we can rewrite (4.99) as follows

T [T [u B c ∞ ]] ≤ T [T [u Ω ∞ ]] ≤ T [T [u B ∞ ]]. (4.101)
Because of the monotonicity with respect to the following limits exist

U B c = lim →0 T [u B c ∞ ] and U B = lim →0 T [u B ∞ ]. (4.102) 
By Lemma 2.5 applied with φ(|x|) = |x| -βq and since there holds u B ∞ (x) ≤ c|x| -βq and u B ∞ (x) ≤ c|x| -βq , we derive

(i) |∇T [u B ∞ ](x)| ≤ c 2 |x| -βq-1 ∀x ∈ B (ii) |∇T [u B ∞ ](x) -∇T [u B ∞ ](y)| ≤ c 2 |x| -βq-1-α |x -y| α ∀x, y ∈ B , |x| ≤ |y| (iii) T [u B ∞ ](x) ≤ c 2 |x| -βq-1 (dist (x, ∂B )) α ∀x ∈ B , (4.103) 
and

(i) |∇T [u B c ∞ ](x)| ≤ c 2 |x| -βq-1 ∀x ∈ B c (ii) |∇T [u B c ∞ ](x) -∇T [u B c ∞ ](y)| ≤ c 2 |x| -βq-1-α |x -y| α ∀x, y ∈ B c , |x| ≤ |y| (iii) T [u B c ∞ ](x) ≤ c 2 |x| -βq-1 (dist (x, ∂B c )) α ∀x ∈ B c . ( 4 

.104) Thus the sets of functions {T [u B

∞ ]} and {T [u B ∞ ]} are equicontinuous in the C 1 -loc topology and by uniqueness, the limit in (4.102) below holds in this topology. Hence U B c and U B c are positive solutions of (3.17) in R N + which vanish on ∂R N + \ {0}. Furthermore U B c ≤ U B c Since for any , > 0,

T [T [u B c ∞ ]] = T [u B c ∞ ], it follows T [U B c ] = U B c
and in the same way T [U B ] = U B . This means that U B and U B c are self-similar solutions of (3.17) in R N + and they vanish on ∂R N + \ {0}. Hence

U B = U B c = U S N -1 + . (4.105)
Applying again Lemma 2.5 to u Ω ∞ with φ(|x|) = |x| -βq we have 

(i) |∇T [u Ω ∞ ](x)| ≤ c 2 |x| -βq-1 ∀x ∈ Ω (ii) |∇T [u Ω ∞ ](x) -∇T [u Ω k ](y)| ≤ c 2 |x| -βq-1-α |x -y| α ∀x, y ∈ Ω , |x| ≤ |y| (iii) T [u Ω ∞ ](x) ≤ c 2 |x| -βq-1 (dist (x, ∂Ω )) α ∀x ∈ Ω . ( 4 
Ω = U S N -1 + and therefore lim →0 T [u Ω ∞ ] = U S N -1 + . (4.107) 
This implies (4.93) and lim (5.5)

r→0 r βq u Ω ∞ (r, σ) = ω S N -1 + (σ) (4 
≤ U ≤ kΨ * in R N + and U (ξ) = kΨ * (ξ) if ξ ∈ S N -1 + or U x N (ξ) = kΨ * x N (ξ) if ξ ∈ ∂S N -1 + . It
Therefore we look at the supremum of the c > 0 such that u ≥ cΨ * . If the set of such c is empty, it would mean that inf

x∈R N + u(x) Ψ * (x) = 0.
Clearly, if this infimum is achieved at some point, the strong maximum principle or Hopf Lemma imply u ≡ 0, contradicting (5.5), and this relation prevents also this infimum be achieved at infinity. We are left with the case where there exists a sequence {z n } ⊂ R N + , converging to 0, such that 

lim n→∞ u(z n ) Ψ * (z n ) = 0. ( 5 
c -1 u(z) Ψ * (z) ≤ u(z n ) Ψ * (z n ) ≤ c u(z) Ψ * (z) ∀z ∈ R N + s.t. |z| = |z n | (5.7)
Combining (5.6) and (5.7), we derive that

lim n→∞ sup |z|=|zn| u(z) Ψ * (z) = 0, (5.8) 
Denoting by n the supremum in the above relation, we obtain that u ≤ n Ψ * in R N + \ B n and finally u = 0, contradiction. Thus we are left with the case where there exists k ∈ (0, k] which is the supremum of the c > 0 such that u ≥ cΨ * . In particular u ≥ k Ψ * . Remembering that u ≤ kΨ * we get k = k , which implies u = kΨ * .

