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Abstract

Multivariate processes with long-range dependent properties are found in a large number
of applications including finance, geophysics and neuroscience. For real data applications,
the correlation between time series is crucial. Usual estimations of correlation can be highly
biased due to phase-shifts caused by the differences in the properties of autocorrelation in the
processes. To address this issue, we introduce a semiparametric estimation of multivariate
long-range dependent processes. The parameters of interest in the model are the vector of the
long-range dependence parameters and the long-run covariance matrix, also called functional
connectivity in neuroscience. This matrix characterizes coupling between time series. The
proposed multivariate wavelet-based Whittle estimation is shown to be consistent for the
estimation of both the long-range dependence and the covariance matrix and to encompass
both stationary and nonstationary processes. A simulation study and a real data example are
presented to illustrate the finite sample behaviour.

Keywords: multivariate processes, long memory, fractional integration, semiparametric
estimation, covariance matrix, wavelets, neuroscience application, functional connectivity

MSC classification: 60G22, 62M10, 62M15, 62H20, 92C55

1 Introduction

The long-range dependence has attracted lots of interest in statistics and in many applications
since the seminal paper of Mandelbrot in 1950. First the fractional Brownian motion model was
introduced as the unique Gaussian process having stationary increments and self-similarity index
H in (0, 1) (Mandelbrot and Van Ness, 1968). This model is characterized by one parameter called
the Hurst exponent. Since then, several extensions were introduced in order to get more complex
modellings that better match real data, such as ARIMA, FD, FIN. . . We refer to Percival and Walden
(2006) and references therein for an overview of long-range dependence models. These models
were used in a large scope of applications, for example finance (Gençay et al, 2001) (see also the
references in Nielsen and Frederiksen (2005)), internet traffic analysis (Abry and Veitch, 1998),
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physical sciences (Papanicolaou and Sølna, 2003; Percival and Walden, 2006), geosciences (Whitcher
and Jensen, 2000) and neuroimagery (Maxim et al, 2005).

Nowadays, it is common to record data having multiple sensors, such as neuroimagery (functional
Magnetic Resonance Imaging or Electroencephalography). Each sensor records the activity of a
specific part of the brain. However, the brain is a complex system with complex interactions
between its different parts, so researchers were interested in modelling the sensors as multivariate
time series. A similar representation is suited for data acquired in geosciences where, for example,
time series correspond to temperatures in several part of the earth, like in Whitcher and Jensen
(2000). For these two applications, it has been shown that the univariate time series present long-
range dependence behaviour. Several models accounting for long memory features have been
proposed. In Didier and Pipiras (2011), the multivariate Brownian motion was defined. The values
of interactions as defined by the covariance matrix must be carefully chosen so that the model
is identifiable (Coeurjolly et al, 2013). Also, the multivariate extension of fractionally difference
models was proposed in Chambers (1995), which includes the multivariate extension of ARFIMA
models with an explicit expression of the short memory terms. In a recent paper, Kechagias
and Pipiras (2015) highlighted the difficulties to extend the notion of long-range dependence to
multivariate time series and proposed specific linear representations of long-range dependence.
Concerning multivariate ARFIMA models, Lobato (1997); Sela and Hurvich (2008) studied two
different classes of extension depending on the order of fractional integration and ARMA models.

Using these long memory models, a typical statistical issue is to estimate the long memory
parameter. This characterizes the long-term dependence of the series, which controls many relevant
statistical properties. A very large literature exists in the context of univariate time series. First,
parametric approaches were considered (Dahlhaus, 1989; Fox and Taqqu, 1986; Giraitis et al, 1997)
which provide fast rates of convergence. However these approaches suffer from inconsistency
when the short-term component of the model is misspecified. Semiparametric models were then
developed to be robust to model misspecification (Robinson, 1994a,b, 1995a,b), where the spectral
density is modelled only near zero frequency. In the frequency domain, two popular estimators
among the semiparametric ones are the Geweke-Porter-Hudak introduced by Geweke and Porter-
Hudak (1983) and the local Whittle estimator of Robinson (1995a). Wavelet-based estimators were
also studied, and proved to be adequate for studying fractal time series. In Abry and Veitch (1998),
the authors developed an estimator using log-regression of the wavelet coefficient variance on the
scale index. Moulines et al (2008) derived the asymptotic properties of a wavelet Whittle estimator.

Considering multivariate fractionally integrated processes (Chambers, 1995), the estimation of
memory parameters and covariance matrix have been first studied in Robinson (1995b). Then
Lobato (1999) proposed a semiparametric two-step estimator. Shimotsu (2007) extended this
latter approach including phase-shift consideration. Nielsen (2011) proposed an extension based
on Abadir et al (2007)’s extended Fourier transform to estimate long memory parameters for
nonstationary time series. In a different approach, Sela and Hurvich (2012) defined an estimator
based on the average periodogram for a power law in coherency. All these approaches were
developed using Fourier log-periodogram. In comparison, there are few wavelet-based estimators
of long-range memory parameters in multivariate settings. Frías et al (2008); Wang and Wang
(2014) proposed estimation schemes based on multidimensional wavelet basis. In many real data
applications such as geosciences, internet traffic or neurosciences, the number of time series is huge,
as the real data example of Section 6 illustrates. The latter works thus do not seem well adapted.
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Achard et al (2008) studied a two-dimensional estimation, based on univariate wavelet basis, which
defines estimators using a regression of the cross-covariance between the wavelet coefficients.
This approach also appears difficult to generalize to high multidimensional settings. The present
work defines a wavelet Whittle estimator for multivariate models. The extension to multivariate
processes presents two issues. First, a vector of long memory parameters has to be estimated along
with the covariance matrix that is modelling the interactions between the time series. Second, as
noted in Robinson (1994b); Shimotsu (2007), the multivariate extension of the fractional integrated
model introduces a phase-shift that has to be taken into account in the estimation procedures. The
new wavelet-based proposed methodology is shown to be adequate for nonstationary long-range
dependence models.

The paper is organised as follows. Section 2 introduces the specific framework of multivariate
long memory processes based on the definition of the spectral density matrix. The multivariate
wavelet Whittle estimators of both the long memory parameters and the covariance matrix are
defined in Section 3. The properties of this new estimation scheme are derived in Section 4 where
consistency of both estimations are established. Finally, Section 5 presents a simulation study which
illustrates that the wavelet Whittle estimators have comparable performances to the Fourier-based
ones. In addition, our method provides a very flexible approach to handle both stationary and
nonstationary processes. Section 6 deals with a real data application in neuroscience.

2 The semiparametric multivariate long-memory framework

Let X = {X`(k), k ∈ Z, ` = 1, . . . , p} be a multivariate stochastic process. Each process X` is not
necessarily stationary. Denote by ∆X` the first order difference, (∆X`)(k) = X`(k) − X`(k − 1),
and by ∆DX` the D-th order difference. For every component X`, there exists D` ∈ N such
that the D`-th order difference ∆D`X` is covariance stationary. Following Achard et al (2008);
Chambers (1995); Moulines et al (2007), we consider a long memory process X with memory
parameters d = (d1, d2, . . . , dp). For any D > d− 1/2, we suppose that the multivariate process
Z = diag(∆D` , ` = 1, . . . , p)X is covariance stationary with a spectral density matrix given by

for all (`, m) , f (D`,Dm)
`,m (λ) =

1
2π

Ω`,m(1− e−iλ)−ds
`(1− eiλ)−ds

m f S
`,m(λ), λ ∈ [−π, π],

where the long memory parameters are given by dS
m = dm − Dm for all m. The functions f S

`,m(·)
correspond to the short memory behaviour of the process. The generalized cross-spectral density
of processes X` and Xm can be written as

f`,m(λ) =
1

2π
Ω`,m(1− e−iλ)−d`(1− eiλ)−dm f S

`,m(λ), λ ∈ [−π, π].

As it will be explained in Section 2.1, this model corresponds to a subclass of multivariate long-
range dependent time series. In a general case, an additional multiplicative term of the form eiϕ is
required, see e.g. Kechagias and Pipiras (2015); Sela and Hurvich (2012).

In the case of a multivariate setting, the spectral density of the multivariate process X is thus,

f (λ) = Ω ◦ (Λ0(d) f S(λ)Λ0(d)∗), λ ∈ [−π, π], with Λ0(d) = diag((1− e−iλ)−d) (1)
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where d = D + ds. The exponent ∗ is the conjugate operator and ◦ denotes the Hadamard product.
The matrix Ω is supposed real symmetric positive definite.

In this semiparametric framework, the spectral density f S(·) corresponds to the short-memory
behaviour and the matrix Ω is called fractal connectivity by Achard et al (2008) or long-run covariance
matrix by Robinson (2005). Similarly to Moulines et al (2007), we assume that f S(·) ∈ H(β, L)
with 0 < β 6 2 and 0 < L. The space H(β, L) is defined as the class of non-negative symmetric
functions g(·) on [π, π] such that g`,m(0) = 1 for all (`, m) ∈ {1, . . . , p}2 and that for all λ ∈ (−π, π),
max{|g(λ) − 1|, (`, m) ∈ {1, . . . , p}2}∞ 6 L|λ|β. The assumption f S

`,m(0) = 1 for all (`, m) is
necessary for Ω to be identifiable in model (1).

The spectral density specifies that the two processes X` and Xm have long-memory parameters
respectively d` and dm. Parameters with absolute value greater that 1/2 are allowed, covering
nonstationary time series (in this case D`, Dm > 1). If orders are different, the estimation of the
memory parameters is still available but some bias issues occur for the estimation of the underlying
covariance Ω, which is detailled in Section 3.

In order to derive semiparametric estimations of the memory parameters and the matrix Ω, the
term inside the matrix Λ0(d) can be simplified using the equality 1− e−iλ = 2 sin(λ/2)ei(π−λ)/2.
Consequently, when λ tends to 0, the spectral density matrix is approximated at first order by

f (λ) ∼ Λ̃(d)ΩΛ̃(d)∗, when λ→ 0, with Λ̃(d) = diag(|λ|−de−i sign(λ)πd/2). (2)

Here and subsequently ∼means that the ratio left- and right-hand side converges to one.

A similar approximation has been carried out in Lobato (1997) or Phillips and Shimotsu (2004),
while Shimotsu (2007) derived a second order approximation. Lobato (1999) used Λ̃(d) =

diag(|λ|−d) as an approximation of f (·). Whereas Shimotsu (2007) chose to approximate f (·)
using Λ̃(d) = diag(λ−de−i(π−λ)d/2), which corresponds to a second order approximation due
to the remaining term λ in the exponential. As mentioned by Shimotsu (2007), intriguingly, the
two defined estimators of long memory parameters are consistent, but only for the estimation of
d. The estimation of the covariance matrix is affected by the choice of Λ̃(d). In Section 3, we
introduce our estimators using approximation (2), corresponding to a trade-off between Lobato
(1999) and Shimotsu (2007). The resulting estimator for d is equivalent to the one defined in Lobato
(1999). However a specific correction for the estimation of the covariance matrix overcomes the
bias caused by the presence of a phase-shift through the complex exponential term. This point has
also been raised in the context of detecting cointegration, when the cross-spectral density presents
an additional phase parameter comparing to the case studied in this paper.

2.1 Examples of processes

This section provides some examples of processes which satisfy our semiparametric modelling.

The matrix Ω has been defined via the spectral representation of the process, the link between
Ω and the covariance of the multivariate process in the temporal space is detailed hereafter. Let
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X = 1
N ∑N

t=1 X(t) be the empirical mean of the process. If the cross-spectral density is defined and
continuous at the frequency λ = 0, Fejer’s theorem states that n1/2X converges in distribution to
a zero-mean Gaussian distribution with a covariance matrix equals to 2π f (0). When the cross-
spectral density satisfies an approximation (1), Robinson (2005) indicates that

DnE(XX
T
)Dn −−−→n→∞

2πΩ ◦Q(d)

where Dn = diag(n1/2−d) and Q`,m(d) = sin(πd`)+sin(πdm)
Γ(d`+dm+2) sin(π(d`+dm))

. The exponent T denotes the
transpose operator.

2.1.1 Causal linear representations of Kechagias and Pipiras (2014)

Kechagias and Pipiras (2015) define Long-Range Dependence (LRD) with a more general setting
for the phase. Let X be a p-multivariate time series. We suppose that X is second-order stationary
and that it admits a spectral density. The time series X is long-range dependent in the sense of
Kechagias and Pipiras (2015) if its spectral density f (·) satisfies:

f (λ) =
1

2π
diag(|λ|−d)G(λ)diag(|λ|−d)

with d =
(
d1 . . . dp

)
∈ (0, 1/2)p and G(·) aCp×p-valued Hermitian non negative definite matrix

function satisfying
G(λ) ∼λ→0+ G = (Ω`,meiϕ`,m)`,m=1,...,p

with Ω`,m ∈ R, `, m = 1, . . . , p and ϕ`,m ∈ (−π, π]. The phases ϕ`,m measure the dissymmetry of the
process X at large lags. Indeed the specificity of multivariate time series is that the autocovariance
function may no longer be symmetric compared with the univariate framework (i.e. γ(−h) = γ(h)T

may not be equal to γ(h)). When the process is time reversible, the autocovariance function
is symmetric. Time reversible series will satisfy ϕ`,m = 0 for all `, m = 1, . . . , p. We refer to
proposition 2.1 of Kechagias and Pipiras (2015) that gives some highlights on the phase parameters.
In Proposition 3.1 Kechagias and Pipiras (2015) give examples of LRD linear time series where any
combinations of (d, G) can be chosen.

