Decaying Turbulence in the Generalised Burgers Equation - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2014

Decaying Turbulence in the Generalised Burgers Equation

Résumé

We consider the generalised Burgers equation$$∂u/∂t + f (u) ∂u/∂x − \nu ∂^2u/∂x^2 = 0, t ≥ 0, x ∈ S^1,$$where $f$ is strongly convex and $\nu$ is small and positive. We obtain sharp estimates for Sobolev norms of u (upper and lower bounds differ only by a multiplicative constant). Then, we obtain sharp estimates for the dissipation length scale and the small-scale quantities which characterise the decaying Burgers turbulence, i.e. the structure functions and the energy spectrum. The proof uses a quantitative version of an argument by Aurell, Frisch, Lutsko and Vergassola [1]. Note that we are dealing with decaying, as opposed to stationary turbulence. Thus, our estimates are not uniform in time. However, they hold on a time interval $[T_1 , T_2 ]$, where $T_1$ and $T_2$ depend only on $f$ and the initial condition, and do not depend on the viscosity. These results allow us to obtain a rigorous theory of the one-dimensional Burgers turbulence in the spirit of Kolmogorov's 1941 theory. In particular, we obtain two results which hold in the inertial range. On one hand, we explain the bifractal behaviour of the moments of increments, or structure functions. On the other hand, we obtain an energy spectrum of the form $k^{-2}$ . These results remain valid in the inviscid limit.
Fichier principal
Vignette du fichier
DeterministicBurgers_A.Boritchev.pdf (356.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01092949 , version 1 (09-12-2014)

Identifiants

Citer

Alexandre Boritchev. Decaying Turbulence in the Generalised Burgers Equation. Archive for Rational Mechanics and Analysis, 2014, 214, pp.331 - 357. ⟨10.1007/s00205-014-0766-5⟩. ⟨hal-01092949⟩
431 Consultations
158 Téléchargements

Altmetric

Partager

More