Next we assume that k < k. Clearly the graphs of u and k Ψ * cannot be tangent in R N + , because of strong maximum principle or Hopf Lemma. They cannot be tangent at infinity because of (5.5). Therefore there exist two sequences {k n } increasing to k and {x n } ⊂ R N + converging to 0 such that

u(x n ) Ψ * (x n ) = k n . As in case (i) we obtain that lim r n →0 r β * n u(r n , σ) ψ * (σ) = k uniformly on S N -1 + , (5.9) 
where r n = |x n |, and finally derive that u = k Ψ * , a contradiction with (5.5). Therefore k = k , which ends the proof.

Remark. In the case p = N the result holds under the weaker assumption lim see [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF], [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]. Note that β = 1 when p = N . 

β * > N -p p -1 , (6.2) 
valid when p < N . In this section we prove the following result Theorem 6.1. Assume 1 < p < N . Then the following estimates hold:

1 < p < 2 =⇒ β * > N -1 p -1 , (6.3) 
2 < p < N =⇒ max 1, N -p p -1 < β * < N -1 p -1 . (6.4) 
Remark. It is worth noticing that when p = 2 or p = N , there holds β * = N -1 p-1 . Proof of Theorem 6.1. We consider the following set of spherical coordinates in R N + with x = (x 1 , ..., x N )

x 1 = r sin θ N -1 sin θ N -2 ... sin θ 2 sin θ 1 x 2 = r sin θ N -1 sin θ N -2 ... sin θ 2 cos θ 1 . . . (6.9)

Step 2: Elliptic coordinates and reduction. Writing ω(θ) = ω(0) + aθ 2 + o(θ 2 ), ω θ (θ) = 2aθ + o(θ) and ω θθ (θ) = 2a + o(1), then -N a = β * Λ β * . This implies that ω is decreasing near 0. It is immediate that it cannot have a local minimum in (0, π 2 ), therefore it remains decreasing in the whole interval. We parameterize the ellipse < 0, (6.17) using (6.15) and the fact that N > p. This is a contradiction, thus (6.14) holds. Next, if β * < N -2 p-2 , it follows from (6.16) that there exists > 0 such that φ θ < β * in [ π 2 -, π 2 ). If (6.13) is not true, there exist 0 < θ 1 < θ 2 < π 2such that φ θ (θ 1 ) = φ θ (θ 2 ) = β * , φ θθ (θ 1 ) ≥ 0, φ θθ (θ 2 ) ≤ 0. On one hand A(θ 2 ) ≤ 0 ≤ A(θ 1 ), and on the other

A(θ 2 ) -A(θ 1 ) = N -2 Λ β * -β * (β * (N -1) -Λ β * )(cot 2 θ 1 -cot 2 θ 2 ) > 0,
since cot is decreasing in (0, π 2 ), cot 2 θ 1 > cot 2 θ 2 , a contradiction. Therefore φ θ ≤ β * in (0, π 2 ). Finally, if β * = N -2 p-2 and the maximum of φ θ on [0, π 2 ) is larger than β * and achieved at some θ < π 2 the exists θ 1 < θ such that φ θ (θ 1 ) = β * and φ θθ (θ 1 ) ≥ 0. In that case

0 ≤ A(θ 1 ) = - N -2 Λ β * -β * (β * (N -1) -Λ β * ) cot 2 θ 1 < 0
which is again a contradictions.

Step 4: End of the proof. Since r 2 = β 2 * ω 2 + ω 2 θ , r θ = r(φ θ -β * ) tan φ, we have

rr θ = β 2 * ω + ω θθ ω θ = r(φ θ -β * ) tan φ.
Since ω θ < 0 on (0, π 2 ), it follows from Step 3 that β 2 * ω + ω θθ ≥ 0 and thus

π 2 0 β 2 * ω + ω θθ β 2 * ω 2 + ω 2 θ ω 2 θ ω cos θ sin N -2 θdθ > 0,
since the integrand cannot be identically 0. The conclusion follows from (6.9).