Many results of the present work can be generalized to LRD processes of Kechagias and Pipiras
(2015). Yet as our goal is to recover the matrix Ω, an assumption on the form of the phase ϕ is
necessary (since we consider a real filter which deletes the imaginary part). The most widely used
definition of phase is ϕ`,m = −π

2 (d` − dm) which includes a large scope of models, see section 2.1.2.

Such a definition of phase is verified, for example, using a causal representation of processes
described in Kechagias and Pipiras (2015). Let {εk}k∈Z be a Rp-valued white noise, satisfying
E[εk] = 0 and E[εkεT

k ] = Ip. Let also {Bk = (B`,m,k)`,m=1,...,p}k∈N be a sequence of real-valued
matrices such that B`,m,k = L`,m(k) kda−1, k ∈ N, where d` ∈ (0, 1/2) and L(k), k = 1, ..., p, is an
Rp×p-valued function satisfying L(k) ∼k→+∞ A for some Rp×p-valued matrix A. We define the
time series X given by the causal linear representation

X(k) =
+∞

∑
j=0

Bjεk−j.

5



Corollary 4.1 of Kechagias and Pipiras (2015) states that the process X is LRD with

Ω`,m =
Γ(d`)Γ(dm)

2π
(AA∗)`,m,

ϕ`,m = −π

2
(d` − dm).

Such causal linear representations thus satisfies (2). An example of such a representation is the
multivariate ARFIMA(0, d, 0) model presented in next subsection.

2.1.2 Multivariate ARFIMA of Lobato (1997)

The composition of linear filters does not commute in the multivariate case. Consequently there are
multiple extensions of univariate ARFIMA to the multivariate framework. We detail in this section
the multivariate ARFIMA models of Lobato (1997).

Let u be a p-dimensional white noise with E[u(t) | Ft−1] = 0 and E[u(t)u(t)T | Ft−1] = Σ, where
Ft−1 is the σ-field generated by {u(s), s < t}, and Σ is a positive definite matrix. The spectral
density of u satisfies f u(λ) = Σ/(2π).

Let (Ak)k∈N be a sequence of Rp×p-valued matrices with A0 the identity matrix and ∑∞
k=0 ‖Ak‖2 <

∞. Let A(·) be the discrete Fourier transform of the sequence, A(λ) = ∑∞
k=0 Akeikλ. We assume that

all the roots of |A(L)| are outside the closed unit circle.

Lobato (1997) defines two multivariate ARFIMA models which both satisfy approximation (2).

Model A. Let X be defined by A(L)diag(11−L)d X(t) = B(L)u(t). The spectral density satisfies

f`,m(λ) ∼λ→0+
1

2π
Ω`,me−iπ/2(d`−dm)λ−(d`+dm)

with Ω = A(1)−1B(1)ΣB(1)TA(1)T−1. It is straightforward that Model A statifies
approximation (2).

Model B. Let X be defined by diag(11−L)d A(L)X(t) = B(L)u(t). The spectral density satisfies

f`,m(λ) ∼λ→0+
1

2π ∑
a,b

βa,bα`,aαm,be−iπ/2(da−db)λ−(da+db)

with α`,m = (A(1)−1)`,m and β`,m = (B(1)ΣB(1)T)`,m. In Model B the spectral density is
equivalent around the zero frequency to the term in (a, b) = argmax{|da + db|, βa,bα`,aαm,b 6=
0}. It gives a more general setting f`,m(λ) ∼λ→0+ G`,mλ−d`,m with |d`,m| 6 (d` + dm)/2. (This
model is studied more extensively in Sela and Hurvich (2012), where the authors propose
an estimator for d1,2 in a bivariate framework.) Setting Ω`,m = 0 if |d`,m| < (d` + dm)/2
equation (2) holds. This means that if there is cointegration, the corresponding long-run
covariance value is set to zero.
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In particular, Model A and Model B of Lobato (1997) include FIVAR and VARFI models of Sela and
Hurvich (2008). These multivariate ARFIMA models admit a causal linear representation. They
include short-range dependence behaviour, through the terms A(L) and B(L). When these terms
are equal to identity, we obtain an ARFIMA(0, d, 0) satisfying the causal linear representation
given in subsection 2.1.1. This (causal) multivariate ARFIMA(0, d, 0) is a subclass of Kechagias
and Pipiras (2015)’s (possibly non causal) definition.

Remark. In the univariate setting, when A(·) and B(·) have no common zeros, Kokoszka and Taqqu
(1995) establish that the time series X admits a linear representation X(k) = ∑+∞

j=0 Cjεk−j with

Cj =
B(1)

A(1)Γ(d) jd−1 +O(j−1) when j goes to infinity. The terms of the linear representation thus satisfy
approximately the condition of Kechagias and Pipiras (2015). The extension to multivariate setting
would yield information about the link between Lobato (1997)’s models and Kechagias and Pipiras
(2015)’s condition on causal representations. However, it has not been explored in this paper since
we will not use this fact in any essential way.

3 Multivariate wavelet Whittle estimation

This section first defines the wavelet transform of the processes and then gives some results on
the cross behaviour of the wavelet coefficients. The main point is the presence of a phase-shift
caused by the differences in the long-memory parameters. Finally the proposed estimation scheme
is derived, defining simultaneous estimators of the long-memory parameters and of the long-run
covariance, which takes into account the phase-shift (based on the first order approximation (2)).

3.1 The wavelet analysis

Let (φ(·), ψ(·)) be respectively a father and a mother wavelets. Their Fourier transforms are given
by φ̂(λ) =

∫ ∞
−∞ φ(t)e−iλtdt and ψ̂(λ) =

∫ ∞
−∞ ψ(t)e−iλtdt.

At a given resolution j > 0, for k ∈ Z, we define the dilated and translated functions φj,k(·) =

2−j/2φ(2−j · −k) and ψj,k(·) = 2−j/2ψ(2−j · −k). Thoughout the paper, we adopt the same
convention as in Moulines et al (2007) and Moulines et al (2008), that is large values of the scale
index j correspond to coarse scales (low frequencies).

Let X̃(t) = ∑k∈Z X(k)φ(t− k). The wavelet coefficients of the process X are defined by

Wj,k =
∫
R

X̃(t)ψj,k(t)dt j > 0, k ∈ Z.

For given j > 0 and k ∈ Z, Wj,k is a p-dimensional vector Wjk =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)
,

where Wj,k(`) =
∫
R X̃`(t)ψj,k(t)dt.

The regularity conditions on the wavelet transform are expressed in the following assumptions.
They will be needed throughout the paper.

7



(W1) The functions φ(·) and ψ(·) are integrable, have compact supports,
∫
R φ(t)dt = 1 and∫

ψ2(t)dt = 1;

(W2) There exists α > 1 such that supλ∈R |ψ̂(λ)|(1 + |λ|)α < ∞, i.e. the wavelet is α-regular;

(W3) The mother wavelet ψ(·) has M > 1 vanishing moments.

(W4) The function ∑k∈Z k`φ(· − k) is polynomial with degree ` for all ` = 1, . . . , M− 1.

(W5) For all i = 1, . . . , p, (1 + β)/2− α < di 6 M.

These conditions are not restrictive, and many standard wavelet basis satisfy them. Among
them, Daubechies wavelets are compactly supported wavelets parametrized by the number of
vanishing moments M. They are α-regular with α an increasing function of M going to infinity
(see Daubechies (1992)). Assumptions (W1)-(W5) will hold for Daubechies wavelet basis with
sufficiently large M.

Remark. The couple of functions (φ(·), ψ(·)) can be associated with a multiresolution analysis, but
this condition is not necessary. Similarly, the orthogonality of the family {ψj,k(·)} is not required.
See Moulines et al (2007), Section 3.

Under assumption (W3), the wavelet transform performs an implicit differentiation of order M.
Thus it is possible to apply it on nonstationary processes. In Fourier analysis, tapering procedures
are necessary to consider directly nonstationary frameworks, see e.g. Velasco and Robinson (2000)
and references therein. Some recent works propose a procedure that differentiates the data before
tapering (Hurvich and Chen (2000) and references therein). Another extension of Fourier to
nonstationary frameworks has been proposed by Abadir et al (2007) and applied by Nielsen (2011)
in multivariate analysis.

In practice, a finite number of realisation of the process X, say X(1), . . . X(N), is observed. Since the
wavelets have a compact support only a finite number nj of coefficients are non null at each scale j.
Suppose without loss of generality that the support of ψ(·) is included in [0, Tψ] with Tψ > 1. For
every j > 0, define

nj := max (0, 2−j(N − Tψ + 1)). (3)

Then for every k < 0 and k > nj, the coefficients Wj,k are set to zero because all the observations are

not available. In the following, n = ∑
j1
j=j0

nj denotes the total number of non-zero coefficients used
for estimation.

3.2 Spectral approximation of wavelet coefficients

Let us first recall some results of Moulines et al (2007) for the wavelet transform of a univariate
process. Let Wj,k denote the wavelet coefficient of a unidimensional process X, with spectral density
f (λ) = |1− eiλ|−2d0 f S(λ), where d0 ∈ R (note that d0 can be outside of the interval [−1/2, 1/2]).
Moulines et al (2007) state that under assumptions (W1)-(W5), the wavelet coefficients process
(Wj,k)k∈Z is covariance stationary for any given j > 0. However they also stress that the between-
scale coefficients are not decorrelated. It is shown that the wavelet coefficients are decorrelated
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when the wavelet bases is orthonormal and d0 = 0 but it is not valid in general settings. Many
proposition of estimators of long-memory can be found in Abry and Veitch (1998); Gonzaga and
Hauser (2011); Jensen (1999); Wornell and Oppenheim (1992), among others. These works assume
that the wavelet coefficients are decorrelated. We follow Bardet et al (2000) or Moulines et al (2008)
in taking into account the within and between scales behaviour.

Let j > 0 and j′ = j− u 6 j be two given scales. Following Moulines et al (2007), the between-scale
process is defined as the sequence {Wj,k, Wj−u,2uk+τ, τ = 0, . . . 2u− 1}k∈Z. Let Dj,u(·; d0) be the cross-
spectral density between {Wj,k}k∈Z and {Wj−u,2uk+τ, τ = 0, . . . 2u − 1}k∈Z. For any λ ∈ (−π, π),
Dj,u(λ; d0) is a 2u-dimensional vector. Theorem 1 in Moulines et al (2007) establishes that under
assumptions (W1)-(W5) there exists a positive constant C such that for all λ ∈ (−π, π),∣∣∣Dj,u(λ; d0)− 22jd0 D∞,u(λ; d0)

∣∣∣ 6 C2j(2d0−β),

where

D∞,u(λ; d0) := ∑
t∈Z
|λ + 2tπ|−2d0 ψ̂∗(λ + 2tπ)2−u/2ψ̂(2−u(λ + 2tπ))eu(λ + 2tπ)

with eu(ξ) =
(

1 e−i2−uξ . . . e−i2−u(2u−1)ξ
)T

.

The key point of our estimation is the extension of results obtained by Moulines et al (2007) to
the multivariate framework. Due to the complexity of the multivariate setting, we choose not to
characterize the behaviour of the wavelet coefficients in terms of cross-spectral densities.

First, in order to extend the results of Moulines et al (2007) to a multivariate framework, the
covariance behaviour of Wj,k for given (j, k) is derived. Let θ`,m(j) denote the wavelet covariance at
scale j between processes X` and Xm, θ`,m(j) = Cov(Wj,k(`), Wj,k(m)) for any position k. Using the
spectral density representation, θ`,m(j) satisfies

θ`,m(j) =
∫ π

−π
(1− e−iλ)−d`(1− eiλ)−dm Ω`,m f S

`,m(λ)|Hj(λ)|2 dλ,

where Hj is the gain function of the wavelet filter.

The following proposition establishes a second order approximation of the spectral density in a
neighbourhood of zero, such as the one derived in Shimotsu (2007).

Proposition 1. Let assumptions (W1)-(W5) hold. Let j > 0, `, m = 1, . . . , p. Let Kj be defined by

Kj(d`, dm) =
∫ ∞

−∞
|λ|−(d`+dm) cos(2−jλ(d` − dm)/2)|ψ̂(λ)|2 dλ.

Then there exists a constant C0 depending on β, mini di, maxi di, Ω, φ(·) and ψ(·) such that

|θ`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)Kj(d` + dm)| 6 C0L2(d`+dm−β)j. (4)

Note that the second order approximation of the spectral density depends on j also through the
function Kj. The following proposition is deriving a first order approximation so that its logarithm
is linear in j.
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Proposition 2. Let K(·) be defined by

K(δ) =
∫ ∞

−∞
|λ|−δ|ψ̂(λ)|2 dλ, δ ∈ (−α, M).

