Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates

Michal Kowalczyk
  • Fonction : Auteur
  • PersonId : 831671

Résumé

This paper is devoted to the Lin-Ni conjecture for a semi-linear elliptic equation with a super-linear, sub-critical nonlin-earity and homogeneous Neumann boundary conditions. We estab-lish a new rigidity result, that is, we prove that the unique posi-tive solution is a constant if the parameter of the problem is be-low an explicit bound that we relate with an optimal constant for a Gagliardo-Nirenberg-Sobolev interpolation inequality and also with an optimal Keller-Lieb-Thirring inequality. Our results are valid in a sub-linear regime as well. The rigidity bound is obtained by nonlinear flow methods inspired by recent results on compact manifolds, which unify nonlinear elliptic techniques and the carré du champ method in semi-group theory. Our method requires the convexity of the domain. It relies on integral quantities, takes into account spectral estimates and provides improved functional inequalities. Unicité et rigidité pour de equations elliptiques non linéaires, inégalités d'interpolation et estimations spectrales Résumé. Cet article est consacr a la conjecture de Lin-Ni pour uné equation semi-linéaire elliptique avec non-linéarité super-linéaire, sous-critique et des conditions de Neumannhomo enes. Nou etablissons un résultat de rigidité, c' est a - direnousprouvonsquelaseulesolutionpositiveestconstantesileparaetreduprobìemeesten-dessousd'uneborneexplicite,reliéèalacon-stanteoptimaled'uneinégalitéd'interpolationdeGagliardo-Nirenberg-Sobo-levetaussìauneinégalitédeKeller-Lieb-Thirringoptimale.Nosrésultatssonegalementvalidesdansunrégimesous-linéaire.Labornederigiditéestobtenuepardesméthodesdeflotsnon-linéairesinspiréesderésultatsrécentssurlesvariétéscompactes,quiunifientdestechniquesdequationselliptiquesnon-linéairesetlaméthodeducarréduchampenthéoriedessemi-groupes.Notreméthoderequiertlaconvexitédudomaine.Ellereposesurdesquantitésintégrales,prendencomptedesestimationsspectralesetfournitdesinégalitésaméliorées.
Fichier principal
Vignette du fichier
Dolbeault-Kowalczyk.pdf (324.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01092572 , version 1 (09-12-2014)
hal-01092572 , version 2 (01-06-2016)
hal-01092572 , version 3 (01-07-2016)

Identifiants

Citer

Jean Dolbeault, Michal Kowalczyk. Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates. 2014. ⟨hal-01092572v1⟩
214 Consultations
183 Téléchargements

Altmetric

Partager

More