Remark. Since ω θ ( π 2 ) = -c 2 < 0, it follows ω(θ) = -ω θ (θ) cot θ + O( π 2 -θ) as θ → π 2 , and from the eigenfunction equation (6.8) Because ω is C ∞ we obtain finally ∆ ω ≤ cω, (

β 2 * ω + ω θθ β 2 * ω 2 + ω 2
for some c > 0.

  , any solution u ∈ C 1 (Ω \ {0} satisfies |u(x)| ≤ c p,q,Ω d(x) |x|

  .21) For 0 < |x| < δ 0 there exists ∈ (0, 2) such that δ 0 2 ≤ |x| ≤ δ 0 . Then y → ũ (y) with y = x satisfies (2.21) in B δ 0 and |ũ (y)| ≤ γ * φ(|y|) since ψ is a diffeomorphism and Dψ(ξ) ∈ O(N ) for any ξ ∈ ∂Ω ∩ B δ 0 . The function ũ remains bounded on any ball B 3R (z) ⊂ Γ := {y ∈ R N : δ 0 2 < |y| < δ 0 }, therefore |∇ũ (y)| ≤ c for any y ∈ B R (z), for some constant c > 0. This implies

Lemma 2 . 13 . 3 and 0

 21330 Assume a ∈ (∂Ω \ {0}) ∩ B 2δ 1 < r ≤ |a| /8. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2δ 1 )) ∩ C 2 (Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩ B 2δ 1 . Then there exists a constant c 8 depending only on N , p and q such that

1 +. 1 + 1 +) 1 + , but uniformly on S N - 1 +

 11111 .22) By a standard regularity result v converges to a function Φ * continuous in Ω \ {0}, p-harmonic in Ω such that (Ψ * -δ -β * ) + ≤ Φ * ≤ Ψ * in Ω. Therefore (3.20) holds provided x |x| remains in a compact subset of S N -Let us define a function φ * by φ * (x) = |x| β * Φ * (x), then φ * (r, σ) ≤ ψ * (σ) where r = |x| and σ = x |x| ∈ S N -. By standard C 1,α estimates, φ * (r, .) is relatively compact in the C(S N --topology. Therefore the convergence of Φ * (x) Ψ * (x) to 1 when x to 0 holds not only when x |x| remains in a compact subset of S N -, which implies (3.20). Uniqueness follows classically by (3.20) and the maximum principle.

1 )

 1 in Ω which satisfies cu k ≤ u ck ≤ ckΦ * . If c > 1, we set u * := T c θ [u k ], which means u * (x) = c βqθ u k (c θ x) with θ = (β q -β * ) -1 . Then u * is a solution of (1.1) in Ω c θ = 1 c θ Ω.In particular, u * satisfies the equation in B + δ c θ (0). Since c θ > 1, B + δ c θ (0) ⊂ B + δ (0). Put m = max{u * : x ∈ ∂B + δ c θ (0)}. The function (u * -m) + , extended by 0 outside B + δ c θ (0), is a subsolution of (1.1) in Ω. Furthermore it satisfies lim x→0 (u * -m) + (x) Ψ * (x) = ck, uniformly on any compact subset of S N -1 +

some positive constant c 15 .

 15 This expression Λ β * + β * (p -1) + 2(p -2) is always positive: obviously if N ≥ 3 and by using the explicit expression of β * if N = 2. Thus there exists γ 0 and c 16 > 0 such that Q 1 [V ] < -c 16 for 0 < γ ≤ γ 0 . The perturbation method of Step 2, is valid in the whole range of values of ψ * and we derive from (3.42)-(3.43) that (3.48) holds for all k ≤ k 0 and t

2 (a) and B 1 2 ( 2 ( 2 ( 2 ( 2 (

 222222 with the notations of the proof of Theorem 3.5, ω = -ω, a = -1 2 e N and a = -a. We can assume that the balls B 1 a ) are tangent to ∂Ω at 0 and respectively subset of Ω c and Ω. The functionx → Ψ(x) = -x N |x| 2 which is N -harmonic in R N -andvanishes on ∂R N -\ {0} is transformed by the inversion I ω of center ω and power 1 into the function Ψ ω = Ψ • I ω which is positive and N -harmonic in B 1 a ) and vanishes on ∂B 1 a ) \ {0}. The function Ψ = -Ψ which is N -harmonic in R N + and vanishes on ∂R N + \ {0} is transformed by the inversion I ω of center ω and power 1 into the function Ψ ω = Ψ • I ω which is positive and N -harmonic in B c 1 a) and vanishes on ∂B 1 a) \ {0}. For > 0 we denote by Φ the solution of