Under assumptions (W1)-(W5), there exists a constant C depending on β, mini di, maxi di, Ω, φ(·) and ψ(·)
such that, for all j > 0, for all `, m = 1, . . . , p,

|θ`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)K(d` + dm)| 6 CL2(d`+dm−β)j. (5)

Observe that the approximation (5) shows that the difficulty with the case of multivariate long-
memory processes is the appearance of a phase-shift that has to be taken into account for the
estimation of the covariance Ω. Indeed, θ`,m(j) is proved to be close to a term proportional to
cos(π(d` − dm)/2). Then, if d` ∈ [−1/2, 1/2] and dm = 2k + 1 + dS

` with k ∈ N, Proposition 2
implies that for all j, θ`,m(j) is negligible, meaning that the covariance of the wavelet coefficients
is close to zero. Consequently, using the covariance of the wavelet coefficients does not allow to
estimate the matrix Ω accurately. This example corresponds to a covariance-stationary process
X` and a process Xm such that ∆Xm is covariance stationary, both with the same long-memory
parameter d`. We show in what follows that the consistency of the long memory parameters is not
affected by bias in the estimation of Ω.

The covariance behaviour for the between scale process is derived in the following proposition.

Proposition 3. For all j > 0, u > 0 and λ ∈ (−π, π), we define

D(j)
u;τ(λ; f`,m(·)) = ∑

t∈Z
f`,m(2−j(λ + 2tπ))2−jHj(2−j(λ + 2tπ))H∗j−u(2

−j(λ + 2tπ))e−i2−uτ(λ+2tπ)

D̃u,τ(λ; δ) = ∑
t∈Z
|λ + 2tπ|−δψ̂∗(λ + 2tπ)2−u/2ψ̂(2−u(λ + 2tπ))e−i2−uτ(λ+2tπ)

and Ku,τ(v; δ) =
∫ π
−π D̃u,τ(λ; δ)eiλv dλ.

Then for all j > 0, for all u, v > 0, τ = 0, . . . , 2u − 1,

Cov(Wj,k(`), Wj−u,2−uk′+τ(m)) =
∫ π

−π
D(j)

u;τ(λ; (`, m))eiλ(k−k′)dλ.

Under assumptions (W1)-(W5), there exists a constant C depending on β, mini di, maxi di, Ω, φ(·) and ψ(·)
such that, for all j > 0, for all u, v > 0, τ = 0, . . . , 2u − 1, for all λ ∈ (−π, π),∣∣∣D(j)

u;τ(λ; f`,m(·))−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)D̃u,τ(λ; d` + dm)
∣∣∣ 6 CL2(d`+dm−β)j.

and∣∣∣Cov[Wj,k(`)Wj−u,2−uk′+τ(m)]−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)Ku,τ(k− k′; d` + dm)
∣∣∣

6 CL2(d`+dm−β)j.

When u = 0 and 2uk′ + τ = k, the quantity K0,0(0; d` + dm) is equal to
∫ ∞
−∞ |λ|

−(d`+dm)|ψ̂(λ)|2dλ.
Let us remark that K0,0(0; ·) is equal to the function K(·) defined in Proposition 2.
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3.3 Wavelet Whittle estimation

Let j1 > j0 > 1 be respectively the maximal and the minimal resolution levels that are used
in the estimation procedure. The estimation is based on the vectors of wavelets coefficients{

Wj,k, j0 6 j 6 j1, k ∈ Z
}

.

The wavelet Whittle approximation of the negative log-likelihood is denoted by L(·). The criterion
corresponds to the negative log-likelihood of Gaussian vectors (Wj,k(`))j,k,`. Fox and Taqqu (1986);
Hannan (1973) prove that the Whittle approximation is giving satisfactory results for nongaussian
processes. In our framework, the wavelet Whittle criterion is defined as,

L(G(d), d) =
1
n

j1

∑
j=j0

[
nj log det

(
Λj(d)G(d)Λj(d)

)
+

nj

∑
k=0

WT
j,k
(
Λj(d)G(d)Λj(d)

)−1 Wj,k

]
, (6)

where Λj(d) and the matrix G(d) are obtained with Proposition 2,

Λj(d) = diag
(

2jd
)

and the (`, m)-th element of the matrix G(d) is G`,m(d) = Ω`,mK(d` + dm)cos(π(d` − dm)/2).

For each j > 0, the quantity ∑k WT
j,k
(
Λj(d)G(d)Λj(d)

)−1 Wj,k has a dimension equal to 1 and is
equal to its trace. Thus,

L(G(d), d) =
1
n

j1

∑
j=j0

[
nj log det

(
Λj(d)G(d)Λj(d)

)
+ trace

((
Λj(d)G(d)Λj(d)

)−1 I(j)
)]

, (7)

where I(j) = ∑
nj
k=0 Wj,kWT

j,k. Note that this expression is very similar to the multivariate Fourier
Whittle estimator of Shimotsu (2007). Here we replace the periodogram by the wavelet scalogram
I(j).

Remark. In Fourier analysis, e.g. Shimotsu (2007), the periodogram is normalized. In wavelet
analysis, the normalization factor may depend on the resolution j, and the scalogram is not
normalized. For every j the scalogram I(j) should be normalized by nj. In the remainder of the
paper, we will keep the initial I(j) for convenience.

Deriving expression (7) with respect to the matrix G yields

∂L
∂G

(G, d) =
1
n

j1

∑
j=j0

[
njG−1 −G−1Λj(d)−1I(j)Λj(d)−1G−1

]
.

Hence, the minimum for fixed d is attained at

Ĝ(d) =
1
n

j1

∑
j=j0

Λj(d)−1I(j)Λj(d)−1. (8)
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Replacing G(d) by Ĝ(d), the objective criterion is defined as

R(d) := L(Ĝ(d), d)− 1

= log det(Ĝ(d)) +
1
n

j1

∑
j=j0

nj log(det
(
Λj(d)Λj(d)

)
,

= log det(Ĝ(d)) + 2 log(2)

(
1
n

j1

∑
j=j0

jnj

)(
p

∑
`=1

d`

)
. (9)

The vector of the long-memory parameters d is estimated by d̂ = argmin
d

R(d). The estimator

d̂ is exactly equal to the one introduced in Moulines et al (2008) when the matrix Ω is diagonal
corresponding to univariate setting.

In a second step of estimation we define Ĝ(d̂), estimator of G(d). Finally applying the correction
of phase-shift yields the estimation of the covariance matrix Ω

Ω̂`,m = Ĝ`,m(d̂)/(cos(π(d̂` − d̂m)/2)K(d̂` + d̂m)). (10)

Equation (10) is correctly defined as the probability that d̂` − d̂m is exactly congruent to 1 modulo 2
is null. Consequently estimator Ω̂ is defined almost surely. Yet, empirically when d` − dm is close
to 1 modulo 2, the estimation of Ω may be strongly biased.

4 Main results

In the above, we have defined the MWW estimator, the following section deals with the asymptotic
behaviour of the estimators. The consistency of the estimators is established, under a condition
which controls the variance of the empirical wavelet cross-covariances. The first part of this section
introduces this condition and characterizes a class of processes for which it is satisfied. The second
part details the asymptotic results of convergence.

4.1 Additional condition

The following condition is an additional assumption, which gives an asymptotic control of the
wavelet scalogram.

Condition (C)

For all `, m = 1, . . . , p, sup
n

sup
j>0

1
nj22j(d`+dm)

Var (I`,m(j)) < ∞

This condition is slightly more restrictive than condition (9) of Moulines et al (2008) in a univariate
framework, where their spectral density of the process is only defined on a neighbourhood of zero.
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The following proposition gives a class of multivariate processes such that Condition (C) holds.

Proposition 4. Suppose that there exists a sequence {A(u)}u∈Z in Rp×p such that ∑u ‖A(u)‖2
∞ < ∞ and

∀t, ∆DX(t) = µ + ∑
u∈Z

A(t + u)ε(t)

with ε(t) weak white noise process, in Rp. Let Ft−1 denote the σ-field of events generated by
{ε(s), s 6 t − 1}. Assume that ε satisfies E[ε(t)|Ft−1] = 0, E[εa(t)εb(t)|Ft−1] = 11a=b and
E[εa(t)εb(t)εc(t)εd(t)|Ft−1] = µa,b,c,d with |µa,b,c,d| 6 µ∞ < ∞, for all a, b, c, d = 1, . . . , p.
Then, under assumptions (W1)-(W5), Condition (C) holds.

The proof is given in appendix B.

This assumption of a Cramer-Wold type decomposition of the process X with a linear fourth-order
stationary process was made among others by Lobato (1999), Shimotsu (2007), Giraitis et al (1997),
or Theorem 1 of Moulines et al (2008). As discussed in Lobato (1999), there exist models with
density (1), where the condition (C) is not satisfied, however, it is not particularly restrictive.

4.2 Convergence

We suppose that we have N observations of a multivariate p-vector process X, namely
X(1), . . . X(N) with a spectral density satisfying approximation (2) around the zero frequency. For
given functions (φ(·), ψ(·)), and for given levels 0 6 j0 6 j1, the estimator of d is the argument
minimizing R, defined by (9), and the matrix G is estimated by Ĝ(d̂) defined by (8). From now on,
we will add the superscript 0 to denote the true parameter values, d0 and G0.

The following assumptions on the resolution levels j0 and j1 will be needed throughout the paper.
We assume that either the difference j1 − j0 is constant or it tends to infinity as N tends to infinity.

The following result shows the consistency of the estimators and the rate of convergence. The
proofs are given in Appendix.

Theorem 5. Assume that (W1)-(W5) and Condition (C) hold. If j0 and j1 are chosen such that 2−j0β +
N−1/22j0/2 → 0 and j0 < j1 6 jN with jN = max{j, nj > 1}, then

d̂− d0 = oP(1).

This result generalises that of Moulines et al (2008). It deals with multivariate settings, with the
same assumption on the wavelet filter and on the choice of the scale j0. The condition in Theorem 5
is equal to the one obtained in Proposition 9 of Moulines et al (2008), in the univariate case, that
is 1/j0 + N−1/22j0/2 → 0. We choose here to express the condition with the parameter β since the
optimal choice of j0 depends on β as it is shown in Corollary 7 below.

The convergence of Ĝ(d̂) to G0 is not established under assumptions of Theorem 5. However, we
prove it in the following theorem, under more restrictive conditions.
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Theorem 6. Assume that (W1)-(W5) and Condition (C) hold. If j0 and j1 are chosen such that
log(N)2(2−j0β + N−1/22j0/2)→ 0 and j0 < j1 6 jN then

d̂− d0 = OP(2−j0β + N−1/22j0/2),

∀(`, m) ∈ {1, . . . , p}2, Ĝ`,m(d̂)− G`,m(d
0) = OP(log(N)(2−j0β + N−1/22j0/2)),

Ω̂`,m −Ω`,m = OP(log(N)(2−j0β + N−1/22j0/2)).

The condition in Theorem 6 is slightly different from Theorem 3 of Moulines et al (2008). Our
result presents an additional log(N) term due to technical simplifications in the proof. However,
it may be suppressed by adding technical details. The same arguments apply for the log(N) term
appearing in the rate of the convergence of the matrix.

The optimal rate is then expressed by balancing the two terms appearing in the bound above.

Corollary 7. Assume that (W1)-(W5) and Condition (C) hold. Taking 2j0 = N1/(1+2β),

d̂− d0 = OP(N−β/(1+2β)).

This corresponds to the optimal rate (Giraitis et al, 1997). Fourier Whittle estimators in Lobato
(1999) and Shimotsu (2007) obtained the rate m1/2 where m is the number of discrete frequencies
used in the Fourier transform. When m ∼ cNζ with a positive constant c, the convergence
is obtained for 0 < ζ < 2β/(1 + 2β). Wavelet estimators thus give a slightly better rate of
convergence.

Result of Corollary 7 stresses that it is necessary to fix the finest frequency j0 in the wavelet
procedure at a given scale depending on the regularity β of the density f S(·). A possible extension
is to develop an estimation which is adaptive relatively to the parameter β. This is done e.g. in
univariate Fourier analysis by Iouditsky et al (2001). However, this topic exceeds the scope of this
paper.

Further results on asymptotic normality, and in particular the asymptotic variance of the estimators,
would give important information to quantify the quality of the estimators. In particular it
would give a theoretical mean of comparison between the Fourier-based and the wavelet-based
approaches or between the univariate and the multivariate estimations of d. This work is in
progress and will be established in a future paper. Here, the comparison is done with a simulation
study.

5 Simulations

In this section, simulated data are used to study the behaviour of the proposed procedure using one
illustrative example. An extensive simulation study would exceed the scope of this paper, and will
be provided in a future paper. Here, we consider an ARFIMA(0, d, 0) with a long-run correlation
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matrix Ω =

(
1 ρ
ρ 1

)
and ρ = 0.4. The proposed multivariate wavelet Whittle (MWW) estimators

are computed for N = 512 observations and 1000 Monte-Carlo replications. A R package named
multiwave is available and Matlab codes are available on request.

