Multivariate wavelet Whittle estimation in long-range dependence - Archive ouverte HAL
Article Dans Une Revue Journal of Time Series Analysis Année : 2016

Multivariate wavelet Whittle estimation in long-range dependence

Résumé

Multivariate processes with long-range dependent properties are found in a large number of applications including finance, geophysics and neuroscience. For real data applications, the correlation between time series is crucial. Usual estimations of correlation can be highly biased due to phase-shifts caused by the differences in the properties of autocorrelation in the processes. To address this issue, we introduce a semiparametric estimation of multivariate long-range dependent processes. The parameters of interest in the model are the vector of the long-range dependence parameters and the long-run covariance matrix, also called functional connectivity in neuroscience. This matrix characterizes coupling between time series. The proposed multivariate wavelet-based Whittle estimation is shown to be consistent for the estimation of both the long-range dependence and the covariance matrix and to encompass both stationary and nonstationary processes. A simulation study and a real data example are presented to illustrate the finite sample behaviour.
Fichier principal
Vignette du fichier
AchardGannaz2015_rev.pdf (772.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01079645 , version 1 (03-11-2014)
hal-01079645 , version 2 (30-10-2015)

Identifiants

Citer

Sophie Achard, Irène Gannaz. Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, 2016, 37 (4), pp.476-512. ⟨10.1111/jtsa.12170⟩. ⟨hal-01079645v2⟩
461 Consultations
360 Téléchargements

Altmetric

Partager

More