  .79) Let m = max{u(x) : |x| = δ}. For 0 < τ < δ we denote by k τ the minimum of the κ > 0 such that u(x) ≤ κΨ * (x) + m for τ ≤ |x| ≤ δ. Then u(x) ≤ k τ Ψ * (x) + m, and either the graphs of the mappings u(.) and k τ Ψ * (.) + m are tangent at some x τ ∈ B + δ \ B + τ , or they are tangent on the boundary of the domain, and the only possibility is that they are tangent on |x| = τ . Since |∇Ψ * (x)| 2 = |x| -2(β * +1) (β 2 * ψ 2 * + |∇ψ * | 2 ), it never vanishes. If we set w = u -(k τ Ψ * (x) + m), then -Lw + |∇u| q = 0 (4.80)

1 +)

 1 (4.79) in R N + \ {0}. By Theorem 5.1 in Appendix I, there exists k * such that v = k * Ψ * . In particular,lim τ n →0 u τ n (1, σ) = k * ψ * (σ) (4.83) in the C 1 (S N -topology. Combining (4.81), (4.82)and (4.83) we conclude that k * = k and lim τ n →0 τ β * n u τ n (1, σ) = kψ * (σ)

Proposition 4 . 3 . 1 +

 431 Under the assumptions of Theorem 3.10 there exists lim k→∞ u k = u ∞ which is the unique element of C(Ω \ {0}) ∩ C 1 (Ω) which satisfies (3.17) in Ω, vanishes on ∂Ω \ {0} and such that lim x→0 u ∞ (x) U s N -We denote by u Ω k the unique positive solution of (3.17) satisfying (3.57) obtained in Theorem 3.6. Then T [u Ω k ] = u Ω βq -β * k , (4.94) because of uniqueness. We denote by B := B 1 2 (a) and B := B 1 2 (a ) the two balls tangent to ∂Ω at 0 respectively interior and exterior to Ω introduced in the proof of Lemma 3.11. Estimate (3.58) implies u B c k ≤ u Ω k ≤ u B k (4.95) the left-hand side inequality holding in Ω and the right-hand side one in B.

1 +. 1 +.

 11 .108) uniformly on compact subsets of S N -Up to minor modifications the proof of the next classification theorem is similar to the one of Theorem 4.2.Theorem 4.4. Assume N -1 < q < N -1 and we assume that k > 0 otherwise u = 0. Assume that the graphs over R N + of the functions x → u(x) and x → kΨ * (x) are tangent at some pointx 0 ∈ R N + or x 0 ∈ ∂R N + \ {0}. Since ∇Ψ * never vanishes in R N + \ {0} itfollows from the strong maximum principle or Hopf Lemma that u = kΨ * . If the two graphs are not tangent in R N + \ {0}, either they are asymptotically tangent at 0, or at ∞. (i) In the first case there exists two sequences {k n } increasing to k and {x n } ⊂ R N + converging to zero such that u(xn) Ψ * (xn) = k n . We set r n = |x n | and u rn (x) = r β * n u(r n x). Then u rn is p-harmonic and positive and 0 < u rn (x) ≤ k |x| -β * ψ * ( x |x| ); therefore |∇u rn (x)| ≤ C |x| -β * -1 and ∇u rn (x) -∇u rn (x ) ≤ C |x| -β * -1-α x -x α (5.3) for 0 < |x| ≤ |x | and some constants C > 0 and α ∈ (0, 1). Up to a subsequence, we can assume that u rn converges to some U in the C 1 loc topology of R N + \ {0} and xn rn → ξ ∈ S N -The function U is p-harmonic and positive in R N + and satisfies 0

1 +. ( 5 . 4 )

 154 follows from the strong maximum principle or Hopf Lemma that U = kΨ * . Therefore u rn → kΨ * and in particular lim rn→0 r β * n u(r n , σ) ψ * (σ) = k uniformly on S N -For any > 0, there exists n ∈ N * such that for n ≥ n , (k -)Ψ * (x) ≤ u(x) ≤ (k + )Ψ * (x) if |x| = r n . This implies (k -)Ψ * (x) ≤ u(x) ≤ (k + )Ψ * for |x| ≥ r n and therefore in R N . Since is arbitrary, we deduce that u = kΨ * . (ii) if the two graphs are tangent at infinity, there exist two sequences {k n } increasing to k and {x n } such that r n = |x n | → ∞ with u(x n ) = k n Ψ * (x n ) and lim rn→∞ r β * n u(r n , σ) ψ * (σ) = k uniformly on S N -1 + .