A set of different values of d is considered. The choices are restricted to settings where the two
components of the processes share the same order of stationarity. Indeed, it seems natural that
time series measuring similar phenomena have similar stationary properties. We simulated both
stationary and nonstationary ARFIMA processes, d1 = 0.2 and d1 = 1.2. Our MWW estimator
is shown to be consistent and the quality increases when |ρ| increases. We also conducted a
comparison between our estimators and multivariate Fourier Whittle (MFW) estimators developed
by Shimotsu (2007) for stationary processes only. In nonstationary cases, Nielsen (2011) proposed a
similar approach based on the extended Fourier transform of Abadir et al (2007). However in our
simulations, this approach gives satisfactory results only for d < 1.5.

A wavelet-based procedure with M vanishing moments should be compared with an estimation
based on tapered Fourier of order M. Such a comparison has been driven in Faÿ et al (2009)
in one-dimensional settings. The authors established that wavelet-based estimation outperforms
tapered Fourier estimation. Similar observations are expected in multivariate framework. Yet
as multivariate Whittle estimation based on tapered Fourier transform has not been studied in
literature, we choose not to display such a comparison.

It is worth pointing out that the main advantage of wavelets is their flexibility. Wavelet-based
estimators can be applied for a large set of data, whatever the degree of stationarity is (if still smaller
than the number of vanishing moments) and even if the processes contain polynomial trends which
is very attractive for real data applications.

Parameters used for estimation.

The quality of estimation by wavelets relies on the choice of the wavelet bases. A trade-off is
necessary between the number of vanishing moments and the support size of the wavelets. In
time series analysis, the number of vanishing moments enables to consider polynomial trends or
nonstationary time series, due to the constraint sup` d` 6 M. Yet, the support size of the wavelet is
proportional to the number of vanishing moments and increases the variance of estimation.

The wavelet basis used in this section is the Daubechies wavelet with M = 4 vanishing moments.
Its regularization parameter is α = 1.91. In our framework, when considering stationary time
series, we could also apply our procedure using Haar bases. Estimation based on Haar wavelet
indeed gives better results, possibly better than Fourier (see e.g. Gencay and Signori (2015) in
the case of tests of serial correlation). As explained above a lower number of vanishing moments
improves the quality of the wavelet-based estimators, see Faÿ et al (2009) in the univariate case.
Similar results are observed in multivariate estimations. They are not presented here for the sake
of concision. As our goal is to propose a flexible method for real data application, we prefer to
consider a higher vanishing moments bases to stress its flexibility.

The method is controlled by the scales j0 and j1. The scale j1 is fixed equal to log2(N) while j0 is
chosen so that the optimal mean square error is minimal. Increasing j0 leads to a smaller bias but a
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higher variance since less coefficients are used in the estimation process, which may be controlled
by an adaptive procedure. As stated by Theorem 5, the finest scales have to be removed from
estimation to get rid of the presence of the short-range dependence f S(·). Similar considerations
can be found in Achard et al (2008) and Faÿ et al (2009).

Concerning MFW estimation, the main parameter is the number m of frequencies used in the
procedure. An usual choice in literature is m = N0.65 (see e.g. Shimotsu (2007) or Nielsen and
Frederiksen (2005)). Additionally MFW estimators are evaluated using values of m giving the same
number of Fourier coefficients than of wavelet coefficients. The final m kept is the one giving the
optimal mean square error. The parallel between the number of wavelet scales and the number of
Fourier frequencies has been discussed in Faÿ et al (2009).

Measures of quality.

The quality of the estimators is measured by the bias, the standard deviation (std) and the RMSE
which is equal to the square root of (bias2 + std2). In order to display an easy comparison between
the univariate and the multivariate approaches, we compute the ratio between the RMSE obtained
with the multivariate wavelet Whittle estimation and the RMSE obtained with univariate wavelet
Whittle estimations. It is denoted by ratio M/U. A similar quantity is defined for the comparison
with MFW estimation. We define ratio W/S to be the ratio between the RMSE respectively using
wavelet-based estimators and Fourier-based estimators.

5.1 Estimation of the long-memory parameters d

Results for the estimation of d are presented in Table 1. The ratio M/U points out that the quality
of estimation is increased with the multivariate approach with respect to the univariate procedure.
When the series are correlated, it is better to use MWW estimators to infer the long-memory
parameters. The estimation is still satisfactory in nonstationary settings.

Table 2 displays the results of the MFW estimators described in Shimotsu (2007). With the usual
number of frequencies m = N0.65 in Fourier-based estimation, our wavelet-based procedure leads
to lower RMSEs, as quantified by the ratio W/F. More precisely the good performance of our
scheme of estimation is due to a lower variance, even if the bias is higher. With a higher number
of frequencies in Fourier-based estimation, taking a value that minimizes the RMSE, the MWW
estimators are no more preferable to MFW. Yet, the ratio W/F stays close to 1 and the analysis of
the bias and variances reveals similar orders of magnitude.

5.2 Estimation of the long-run covariance Ω

This section deals with the estimation of the long-run covariance matrix Ω and the estimation
of the correlation Ω12/

√
Ω11Ω22. This latter quantity corresponds in literature to the power-law

coherency between the two time series (Sela and Hurvich, 2012) or to the fractal connectivity
(Achard et al, 2008).
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Table 1: Multivariate Whittle wavelet estimation of d for a bivariate ARFIMA(0, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions.

j0 = 1.

d1 d bias std RMSE ratio M/U

0.2 0.2 -0.0267 0.0413 0.0492 0.9080
-0.2 0.0379 0.0430 0.0574 1.0595
0.2 -0.0298 0.0428 0.0522 0.9631
0.0 -0.0002 0.0438 0.0438 0.9504
0.2 -0.0330 0.0456 0.0563 0.9713
0.2 -0.0333 0.0443 0.0554 0.9831
0.2 -0.0304 0.0429 0.0526 0.9583
0.4 -0.0571 0.0461 0.0734 0.9701

j0 = 2.

d1 d bias std RMSE ratio M/U

1.2 1.2 -0.0380 0.0830 0.0913 0.9728
0.8 -0.0298 0.0775 0.0831 0.9643
1.2 -0.0360 0.0818 0.0894 0.9702
1.0 -0.0346 0.0808 0.0879 0.9626
1.2 -0.0463 0.0853 0.0970 0.9677
1.2 -0.0393 0.0850 0.0936 0.9688
1.2 -0.0369 0.0799 0.0880 0.9589
1.4 -0.0482 0.0863 0.0989 0.9648

Table 2: Multivariate Whittle Fourier estimation of d for a bivariate ARFIMA(0, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions. Two number of frequencies m are presented: the usual choice
m = bN0.65c and the value giving the lower RMSE. bxc denotes the closest integer smaller than x.

m = bN0.65c = 57.

d bias std RMSE ratio W/F

0.2 -0.0087 0.0707 0.0712 0.6908
-0.2 -0.0001 0.0824 0.0824 0.6958
0.2 -0.0037 0.0679 0.0680 0.7674
0.0 -0.0010 0.0778 0.0778 0.5630
0.2 -0.0078 0.0691 0.0695 0.8101
0.2 -0.0043 0.0733 0.0735 0.7546
0.2 -0.0038 0.0705 0.0706 0.7445
0.4 0.0012 0.0788 0.0788 0.9320

m = bN0.876c = 236.

d bias std RMSE ratio W/F

0.2 -0.0174 0.0318 0.0362 1.3581
-0.2 0.0158 0.0323 0.0359 1.5964
0.2 -0.0170 0.0315 0.0358 1.4558
0.0 -0.0025 0.0318 0.0319 1.3728
0.2 -0.0200 0.0321 0.0378 1.4875
0.2 -0.0189 0.0320 0.0372 1.4905
0.2 -0.0201 0.0325 0.0382 1.3759
0.4 -0.0317 0.0366 0.0484 1.5169
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Table 3: Wavelet Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions.

j0 = 1.

d bias std RMSE

(0.2,-0.2) Ω1,1 0.0342 0.0710 0.0788
Ω1,2 0.0387 0.0605 0.0718
Ω2,2 -0.0402 0.0709 0.0815

correlation 0.0400 0.0496 0.0637
(0.2,0.0) Ω1,1 0.0309 0.0697 0.0762

Ω1,2 0.0176 0.0540 0.0568
Ω2,2 -0.0012 0.0732 0.0733

correlation 0.0113 0.0417 0.0432
(0.2,0.2) Ω1,1 0.0297 0.0733 0.0790

Ω1,2 0.0116 0.0518 0.0530
Ω2,2 0.0282 0.0725 0.0778

correlation -0.0003 0.0386 0.0386
(0.2,0.4) Ω1,1 0.0356 0.0703 0.0788

Ω1,2 0.0328 0.0568 0.0655
Ω2,2 0.0707 0.0728 0.1015

correlation 0.0106 0.0422 0.0435

j0 = 2.

d bias std RMSE

(1.2,0.8) Ω1,1 0.0037 0.1473 0.1474
Ω1,2 0.0478 0.1199 0.1290
Ω2,2 0.0052 0.1303 0.1304

correlation 0.0462 0.1041 0.1139
(1.2,1.0) Ω1,1 -0.0031 0.1411 0.1411

Ω1,2 0.0182 0.1003 0.1019
Ω2,2 0.0027 0.1357 0.1357

correlation 0.0176 0.0781 0.0800
(1.2,1.2) Ω1,1 0.0055 0.1442 0.1443

Ω1,2 0.0060 0.0921 0.0923
Ω2,2 -0.0033 0.1456 0.1456

correlation 0.0052 0.0685 0.0687
(1.2,1.4) Ω1,1 0.0001 0.1496 0.1496

Ω1,2 0.0155 0.1039 0.1051
Ω2,2 0.0135 0.1610 0.1615

correlation 0.0125 0.0802 0.0812

The results obtained in simulations for MWW estimation of the covariance and correlation are given
in Table 3. The quality is satisfactory in all settings, especially in the stationary ones.

The results for MFW estimation are displayed in Table 4. When MFW is applied with m = N0.65

frequencies, the ratio W/F is less than 1. Like for the estimation of d the good performance of
MWW estimators is principally due to a smaller variance. When MFW estimators are implemented
with a higher number of frequencies, giving optimal results for the estimation of d, the difference
between MWW and MFW procedures decreases. The quality of the two estimation schemes are
similar, with comparable values for bias and variances.

To conclude, the multivariate approach increases the quality of estimation of the long-memory
parameters d in comparison with a univariate estimation. In stationary frameworks, the
performance is very similar to multivariate Fourier Whittle estimation, when estimating the vector
d or the long-run covariance matrix. The main advantage of our wavelet-based procedure is then
its flexibility. By contrast with Fourier-based estimation, our estimators can be applied in a larger
scope of situations, with nonstationary processes or in the presence of polynomial trends in the
time series.
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Table 4: Fourier Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions. Two number of frequencies m are presented: the usual choice m = bN0.65c
and the value giving the lower RMSE.

m = bN0.65c = 57.

d bias std RMSE ratio W/F

(0.2,-0.2) Ω1,1 0.0394 0.2253 0.2287 0.3444
Ω1,2 0.0091 0.1156 0.1160 0.6189
Ω2,2 0.0145 0.2308 0.2313 0.3525

correlation -0.0002 0.0774 0.0774 0.8229
(0.2,0.0) Ω1,1 0.0245 0.2245 0.2259 0.3373

Ω1,2 0.0124 0.1154 0.1161 0.4892
Ω2,2 0.0163 0.2341 0.2347 0.3121

correlation 0.0061 0.0793 0.0795 0.5428
(0.2,0.2) Ω1,1 0.0319 0.2319 0.2341 0.3376

Ω1,2 0.0141 0.1191 0.1199 0.4423
Ω2,2 0.0236 0.2331 0.2343 0.3321

correlation 0.0041 0.0781 0.0782 0.4935
(0.2,0.4) Ω1,1 0.0264 0.2255 0.2271 0.3470

Ω1,2 0.0107 0.1232 0.1237 0.5298
Ω2,2 0.0276 0.2462 0.2478 0.4096

correlation 0.0001 0.0783 0.0783 0.5548

m = bN0.876c = 236.

bias std RMSE ratio W/F

0.0492 0.0679 0.0839 0.9395
0.0009 0.0498 0.0498 1.4414
-0.0470 0.0640 0.0794 1.0273
0.0006 0.0387 0.0387 1.6464
0.0449 0.0666 0.0803 0.9486
0.0105 0.0506 0.0517 1.0985
-0.0008 0.0677 0.0677 1.0819
0.0014 0.0383 0.0383 1.1259
0.0450 0.0708 0.0839 0.9417
0.0176 0.0520 0.0549 0.9666
0.0438 0.0690 0.0818 0.9517
-0.0006 0.0382 0.0382 1.0099
0.0489 0.0682 0.0839 0.9392
0.0313 0.0531 0.0616 1.0632
0.1052 0.0705 0.1267 0.8012
0.0002 0.0384 0.0384 1.1307
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6 Application on neuroscience data

We apply our approach to neuroscience data where the recorded data are typical example of
multivariate long-range dependent time series. Researchers are interested in characterising the
brain connectivity. Usually, the connectivity is evaluated using correlations at different frequencies
between time series measuring the brain activity. We will show in this section that our method is
perfectly adequate to deal with these real data.

The study concerns MEG data acquired from a healthy 43 year old woman studied during rest with
eyes open at the National Institute of Mental Health Bethesda, MD using a 274-channel CTF MEG
system VSM MedTech, Coquitlam, BC, Canada operating at 600 Hz. The data were previously used
in Achard et al (2008). We consider N = 215 time points for each of the 274 time series.