  ) ≤ mΨ * (x) ∀x s.t. |x| ≥ 1, where m = max |x|=1 u(x) ω s N -1 + ( x |x| ). Using the inversion x → x |x| 2 , we obtain that the estimate u ≤ mΨ * holds R N , and we conclude by Theorem 5.1.Remark. We conjecture that the rigidity result holds under the mere conditionlim |x|→∞ |x| -β u(x) = 0,(5.10)were β is the (positive) exponent corresponding to the regular spherical p-harmonic function under the formΨ = |x| β ψ(

6= 3 -p + 2 p 2 - 1 )

 321 Appendix II: Estimates on β * When N = 2 and 1 < p ≤ 2, it is proved in [9] that β * Up to now no estimate is known when N > 2 except in the cases p = 2 where β * = N -1 and p = N where β * = 1, besides the classical one

x N - 1 = 1 ( 6 . 5 ) with θ 1 ∈ 2 0 2 0ω 2 * ω + ω θθ β 2 * ω 2 + ω 2 θ ω 2 θ 2 0ω

 11651222222 r sin θ N -1 cos θ N -2 x N = r cos θ N -[0, 2π] and θ k ∈ [0, π] for k = 2, ..., N -2 and θ N -1 ∈ [0, π 2 ]. Under this representation, a solution ω of (3.2) verifies θ ω 2 θ = β * Λ β * ω. (6.8)By multiplying (6.8 ) by cos θ sin N -2 θ and then integrating over (0, π 2 ) we obtainπ (ω θθ + (N -2) cot θ ω θ ) cos θ sin N -2 θdθ = (N -1) π cos θ sin N -2 θdθ.Noticing thatβ * Λ β * + 1 -N = (p -1) β *ω cos θ sin N -2 θdθ = (p -1) β * -N -1 p -1 (β * + 1)π cos θ sin N -2 θdθ.

EStep 3 : 2 .lim θ→ π 2 cot θ tan φ = lim θ→ π 2 2 cot 2

 322222 r = {(x, y) : x > 0, y < 0, x 2 + β -2 * y 2 = r 2 } by setting ω = r cos φ and -ω θ = β * r sin φ with φ = φ(θ) and r = r(θ).The functions r and φ are C 2 . Hence r θ cos φ-r sin φφ θ = -β * r sin φ, then r θ cos φ = (φ θ -β * )r sin φ and r θ = (φ θ -β * )r tan φ. Plugging this into (6.8), we derive-(p -1) r θ r + φ θ cot φ + (N -2) cot θ + Λ β * cot φ = 0,(6.10)and finally(p -1)(φ θ -β * ) tan φ + (φ θ -Λ β * ) cot φ = (2 -N ) cot θ. (6.11) Estimates on φ θ . We can write (6.11) under the equivalent form(p -1)(φ θ -β * ) tan 2 φ + φ θ -Λ β * = (2θ = φ θ (0), we derive φ θ (0) -Λ β * = (2 -N )φ θ (0) and thus φ θ (0) = Λ β * N -1 . Similarly, the expansion of φ(θ) near θ = π 2 yields to φ θ ( π 2 ) = β * . Since p < N , Λ β * /(N -1) < β * . We claim now that φ θ (θ) ≤ β * ∀θ ∈ (0, π 2 ). (6.13) If Λ β * ≤ β * , then (2 -N ) cot θ = (p -1)(φ θ -β * ) tan φ + (φ θ -Λ β * ) cot φ ≥ ((p -1) tan φ + cot φ)(φ θ -β * )thus (6.13) holds.Next we assumeβ * < Λ β * . It means 0 < (p -2)β * -(N -p) and thus p > 2. We claim that -2) (β * + 1) β * -N -2 p -2 > 0. Equivalently β * (Λ β * -β * ) > N -Since 1)(φ θ (θ) -β * ) tan 2 φ = Λ β * -φ θ (θ) + (2 -(Λ β * -β * ) + 2 -N ) + o(1),(6.16)thus, if (6.15) holds there exists > 0 such that φ θ (θ) > β * for any θ ∈ [ π 2 -, π 2 ). Since φ θ (0) < β * , there exists θ ∈ (0, π 2 ) such that φ θ ( θ) = β * and φ θθ ( θ) ≥ 0. We compute φ θθ and get(p -1)φ θ (φ θ -β * ) sec 2 φ + ((p -1) tan φ + cot φ) φ θθ -φ θ (φ θ -Λ β * ) csc 2 φ = (N -2) csc 2 θHence, at θ = θφ θθ ( θ) (p -1) tan φ( θ) + cot φ( θ) = β * (β * -Λ β * ) csc 2 φ(θ) + (N -2) csc 2 θ From (6.11), cot φ( θ) = N -2 Λ β * -β * cot θ Therefore A( θ) := φ θθ ( θ) (p -1) tan φ( θ) + cot φ( θ) = 1 + N -2 Λ β * -β * θ β * (β * -Λ β * ) + (N -2)(1 + cot 2 θ) = β * (β * -Λ β * ) + N -2 -(N -2) 2 Λ β * -β * + 2 -N cot 2 θ = -(p -2)(β * + 1) β * -N -2 p -2 -N -2 Λ β * -β * (β * (N -1) -Λ β * ) cot 2 θ