Figure 1 displays the time series for arbitrary four channels. It is clear that they present nonlinear
trends. Consequently, Fourier methods are not adequate to analyse such data, and methods based
on wavelets are better to use.

Figure 1: MEG recordings for 4 arbitrary channels.
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Our procedure was applied using scales 4 to 8. It corresponds to frequencies between 1 to 20 Hz.
This choice was motivated by discussions with neuroscientists. It takes into account the presence
of high-frequency noise which is modelled by f S(·). The data were preprocessed, and the low-
frequencies were removed. Figure 2 presents the results of the estimation of the long-memory
parameters d and of the long-run covariance matrix Ω.

First, the histogram of the estimate d̂ shows that the maximal difference between the values of
the long-memory parameters is less than 0.5, and the problem of identifiability of Ω does not
occur with these data. This allows us to give an estimate of the fractal connectivity. It is worth
noticing that clusters appear in the correlation matrix. Most of them are situated along the diagonal,
corresponding to spatially closed channels. Some channels are still correlated, even far from each
others. It would be interesting to relate this result to a neuroscience interpretation. This will be
investigated in future work.
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Figure 2: Results obtained by MWW estimators on the MEG dataset: histogram of the estimated
long-memory parameters d (a) and estimated fractal connectivity matrix (b).
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Conclusion

Many application fields are concerned with high-dimensional time series. A challenge is to
characterize their long-memory properties and their correlation structure. The present work
consider a semiparametric multivariate model, including a large class of multivariate processes
such as some fractionally integrated processes. We propose an estimation of the long-dependence
parameters and of the fractal connectivity, based on the Whittle approximation and on a wavelet
representation of the time series. The theoretical properties of the estimation show the asymptotic
optimality. A simulation study confirms that the estimation is well-behaved on finite samples.
Finally we propose an application to the estimation of a human brain functional network based
on MEG data sets. Our study highlights the benefit of the multivariate analysis, namely improved
efficiency of estimation of dependence parameters and estimation of long-term correlations. Future
work may concern the asymptotic normality of the estimators, since the development of tests may
present a significant benefit for real data applications.
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A Proof of Propositions 1, 2 and 3

This section deals with the proof of Propositions 1 and 2. The proof of Proposition 3 is based on
similar arguments and is omitted.

The covariance between Wj,k(`) and Wj,k(m) can be written with the cospectrum, θ`,m(j) =∫
R Re( f`,m(λ))|Hj(λ)|2 dλ. Indeed as the cross-spectral density is Hermitian, its imaginary part

is an odd function,

θ`,m(j) = Ω`,m

∫
R
|2 sin(λ/2)|−(d`+dm) cos((πsign(λ)− λ)(d` − dm)/2) f S

`,m(λ)|Hj(λ)|2 dλ.

The sinus function being odd,

θ`,m(j) = Ω`,m cos(π(d` − dm)/2)
∫
R
|2 sin(λ/2)|−(d`+dm) cos(λ(d` − dm)/2) f S

`,m(λ)|Hj(λ)|2 dλ.

The proof is very similar to Theorem 1 of Moulines et al (2007). Define the quantities A`,m(j) and
R`,m(j),

A`,m(j) = Ω`,m2j cos(π(d` − dm)/2)
∫ π

−π
|2 sin(λ/2)|−(d`+dm) cos(λ(d` − dm)/2)

f S
`,m(λ)|φ̂(λ)ψ̂(2jλ)|2 dλ

R`,m(j) = θ`,m(j)− A`,m(j)

Following the proof of Moulines et al (2007), we can rewrite A`,m(j),

A`,m(j) = Ω`,m2j cos(π(d` − dm)/2)∫ π

−π
g`,m(λ)|λ|−(d`+dm) cos(λ(d` − dm)/2) f S

`,m(λ)|φ̂(λ)|2|ψ̂(2jλ)|2 dλ

with g`,m(λ) =

∣∣∣∣2 sin(λ/2)
λ

∣∣∣∣−(d`+dm)

for all λ ∈ (−π, π).

• The assumption f S(·) ∈ H(β, L) states that
∣∣∣ f S

`,m(λ)− 1
∣∣∣ 6 L|λ|β for all λ ∈ (−π, π).

• Under assumption (W1) the function |φ̂(·)|2 is infinitely differentiable and bounded on
(−π, π).

• Using a Taylor expansion, the function g(·) belongs to H(2, Lg) with Lg =
sup`,m=1,...,p supλ∈(−π,π) |g`,m”(λ)| where g”(·) denotes the second derivative of g(·).

This implies that there exists a constant Cφ,d depending on φ(·) and d such that∣∣∣∣A`,m(j)−Ω`,m2j cos(π(d` − dm)/2)
∫ π

−π
|λ|−(d`+dm) cos(λ(d` − dm)/2)|ψ̂(2jλ)|2 dλ

∣∣∣∣
6 Cφ,dL2j

∫ π

−π
|λ|(β−d`−dm)|ψ̂(2jλ)|2dλ.
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With a change of variable,∣∣∣∣∣A`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)
∫ 2jπ

−2jπ
|λ|−(d`+dm) cos(2−jλ(d` − dm)/2)|ψ̂(λ)|2 dλ

∣∣∣∣∣
6 Cφ,dL2j(d`+dm−β)

∫ −2jπ

−2jπ
|λ|(β−d`−dm)|ψ̂(λ)|2dλ.

Under assumptions (W2), there exists a positive constant Cψ such that
∫ π
−π |λ|

(β−d`−dm)|ψ̂(λ)|2dλ 6

Cψ

∫ ∞
−∞ |λ|

(β+2α)−d`−dm dλ. (W5) states that (β + 2α) − d` − dm < 1, the right-hand side
of the inequality is bounded by a constant depending on ψ(·), β and mini=1,...,p di. Using

assumptions (W2) and (W5), we also have
∣∣∣∫|λ|>2jπ |λ|

−(d`+dm) cos(2−jλ(d` − dm)/2)|ψ̂(λ)|2 dλ
∣∣∣ 6

Cψ

∫
|λ|>2jπ |λ|

−(1+β) dλ. The right-hand side is bounded by a constant depending on ψ and β. We
obtain that there exists a constant C0 depending on α, β, φ(·), ψ(·), mini=1,...,p di and Ω`,m such that∣∣∣A`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)Kj(d` + dm)

∣∣∣ 6 C0L2j(d`+dm−β),

with Kj(d`, dm) =
∫ ∞
−∞ |λ|

−(d`+dm) cos(2−jλ(d` − dm)/2)|ψ̂(λ)|2 dλ.

On the other hand, we can consider a first order approximation. Let

A`,m(j) = Ω`,m2j cos(π(d` − dm)/2)
∫ π

−π
g`,m(λ)|λ|−(d`+dm) f S

`,m(λ)|φ̂(λ)|2|ψ̂(2jλ)|2 dλ

with now g`,m(λ) =

∣∣∣∣2 sin(λ/2)
λ

∣∣∣∣−(d`+dm)

cos(λ(d` − dm)/2) for all λ ∈ (−π, π).

Then a similar approximation is obtained,∣∣∣∣∣A`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)
∫ 2jπ

−2jπ
|λ|−(d`+dm)|ψ̂(λ)|2 dλ

∣∣∣∣∣
6 Cφ,dL2j(d`+dm−β)

∫ 2jπ

−2jπ
|λ|(β−d`−dm)|ψ̂(λ)|2dλ.

Using assumptions (W2) and (W5),∣∣∣A`,m(j)−Ω`,m2j(d`+dm) cos(π(d` − dm)/2)K(δ)
∣∣∣ 6 CL2j(d`+dm−β),

with K(δ) =
∫ ∞
−∞ |λ|

−(δ)|ψ̂(λ)|2 dλ.

Finally, R`,m(j) is bounded by R`,m(j) 6 CL2(d`+dm−β)j. This inequality follows from the
approximation of the squared gain function of the wavelet filter given in Proposition 3 of Moulines
et al (2007) and from similar arguments to those given for A`,m(j). We do not detail the proof here
for the sake of concision and we refer to the proof of Theorem 1 in Moulines et al (2007).
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B Proof of Proposition 4

Since the wavelet ψ admits M vanishing moments, at each scale j > 0, the associated filter Hj is
factorised as Hj(λ) = (1− eiλ)MH̃j(λ), with H̃j trigonometric polynomial, H̃j(λ) = ∑t∈Z h̃j,teitλ.

Since M > D, the wavelet coefficients may be written as

Wj,k(`) = ∑
t∈Z

h̃j,2jk−t(∆
DX`)(t) = ∑

t∈Z
B`(j, 2jk− t)ε(t),

where B`(j, 2jk− t) = h̃j,2jk−t(∆
M−DA`)(t). For all ` = 1, . . . , p, the sequence {B`(j, u)}u∈Z belongs

to `2(Z).

We first give a preliminary result on the second order moment of Wj,k(`),

E[Wj,k(`)
2] = ∑

t,t′∈Z
∑

a,b=1,...p
B`,a(j, 2jk− t)B`,b(j, 2jk− t′)E[εa(t)εb(t′)].

Using the second-order properties of the process ε, the variance is equal to

E[Wj,k(`)
2] = ∑

t∈Z
∑

a=1,...p
B`,a(j, 2jk− t)2. (11)

Consider now E[I`,m(j)2],

E[I`,m(j)2] = E

(∑
k

Wj,k(`)Wj,k(m)

)2


= ∑
k,k′

∑
t,t′,t”,t”′∈Z

∑
a,b,c,d=1,...p

B`,a(j, 2jk− t)Bm,b(j, 2jk− t′)B`,c(j, 2jk′ − t”)Bm,d(j, 2jk′ − t′′′)

E[εa(t)εb(t′)εc(t”)εd(t′′′)].

The fourth order behaviour of ε implies that

E[I`,m(j)2] =∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

µa,b,c,dB`,a(j, 2jk− t)Bm,b(j, 2jk + t)B`,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)

+ ∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,a(j, 2jk− t)B`,b(j, 2jk′ − t′)Bm,b(j, 2jk′ − t′)

+ ∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,b(j, 2jk− t′)B`,a(j, 2jk′ − t)Bm,b(j, 2jk′ − t′)

+ ∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,b(j, 2jk− t′)B`,b(j, 2jk′ − t′)Bm,a(j, 2jk′ − t).

As E[I`,m(j)]2 = ∑k,k′ ∑t,t′ ∑a,b B`,a(j, 2jk − t)Bm,a(j, 2jk − t)B`,b(j, 2jk′ − t′)Bm,b(j, 2jk′ − t′), the
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variance of the scalogramm satisfies,

Var(I`,m(j))

=∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

µa,b,c,dB`,a(j, 2jk− t)Bm,b(j, 2jk− t)B`,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)

+ ∑
k,k′

E[Wj,k(`)Wj,k′(`)]E[Wj,k(m)Wj,k′(m)] + ∑
k,k′

E[Wj,k(`)Wj,k′(m)]E[Wj,k(m)Wj,k′(`)]

−∑
k,k′

∑
t

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,a(j, 2jk− t)B`,b(j, 2jk′ − t)Bm,b(j, 2jk′ − t)

−∑
k,k′

∑
t

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,b(j, 2jk− t)B`,a(j, 2jk′ − t)Bm,b(j, 2jk′ − t)

−∑
k,k′

∑
t

∑
a,b=1,...p

B`,a(j, 2jk− t)Bm,b(j, 2jk− t)B`,b(j, 2jk′ − t)Bm,a(j, 2jk′ − t).

Finally, Var(I`,m(j)) 6 V1 + V2 + V3 with

V1 = |∑
k,k′

E[Wj,k(`)Wj,k′(`)]E[Wj,k(m)Wj,k′(m)]|,

V2 = |∑
k,k′

E[Wj,k(`)Wj,k′(m)]E[Wj,k(m)Wj,k′(`)]|,

V3 = (1 + µ∞)∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

|B`,a(j, 2jk− t)Bm,b(j, 2jk− t)B`,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)|.

Bounds V1 and V2

Proposition 3 states that Cov(Wj,k(`), Wj,k′(`)) =
∫ π
−π eiλ(k−k′)D(j)

0;0(λ; (`, `))dλ. The quantity∫ π
−π eiλvD(j)

0;0(λ; (`, `))dλ is the v-th Fourier coefficient of the function D(j)
0,0(·; 2d`). Consequently,

Parseval theorem implies that ∑v∈Z E[Wj,k(`)Wj,k+v(`)]E[Wj,k(m)Wj,k+v(m)] converges

to I(j)
0 (2d`, 2dm) =

∫ π
−π D(j)

0,0(λ; (`, `))D(j)
0,0(λ; (m, m))dλ. The approximation given in Proposition 3

yields D(j)
0,0(λ; (`, `)) 6 Ω`,`2j2d` D̃0,0(λ; 2d`) + CLπ2(2d`−β)j. Then, using Minkowski inequality

1
nj22j(d`+dm)

V2 6 2(Ω2
`,` Ĩ0(2d`) + C2L2π22−2βj)1/2(Ω2

m,m Ĩ0(2dm) + C2L2π22−2βj)1/2.

where Ĩ0(δ) =
∫ π
−π D̃0,0(λ; δ)2dλ. It follows that 1

nj22j(d`+dm) V1 is bounded by a constant independent

of j and depending only on d, Ω, β, φ(·) and ψ(·).

Similar arguments apply to V2. Therefore 1
nj22j(d`+dm) V2 is bounded by

∫ π
−π D̃0,0(λ;d`+dm)2dλ

22j(d`+dm) . By

Proposition 3, 1
nj22j(d`+dm) V2 is bounded by a constant depending only on d, Ω, β, φ(·) and ψ(·).
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Bound V3

The quantity V3 is equal to

(1 + µ∞)∑
k

∑
t∈Z

t′∈{t+2j(k−k′),k′∈Z}

∑
a,b,c,d=1,...p

|B`,a(j, 2jk− t)Bm,b(j, 2jk− t)B`,c(j, 2jk− t′)Bm,d(j, 2jk− t′)|.

Applying Minkowski inequality on V3,

V3 6(1 + µ∞)∑
k

∑
t∈Z

∑
a,b=1,...p

|B`,a(j, 2jk− t)Bm,b(j, 2jk− t)|

 ∑
t′∈{t+2jk′,k′∈Z}

∑
c,d=1,...p

B`,c(j, 2jk− t′)2

1/2 ∑
t′∈{t−2jk′,k′∈Z}

∑
c,d=1,...p

Bm,d(j, 2jk− t′)2

1/2

.

Hence,

V3 6(1 + µ∞)∑
k

(
∑
t∈Z

∑
a,b=1,...p

B`,a(j, 2jk− t)2

)1/2(
∑
t∈Z

∑
a,b=1,...p

Bm,b(j, 2jk− t)2

)1/2

(
∑

t′∈Z
∑

c,d=1,...p
B`,c(j, 2jk− t′)2

)1/2(
∑

t′∈Z
∑

c,d=1,...p
Bm,d(j, 2jk− t′)2

)1/2

.

Together with (11) the following inequality is obtained, V3 6 (1 + µ∞)nj p2θ`,`(j)θm,m(j). To
conclude

1
nj22j(d`+dm)

V1 6 (1 + µ∞)p2 θ`,`(j)θm,m(j)
22j(d`+dm)

.

Condition (C) is proved since θ`,`(j)θm,m(j)
22j(d`+dm) tends to a constant independent of j thanks to

Proposition 2.

C Preliminary results

Let us take ` and m in 1, . . . , p, and define, for any sequence µ = {µj, j > 0},

S`,m(µ) = ∑
j,k

µj

(
Wj,k(`)Wj,k(m)

2j(d0
`+d0

m)
− G0

`,m

)
=

j1

∑
j=j0

µj

(
I`,m(j)

2j(d0
`+d0

m)
− njG0

`,m

)
. (12)

Proposition 8. Assume that the sequences µ belong to the set {{µj}j>0, |µj| 6 1
nj
}. Under condition (C),

sup{µ,|µj|6 1
nj
} S`,m(µ) is uniformly bounded by 2−j0β + N−1/22j1/2 up to a multiplicative constant, that is,

sup
µ∈{(µj)j>0, |µj|6 1

nj
}
{S`,m(µ)} = OP(2−j0β + N−1/22j1/2).
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Proof. S`,m(µ) is decomposed in two terms S(0)
`,m(µ) and S(1)

`,m(µ),

S(0)
`,m(µ) =

j1

∑
j=j0

µj
1

2j(d0
`+d0

m)
∑

k

(
Wj,k(`)Wj,k(m)− θ`,m(j)

)
,

S(1)
`,m(µ) =

j1

∑
j=j0

njµj

[
θ`,m(j)

2j(d0
`+d0

m)
− G0

`,m

]
.

From Proposition 2,

|S(0)
`,m(µ)| 6

j1

∑
j=j0

|µj|
∣∣∣∣∣∑k

Wj,k(`)Wj,k(m)− njθ`,m(j)

∣∣∣∣∣ , (13)

|S(1)
`,m(µ)| 6 C

j1

∑
j=j0

2−βjnj|µj|. (14)

Under the assumption |µj| 6 1
nj

, we have the inequality |S(1)
`,m(µ)| 6 C ∑

j1
j=j0

2−βj. The right-hand

bound is equivalent to 2−j0β up to a constant. Condition (C) gives

E

 sup
{µ,|µj|6 1

nj
}

∣∣∣S(0)
`,m(µ)

∣∣∣
 6 C′

j1

∑
j=j0

n−1/2
j ,

with a positive constant C′. As nj = N2−j(1 + o(1)) the right-hand side of the inequality is
equivalent to C′N−1/22j1/2.

Proposition 9. Let 0 < j0 6 j1 6 jN . Assume that the sequences µ belong to the set

S(q, γ, c) = {{µj}j>0, |µj| 6
c
n
|j− j0 + 1|q2(j−j0)γ∀j = j0, . . . j1}

with 0 6 γ < 1. Under condition (C), supµ∈S(q,γ,c) S`,m(µ) is uniformly bounded by 2−j0β +

H(N−1/22j0/2) up to a constant,

sup
µ∈S(q,γ,c)

{S`,m(µ)} = OP(2−j0β + Hγ(N−1/22j0/2))

with Hγ(u) =


u if 0 6 γ < 1/2,
log(1 + u−2)q+1 u if γ = 1/2,
log(1 + u−2)q u2(1−γ) if 1/2 < γ < 1.

In particular, for any 0 6 γ < 1, under the assumption 2−j0β + N−1/22j0/2 → 0, we have
supµ∈S(q,γ,c){S`,m(µ)} = oP(1)

Proof. Under the assumptions of the proposition, one deduce from inequality (14) that,

sup
µ∈S(q,γ,c)

|S(1)
`,m(µ)| 6 cC

1
n

j1

∑
j=j0

nj2(−βj+γ(j−j0))(j− j0 + 1)q 6 cC2−βj0
j1−j0

∑
i=0

2−(1+β−γ)i(i + 1)q.
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The sum on the right-hand side of the inequality tends to 0 because 1 + β− γ > 0.

Similarly, under the additional Condition (C), inequality (13) is rewritten as,

E
[

sup
µ∈S(q,γ,c)

∣∣∣S(0)
`,m(µ))

∣∣∣] 6 cC′
1
n

j1

∑
j=j0

n1/2
j 2γ(j−j0)(j− j0 + 1)q

6 cC′N−1/22j0/2
j1−j0

∑
i=0

2−(1/2−γ)i(i + 1)q.

We distinguish three cases depending on the values of γ.

• The result is straightforward when 0 6 γ < 1/2.

• If γ = 1/2, the right-hand side is bounded by cC′N−1/22j0/2(j1 − j0 + 1)q+1. The parameter j1
satisfies 2j1 6 N. Consequently j1 − j0 6 log2(N) + log2(2−j0) = log2(N2−j0) and the result is
proved.

• When 1/2 < γ < 1, the right-hand side admits the upper bound cC′′N−1/22j0/2(j1 − j0 +
1)q2(γ−1/2)(j1−j0) with C′′ a positive constant. Since 2j1 6 N, it is inferior to cC′′(j1 − j0 +
1)q(N−12j0)(1−γ) which concludes the proof.

D Weak consistency

We first establish the convergence under the condition 2−j0β + N−1/22j1/2 → 0. This assumption is
more restrictive than the condition 2−j0β + N−1/22j0/2 → 0 given in Theorem 5. Both conditions are
equivalent when j1 − j0 is finite but not in a general case.

We then prove Theorem 5 in two steps: first we establish a lower bound for d̂ and second we
develop a proof similar to the first one that has been given in section D.1 but with a weaker
assumption thanks to the previous bound.

D.1 Consistency under non-optimal assumptions

In this section, we give a first result of consistency, with an assumption on j0 and j1 that can be
weakened. This result is not necessary to obtain Theorem 5 but the scheme of the proof is similar
and it points out why an additional step is necessary.

Proposition 10. Assume that (W1)-(W5) and Condition (C) hold. If in addition j0 and j1 are chosen such
that 2−j0β + N−1/22j1/2 → 0, then

d̂− d0 = oP(1),

Ĝ(d̂)−G(d0) = oP(1).
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Proof. In order to evaluate the performances of the estimator of the long memory parameters,
the first step consists in proving that the proposed estimator for d is consistent. The equivalent
properties for Ω will be detailed in a second step. The proof is based on the following inequality,

R(d)− R(d0) > L(d− d0) + ∆(d, d0), (15)

where L is a deterministic and convex function of d and the remaining term ∆ tends uniformly to
zero in probability.

We first establish inequality (15). The difference between the criterion evaluated at d and at the true
long-memory parameters is equal to

R(d)− R(d0) = log det(Ĝ(d))− log det(Ĝ(d0)) + 2 log(2)< J >

(
∑
`

d` − d0
`

)

where < J > = 1
n ∑

j1
j=j0

j nj and n = ∑
j1
j=j0

nj.

The equality can be rewritten as

R(d)− R(d0)

= log det

(
1
n

j1

∑
j=j0

Λ< J >(d− d0)Λj(d)−1 I(j)Λj(d)−1Λ< J >(d− d0)

)
− log det(Ĝ(d0))

= log det

(
1
n

j1

∑
j=j0

Λj−< J >(d− d0)−1Λj(d0)−1 I(j)Λj(d0)−1Λj−< J >(d− d0)−1

)
− log det(Ĝ(d0)).

Define λj(δ) = 2−(j−< J >)δ for any j > 0 and δ ∈ R.

Let us first recall Oppenheim’s inequality (see e.g. page 480 of Horn and Johnson (1990)).

Proposition 11 (Oppenheim’s inequality). Let E and B be two semi-definite positive matrices. Then
det(E ◦ B) > det(E)∏` B`,`.

Let A be the following matrix,

A =
1
n

j1

∑
j=j0

Λj−< J >(d− d0)−1Λj(d0)−1 I(j)Λj(d0)−1Λj−< J >(d− d0)−1.

Oppenheim’s inequality will be applied to matrices B and E(d− d0) where the (`, m)-th element of
B is defined by B`,m = 1

n ∑
j1
j=j0

njλj(d` − d0
`)λj(dm − d0

m) and E(d− d0) = A ◦ B̃ where B̃`,m = B−1
`,m.

The relation A = E(d− d0) ◦ B holds. The (`, m)-th element of E(d− d0) is equal to

E`,m(d) =
j1

∑
j=j0

µj,`,m(d− d0)I`,m(j)2−j(d0
`+d0

m)

with µj,`,m(δ) =
2−j(δ`+δm)2< J >(δ`+δm)

∑
j1
a=j0

na2−a(δ`+δm)2< J >(δ`+δm)
=

2−j(δ`+δm)

∑
j1
a=j0

na2−a(δ`+δm)
.
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• The matrix E can be expressed as E = ∑j,k W̃j,kW̃j,k. Consequently E is positive semi-definite
being the sum of positive semi-definite matrices.

• The matrix B satisfies B = ∑
j1
j=j0

MjMj with Mj =
(

nj
n

)1/2
Λj−< J >(d− d0)−1. Thus B is

also positive semi-definite.

Oppenheim’s inequality implies log det(A) > log det(E(d− d0)) + ∑` log B`,`.

Define L(d− d0) := ∑
p
`=1 log B`,`. As we have

j1

∑
j=j0

njλj(δ)λj(δ) = ∑
j

nj2−2jδ22< J >δ = 22< J >δ
j1

∑
j=j0

nj2−2jδ,

the function L satisfies the following equality,

L(d− d0) =
p

∑
`=1

[
log(22< J >(d`−d0

`)) + log(
1
n

j1

∑
j=j0

nj2−2j(d`−d0
`))

]
.

It is easily seen that each term of the sum corresponds to the criterion defined in Proposition 6 of
Moulines et al (2008).

Inequality (15) follows with ∆(d, d0) = log det(E(d− d0))− log det(Ĝ(d0)). We will now control
the two terms in the right-hand side inequality (15).

Control of L. L(d − d0) is a multivariate extension of the criterion studied in Proposition 6 of
Moulines et al (2008). It is convex, positive and minimal at d = d0.

Control of ∆. We shall prove that both log det E(d − d0) and log det(Ĝ(d0)) tend uniformly to
log det(G0) for d ∈ Rp.

• The (`, m)-th element of the matrix E(d− d0) is equal to

E`,m(d− d0) =
j1

∑
j=j0

µj,`,m(d− d0)I`,m(j)2−j(d0
`+d0

m) where µj,`,m(δ) =
2−j(δ`+δm)

∑a na2−a(δ`+δm)
.

As ∑
j1
j=j0

njµj,`,m(δ) = 1, the quantity E`,m(d− d0) is written as

E`,m(d− d0) = G0
`,m + ∑

j,k
µj,`,m(d− d0)

(
Wj,k(`)Wj,k(m)

2j(d0
`+d0

m)
− G0

`,m

)

where G0
`,m = Ω`,mK(d` + dm) cos(π(d0

` − d0
m)/2).