  Using the equation satisfied by φ θθ , we obtain for i = 1, 2,A(θ i ) = (2 -p)(β * + 1) β * -N -2 p -2 -N -2 Λ β * -β * (β * (N -1) -Λ β * ) cot 2 θ i . (6.18) 

θ ω 2 θ

 2 = (β 2 * ω + ω θθ )(1 + o(1)). Therefore -(p -1)ω θθ = (β * Λ β * + (p -2)β 2 * + 2 -N )ω(1 + o(1)) as θ → π 2 and since ∆ ω := ω θθ + (N -2) cot θ ω θ -∆ ω = β * (β * (2p -3) + p -N ) + (p -2)(N -2) p -1 ω(1 + o(1)) as θ → π 2 .

  .31)Remark. If Ω is locally flat near 0, then estimates (2.30) and (2.31) are valid without any sign assumption on u. More precisely, if ∂Ω ∩ B δ 0 = T 0 ∂Ω ∩ B δ 0 we can perform the reflection of u through the tangent plane T 0 ∂Ω to ∂Ω at 0 and the new function ũ is a solution of (1.1) in B δ 0 \ {0}.

						By Proposition 2.1, it
	satisfies	|∇ũ(x)| ≤ c N,p,q |x|	-1 q+1-p	∀x ∈ B δ 0	\ {0}.	(2.32)
				2		

  .106) This implies that the set of functions {T [u Ω ∞ ]} is equicontinuous in the C 1 -loc topology of R N + and there exists a sequence { n } → 0 and a function U such that T n [u Ω ∞ ] → U Ω in this topology of R N + , and U is a positive solution of (3.17) in R N + which vanishes on ∂R N + \ {0}. From (4.99) and (4.105) there holds U

If u ∈ C(Ω \ {0}) ∩ C 1 (Ω) is a positive solution of (3.17)in Ω which vanishes on ∂Ω \ {0}, then we have the following alternative: (i) either there exists k ≥ 0 such that (4.74) holds, (ii) or (4.75) holds.

Appendix I: Positive p-harmonic functions in a half space

In this section we prove the following rigidity result.

) is a positive p-harmonic function which vanishes on ∂R N + \ {0} and such that |x| β * u(x) is bounded. Then there exists k ≥ 0 such that

(5.1)

Proof. Since |x| β * u(x) is bounded, |x| β * +1 ∇u(x) is also bounded and there exists m > 0 such that u(x) ≤ mΨ * (x) in B + δ . We denote by k the infimum of the c > 0 such that u(x) ≤ cΨ * (x). Then 0 ≤ u(x) ≤ kΨ * (x) ∀x ∈ R N + \ {0} (5.2)