Above expression is equal to E`,m(d − d0) = G0
`,m + S`,m(µ`,m(d − d0)) with S`,m(µ)

defined previously in equation (12). Since supd |µj(d− d0)| 6 1
nj

, Proposition 8 states

that E`,m(d− d0)→ G0
`,m uniformly in d when 2−j0β + N−1/22j1/2 → 0.
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• Finally we shall establish that log det Ĝ(d0) tends to log det(G0). Recall

Ĝ`,m(d
0) = G0

`,m + S`,m(ν) where νj =
1
n

.

The sequence ν belongs to the set S(0, 0, 1). Applying Proposition 9, the convergence is
proved when 2−j0β + N−1/22j0/2 → 0.

The consistency has been established in Proposition 10 under the condition 2−j0β + N−1/22j1/2 → 0.
The objective is to weaken this condition in order to prove Theorem 5. The scheme of the proof is a
generalization of the proof of Proposition 9 of Moulines et al (2008) to multivariate cases.

The only step in the proof of Proposition 10 that needs the assumption 2−j0β + N−1/22j1/2 → 0 is
the convergence study of E`,m(d − d0) to G0

`,m. The proof of Theorem 5 consists in proving that
d̂ > d0 − 1/2 in probability in order to obtain a weaker convergence assumption for E`,m(d− d0)
applying Proposition 9.

D.2 Lower bound of the estimate

We proceed to show first that there exists dmin such that for all ` = 1, . . . , p, we have d0
` − 1/2 <

dmin
` < d0

` and P
(

infj1>j0+2 d̂` 6 dmin
`

)
tends to 0 when N goes to infinity. The proof is recursive.

STEP 1.

We introduce α̃ defined by

α̃j,`,m =


1
n 2−(j−< J >)(d`−d0

`+dm−d0
m) if j0 < j 6 < J >,

1
n 2−(j−< J >)(dmin

` −d0
`+dmin

m −d0
m) if < J > < j 6 j1,

0 otherwise

where the vector dmin is taken such that

∀` = 1, . . . , p, d0
` − 1/2 < dmin

` < d0
` and lim inf

n→∞
inf

{d, d`6dmin
` }

inf
j1=j0,...,jN

j1

∑
j=j0

njα̃j,`,` > 1. (16)

Let ` be a given index in {1, . . . , p}. Following similar arguments as in Moulines et al (2008) when
showing their formula (59), one can find dmin

` satisfying condition (16).

The quantity R(d)− R(d0) is equal to

R(d)− R(d0) = log det A(α(d− d0))− log det Ĝ(d0)

with A`,m(α) =
j1

∑
j=j0

αj,`,m I`,m(j) and αj,`,m(δ) =
1
n

2−(j−< J >)(δ`+δm).
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We first want to establish that for all d in {d, ∀` d` 6 dmin
` }we have R(d)− R(d0) > log det A(α̃)−

log det Ĝ(d0). To this aim we will use a generalization of Corollary 7.7.4 of Horn and Johnson
(1990).

Proposition 12. Let A and B be two positive semi-definite matrices of Cp×p. Suppose A − B is positive
semi-definite. Then det A > det B.

Proof. We distinguish two cases:

• Suppose det A = 0. Then there exists a unitary vector x ∈ Rp such that xTAx = 0. Using the
fact that A− B is positive semi-definite, we have xT(A− B)x = −xTBx > 0 which implies
xTBx = 0 since B is positive semi-definite. Thus det B = 0 = det A.

• Suppose det A > 0. If det B = 0, inequality det B 6 det A holds. If det B > 0, since A− B is
positive semi-definite we apply Corollary 7.7.4 of Horn and Johnson (1990) which concludes
the proof.

Moreover to prove the positive semi-definiteness of the matrices we will use the Schur product
theorem (see e.g. page 458 of Horn and Johnson (1990)).

Proposition 13 (Schur product theorem). Let B1 and B2 be two positive semi-definite matrices of Cp×p,
then B1 ◦ B2 is also positive semi-definite.

Let j > 0. The matrix B1(j) = (2j(d0
`+d0

m) I`,m(j))`,m is positive semi-definite since it can be
written as W̃(j)TW̃(j). The matrix B2 = (αj,`,m(d − d0) − α̃j,`,m)`,m has positive terms for all
d ∈ {d, ∀` d` 6 dmin

` } and it is thus positive semi-definite. Applying Proposition 13, we obtain that
B(j) = B1(j) ◦ B2(j) is positive semi-definite. A(α(d− d0))− A(α̃) is then positive semi-definite
being the sum of positive semi-definite matrices. Similarly, it is easy to check that both A(α̃) and
A(α(d− d0)) are positive semi-definite. Consequently Proposition 12 gives log det A(α(d− d0)) >
log det A(α̃). This result holds for all d satisfying ∀`, d` 6 dmin

` .

We now study the behaviour of log det A(α̃) − log det Ĝ(d0). First, we have proved previously
(see end of section D.1) that log det Ĝ(d0) tends uniformly in d to log det G0. Second, we
decompose A(α̃) in A(α̃) = G̃ + S(α̃) with the elements of S(α̃) defined in equation (12) and
G̃`,m = ∑j njα̃j,`,mG0

`,m. We distinguish the study of the two terms.

• As < J > ∼ j0, for sufficiently large N there exists a positive constant c such that

|α̃j,`,m| 6
c
n

2(j−j0)(d0
`−dmin

` +d0
m−dmin

m ).

Consequently, for all (`, m), the sequence α̃`,m belongs to S(0, γ, c) with γ = 2 supa(d
0
a− dmin

a ).
As the vector dmin satisfies that for any ` = 1, . . . , p, we have d0

` − 1/2 < dmin
` 6 d0

` , then
0 6 γ < 1/2. Applying Proposition 9 we deduce that S(α̃) tends to 0 in probability uniformly
in d.
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• As G0 is a covariance matrix, it is positive semi-definite. We can apply Oppenheim’s
inequality (Proposition 11), log det G̃ > log det(G0) + ∑` log(∑

j1
j=j0

njα̃j,`,`). As we defined

dmin such that (16) holds, it follows that lim infN→∞ inf{d,∀` d`6dmin
` }

infj1=j0,...,jN log det A(α̃)−
log det G0 > 0.

We thus get

lim
N→∞

P
(

inf
{d,∀` d`6dmin

` }
inf

j1=j0,...,jN
log det A(α̃)− log det Ĝ(d0) > 0

)
= 1. (17)

Suppose d̂ ∈ {d, ∀` d` 6 dmin
` }. By definition of d̂, inequality inf{d, ∀m dm6dmin

m }
R(d) − R(d0) 6 0

holds, which is in contradiction with result (17). Finally with a probability tending to 1 there exists
`1 ∈ {1, . . . , p} such that d`1 > dmin

`1
.

STEP 2. Suppose that exist `1, `2, . . . `k with k < p such that, with a probability tending to 1,
d̂`i > dmin

`i
for all i = 1, . . . , k. We introduce α̃(k) defined by α̃

(k)
j,`,m = αj,`,m(d− d0) if j0 6 j 6 < J >,

α̃
(k)
j,`,m =


αj,`,m(d− d0) if `, m ∈ {`1, `2, . . . `k}
αj,`,m(d

min − d0) if ` /∈ {`1, `2, . . . `k} and m /∈ {`1, `2, . . . `k}
1
n 2−(j−< J >)(d`−d0

`+dmin
m −d0

m) if ` ∈ {`1, `2, . . . `k} and m /∈ {`1, `2, . . . `k}
1
n 2−(j−< J >)(dmin

` −d0
`+dm−d0

m) if ` /∈ {`1, `2, . . . `k} and m ∈ {`1, `2, . . . `k}

if < J > < j 6 j1 and α̃
(k)
j,`,m = 0 else. It is straightforward that for such α̃(k) the three following

points hold,

1. For all d ∈ {d, ∀` /∈ {`1, . . . , `k} d` 6 dmin
` }, for all j > 0, for all (`, m) ∈ {1, . . . , p}2, we have

αj,`,m(d− d0)− α̃
(k)
j,`,m > 0;

2. For all (`, m) ∈ {1, . . . , p}2, the sequence (α̃
(k)
j,`,m)j>0 belongs to S(0, γ, c) with 0 6 γ < 1/2;

3. lim infn→∞ inf{d,∀`/∈{`1,...,`k} d`6dmin
` }

infj1=j0,...,jN ∑` log(∑
j1
j=j0

njα̃
(k)
j,`0,`0

) > 0.

Analysis similar to STEP 1 shows that there exists `k+1 /∈ {`1, `2, . . . `k} such that, with a probability
tending to 1, d`k+1 > dmin

`k+1
.

Step 1 and Step 2 imply that P(d̂ ∈ {d, ∀` = 1, . . . , p, d` > dmin
` })→ 1 when N → ∞.

D.3 Proof of Theorem 5

Suppose first that for sufficiently large N we have j1 > j0 + 2.
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We have established that there exists dmin such that for all ` = 1, . . . , p, d0
` − 1/2 < dmin

` < d0
` and

P
(

supj1>j0+2 d̂` 6 dmin
`

)
tends to 0 when N goes to infinity.

Let d be a Rp-vector satisfying d` > dmin
` for all ` = 1, . . . , p. Recall that

E`,m(d) = G0
`,m + S`,m(µ`,m(d− d0)) whith µj,`,m(δ) =

2−j(δ`+δm)

∑j′>j0 nj′2−j′(δ`+δm)
. (18)

We bound the sequence µ as follows:

|µj,`,m(d− d0)| 6 2(j−j0)(d0
`−dmin

` +d0
m−dmin

m )

∑
j1
j′=j0

nj′2(j′−j0)(d0
`−d`+d0

m−dm)
6 n−1

j0 2(j−j0)(d0
`−dmin

` +d0
m−dmin

m ).

Since nj0 ∼ N2−j0 and n ∼ N2−j0(2− 2j1−j0) there exist N sufficiently large such that n−1
j0

6 2n−1.

We introduce γ = sup`=1,...,p d0
` − dmin

` . Then for all (`, m), µ`,m(d − d0) belongs to S(0, 2γ, 2).
We have 0 6 γ < 1/2 with a probability tending to 1. Applying Proposition 9 we deduce that
E`,m(d − d0) → G0

`,m uniformly in d with a probability tending to 1. Following the proof of
Proposition 10 with this result, we obtain Theorem 5.

It remains to consider the case where we do not have j1 > j0 + 2. Since we supposed j1 − j0 is an
increasing sequence of N, Proposition 10 holds, which concludes the proof.

E Rate of convergence

In order to obtain the optimal rate of convergence, we first prove the convergence with a suboptimal
rate. Based on this result, we are able to obtain feasible conditions under which the rates of
Theorem 6 hold.

E.1 Convergence with a suboptimal rate

We shall now establish a first rate of convergence which is not optimal but which will be useful to
derive conditions for the optimal rate.

Proposition 14. Assume that (W1)-(W5) and Condition (C) hold. If in addition j0 is chosen such that
2−j0β + N−1/22j0/2 → 0 then

d̂− d0 = OP(N−1/42j0/4 + 2−βj0/2).

Proof. The proof is based on inequality (15). The procedure is to find a lower bound for R(d) −
R(d0) on the set {d, max`=1,...,p |d` − d0

` | < 1/4}. By Theorem 5, d̂ − d0 goes to 0 in probability.
Therefore, for sufficiently large N, we have max`=1,...,p |d̂` − d0

` | < 1/4.
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First, a second order Taylor expansion of L(d−d0) at the neighbourhood of 0 for d0− 1/4 < d 6 d0

is L(d − d0) = d2L(u)
du2

∣∣∣
u
(d − d0)2 + o(max`=1,...,p |d` − d0

` |2) with |u| 6 1/4. Proposition 6

of Moulines et al (2008) states that lim infN→∞ infu∈[−1/2,0] infj1=j0+1,...,jN
d2L(u)

du2

∣∣∣
u

> 0. Thus for

d0 − 1/4 < d 6 d0 + 1/4, there exists c > 0 such that L(d − d0) > c ∑
p
`=1(d` − d0

`)
2 +

o(max`=1,...,p |d` − d0
` |2).

We now want to establish an upper bound for ∆(d, d0). This quantity satisfies

∆(d, d0) = log det(I + G0−1S(µ(d− d0))))

where S(µ(d−d0)) is the matrix with (`, m)-th element S`,m(µ(d−d0)) defined in (12) and µj,`,m(·)
defined in (18). Thus, ∆(d, d0) = log(∏

p
i=1 λi) where (λi)i=1,...,p denote the eigenvalues of the semi-

definite positive matrix G0−1S(µ(d− d0)). Hence

0 6 ∆(d, d0) 6 trace(G0−1S(µ(d− d0))).

Since max`=1,...,p |d`− d0
` | → 0, for N sufficiently large the quantity γ = max`=1,...,p |d`− d0

` | satisfies
0 6 γ < 1/4. As established previously, for all (`, m), µ`,m(d− d0) belongs to S(0, 2γ, 2). Then for
all (`, m), S`,m(µ`,m(d − d0)) = OP(2−j0β + N−1/22j0/2) uniformly in d ∈ [d0 − 1/4, d0] applying
Proposition 9. Hence ∆(d, d0) = OP(2−j0β + N−1/22j0/2).

Inequality (15) thus gives

R(d)− R(d0) > c
p

∑
`=1

(d` − d0
`)

2 + o(max
`
|d` − d0

` |2) + OP(2−j0β + N−1/22j0/2)

with c > 0. It follows that for all ` = 1, . . . , p, (d̂` − d0
`)

2 = OP(2−j0β + N−1/22j0/2).

E.2 Proof of Theorem 6

The criterion R is equal to R(d) = log det
(

Λ< J >(d)Ĝ(d)Λ< J >(d)
)
− 1. It is

straightforward that d̂ = argmin
d

R(d) satisfies

d̂ = argmin
d

R(d) with R(d) = log det G(d) (19)

and G(d) = Λ< J >(d− d0)Ĝ(d)Λ< J >(d− d0)

The Taylor expansion of R at d̂ at the neighbourhood of d0 gives

R(d̂)− R(d0) =
∂R(d)

∂d

∣∣∣∣
d0

(d− d0) + (d̂− d0)T ∂2R(d)
∂d∂dT

∣∣∣∣
d
(d̂− d0) (20)

where d is such that ‖d− d0‖ 6 ‖d̂− d0‖.
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The derivatives of the criterion R(d) are equal to

∂R(d)
∂da

= trace
(

G(d)−1 ∂G(d)
∂da

)
(21)

∂2R(d)
∂da∂db

= −trace
(

G(d)−1 ∂G(d)
∂db

G(d)−1 ∂G(d)
∂da

)
+ trace

(
G(d)−1 ∂2G(d)

∂da∂db

)
(22)

when G(d)−1 exists.

E.2.1 Study of G and its derivatives

To study the asymptotic behaviour of the derivatives of the criterion it is necessary first to study
the asymptotic behaviour of G and of its derivatives.

For any a = 1, . . . , p, let ia be a p × p matrix whose a-th diagonal element is one and all other
elements are zero. Let a and b be two indexes in 1, . . . , p. The first derivative of G(d) with respect

to da, ∂G(d)
∂da

, is equal to

− log(2)
1
n

j1

∑
j=j0

(j−< J >)Λ< J >(d− d0)Λj(d)
−1(iaI(j) + I(j)ia)Λj(d)

−1
Λ< J >(d− d0).

And the second derivative, with respect to da and db,

∂2G(d)
∂da∂db

= log(2)2Λ< J >(d− d0)
1
n

j1

∑
j=j0

(j−< J >)2Λj(d)−1

(ibiaI(j) + I(j)iaib + ibI(j)ia + iaI(j)ib)Λj(d)−1Λ< J >(d− d0) (23)

Convergence of G(d)

Let `, m be given indexes in {1, . . . , p}. Any (`, m)-th element of the matrix G(d) satisfies

G`,m(d) = G0
`,m

j1

∑
j=j0

njω
(0)
j,`,m + S`,m(ω

(0)
`,m(d− d0))

where ω
(0)
j,`,m(d− d0) = 1

n 2−(j−< J >)(d`−d0
`+dm−d0

m).

Recall that < J > = (j0 + ηj1−j0)(1 + o(1)) with 0 6 ηj1−j0 6 1. Let d be a Rp-vector such that
for all ` = 1, . . . , p, d̂` 6 d` 6 d0

` . As sup` |d̂` − d0
` | = oP(1), for any γ ∈ (0, 1/2), there exists

Nγ such that for any N > Nγ, 2−(j−< J >)(d`−d0
`+dm−d0

m) 6 2γ2(j−j0)γ. For N > Nγ, the sequence
ω

(0)
`,m(d̂− d0) belongs to S(0, γ, 2γ). Proposition 9 shows that S`,m(ω

(0)
`,m(d− d0)) tends to zero when

2−j0β + N−1/22j0/2 → 0 uniformly in d.
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Finally, we shall prove that ∑
j1
j=j0

njω
(0)
j,`,m(d− d0) → 1. Since |2a − 1| 6 2|a| − 1 6 log(2)|a|2|a| for

all a ∈ R,

|
j1

∑
j=j0

njω
(0)
j,`,m(d− d0)− 1| 6 1

n ∑
j

nj log(2)|j−< J >| max
`=1,...,p

|d` − d0
` |2|j−< J >|max`=1,...,p |d`−d0

` |

6 2 log(N) max
`=1,...,p

|d` − d0
` |22 log2(N)max`=1,...,p |d`−d0

` |.

The last inequality is a consequence of j0 6 j1 6 jN = log2(N). Under assumption
log(N)max`=1,...,p |d̂` − d0

` | → 0, the right-hand side of the inequality goes to 0 when N goes to
infinity.

Consequently,

sup
{d, ‖d−d0‖6‖d̂−d0‖}

Ga,b(d) = G0
a,b(1 + oP(log(N)max

`
|d` − d0

` |)) + oP(2−j0β + N−1/22j0/2). (24)

Due to Proposition 14, it is sufficient that log(N)2(2−j0β + N−1/22j0/2) → 0 to obtain
sup

{d, ‖d−d0‖6‖d̂−d0‖}
Ga,b(d) = G0

a,b + oP(1). Thus for sufficiently large N, G(d) is invertible and

G(d)−1 converges in probability to G0−1 on the set {d, ‖d− d0‖ 6 ‖d̂− d0‖}.

Convergence of ∂G(d)
∂da

∣∣∣∣
d

This section concerns the convergence in probability of
(

∂G(d)
∂da

∣∣∣∣
d

)
a,b

which is equal to

(
∂G(d)

∂da

∣∣∣∣
d

)
a,b

= log(2)
1
n

j1

∑
j=j0

(j−< J >)2−j(d0
a+d0

b) Ia,b(j)

= log(2)

[
G0

a,b

j1

∑
j=j0

njω
(1)(d− d0) + Sa,b(ω

(1)(d− d0))

]
,

where ω
(1)
j (δ) = 1

n (j−< J >)2−(j−< J >)(δ`+δm).

We first study the behaviour of ∑
j1
j=j0

njω
(1)(d− d0).

|
j1

∑
j=j0

njω
(1)(d− d0)| 6 1

n ∑
j

nj log(2)|j−< J >| max
`=1,...,p

|d` − d0
` |2|j−< J >|max`=1,...,p |d`−d0

` |

6 log(N) max
`=1,...,p

|d` − d0
` |2log2(N)max`=1,...,p |d`−d0

` |

It is thus sufficient that log(N)max`=1,...,p |d̂` − d0
` | → 0 to have ∑

j1
j=j0

njω
(1)(d− d0) = oP(1).
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Let d be in a neighbourhood of d0 such that sup` |d` − d0
` | < γ with 0 6 γ < 1/2. As

< J > ∼ j0 + ηj1−j0 with 0 6 ηj1−j0 6 1, there exists N0 such that for any N > N0 the
sequence ω(1)(d− d0) belongs to S(1, γ, 2γ). Thanks to Proposition 9 it comes that Sa,b(ω

(1)(d−

d0)) = OP
(
2−j0β + N−1/22j0/2) uniformly on the neighbourhood. Consequently,

(
∂G(d)

∂da

∣∣∣∣
d

)
a,b

=

oP(1). Finally considering similarly the other terms, when log(N)max`=1,...,p |d̂` − d0
` | → 0, the

equivalence ∂G(d)
∂da

∣∣∣∣
d
= oP(1) is fulfilled under assumptions of Theorem 6.

In addition, when d = d0 we have ∑
j1
j=j0

njω
(1)
j (0) = 0. Hence,

(
∂G(d)

∂da

∣∣∣∣
d0

)
a,b

= C(1)
a,b where

C(1)
a,b = OP

(
2−j0β + N−1/22j0/2). Or more generally,

∂G(d)
∂da

∣∣∣∣
d0

= iaC(1) + C(1)ia, (25)

where each term of the matrix C(1) is OP
(
2−j0β + N−1/22j0/2).

Convergence of ∂2Ga,b(d)
∂da∂db

∣∣∣∣
d

Let d be a Rp-vector such that |d` − d0
` | 6 |d̂` − d0

` | for all ` = 1, . . . , p. The proof is derived for(
∂2Ga,b(d)

∂da∂db

∣∣∣∣
d

)
a,b

, for a 6= b. The argumentation is similar for the diagonal terms. Introducing a

sequence Sa,b(·), the expression (23) is rewritten as(
∂2Ga,b(d)

∂da∂db

∣∣∣∣∣
d

)
a,b

= log(2)2

[
2< J >(da+db−d0

a−d0
b)

1
n

j1

∑
j=j0

(j−< J >)2 Ia,b(j)
2j(da+db)

]

= log(2)2

[
G0

a,b

j1

∑
j=j0

njω
(2)
j,a,b(d− d0) + Sa,b(ω

(2)
a,b (d− d0))

]

where ω
(2)
j,a,b(δ) =

1
n (j−< J >)22−(j−< J >)(δa+δb).

First, we want to prove that

j1

∑
j=j0

njω
(2)
j,a,b(d− d0) = κj1−j0(1 + oP(1)). (26)

Recall κj1−j0 =
1
n ∑

j1
j=j0

(j−< J >)2nj. Since |2a− 1| 6 2|a|− 1 6 log(2)|a|2|a| for all a ∈ R, we have
the inequality

|
j1

∑
j=j0

njω
(2)
j,a,b(d− d0)− κj1−j0 | 6 2 log(2)κj1−j0 log2(N)|d− d0|22 log2(N)|d−d0|.
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Equation (26) holds when log(N)max`=1,...,p |d`− d0
` | → 0. Due to Proposition 14 it is sufficient that

log(N)2(2−j0β + N−1/22j0/2)→ 0.

Let d be in a neighbourhood of d0 such that sup` |d` − d0
` | < γ with 0 6 γ < 1/2. As < J > ∼

j0 + ηj1−j0 with 0 6 ηj1−j0 6 1, there exists N0 such that for any N > N0 the sequence ω
(2)
a,b (d− d0)

belongs to the set S(2, γ, 2γ). Using Proposition 9, Sa,b(ω
(2)
a,b (d − d0)) 6 C(2−j0β + N−1/22j0/2)

uniformly on the neighbourhood of d for N > N0. As a consequence,(
∂2Ga,b(d)

∂da∂db

∣∣∣∣∣
d

)
a,b

= log(2)2κj1−j0 G0
a,b (1 + oP(1)) + C(2)

a,b ,

with C(2)
a,b = OP(2−j0β + N−1/22j0/2).

Finally, when N goes to infinity,

sup
{d, ‖d−d0‖6‖d̂−d0‖}

∂2Ga,b(d)
∂da∂db

∣∣∣∣∣
d
= log(2)2κj1−j0

(
ibiaG0 + ibG0ia + iaG0ib + G0iaib

)
+ oP(1) (27)

when log(N)max`=1,...,p |d̂` − d0
` | = oP(1) and 2−j0β + N−1/22j0/2 → 0.

E.2.2 Second derivative of the criterion

Let us detail the expression of the second derivative of R with respect to d at d,

∂2R(d)
∂da∂db

∣∣∣∣
d
= −trace

(
G(d)−1 ∂G(d)

∂db

∣∣∣∣
d

G(d)−1 ∂G(d)
∂da

∣∣∣∣
d

)
+ trace

(
G(d)−1 ∂2G(d)

∂da∂db

∣∣∣∣
d

)
.

Using (24) and the previous study that established that ∂G(d)
∂da

∣∣∣∣
d
= oP(1), the first term tends to 0

under assumptions of Theorem 6. Combining (24) and (27) we can assert that ∂2R(d)
∂da∂db

∣∣∣∣
d

tends in

probability to
log(2)2κj1−j0 trace

(
G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)

)
.

Let G0(−1)
`,m denotes the (`, m)-th element of G0−1. When a 6= b,

trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)
= G0(−1)

a,b G0
a,b + G0(−1)

b,a G0
b,a = 2G0(−1)

a,b G0
a,b.

When a = b,

trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)
= 2(1 + G0(−1)

a,a G0
a,a).

Finally,
∂2R(d)
∂d∂dT

∣∣∣∣
d
= κj1−j02 log(2)2

(
G0−1 ◦G0 + Ip

)
+ oP(1). (28)

The matrix G0−1 ◦G0 is positive definite using Schur product theorem (Proposition 13) and hence
the matrix G0−1 ◦G0 + Ip is invertible.
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E.2.3 End of the proof

The Taylor expansion (20) together with (28) imply

2 log(2)2κj1−j0(d̂− d0) = −
(

1
2 log(2)2κj1−j0

∂2R(d)
∂d∂dT

∣∣∣∣
d

)−1
∂R(d)

∂d

∣∣∣∣
d0

= (G0−1 ◦G0 + Ip)
−1 ∂R(d)

∂d

∣∣∣∣
d0

(1 + oP(1))

We now study the convergence of ∂R(d)

∂d

∣∣∣∣
d0

. Using equations (21) and (25), we have the equation

∂R(d)
∂da

∣∣∣∣
d0

= 2
p

∑
b=1

G(−1)
a,b (d0)C(1)

a,b .

So the asymptotic behaviour of the first derivative of the criterion is

∂R(d)
∂da

∣∣∣∣
d0

= OP(2−j0β + N−1/22j0/2).

Plugging this result into the expression above, it comes

κj1−j0

(
2−j0β + N−1/22j0/2

)−1
(d̂− d0) = OP(1).

Since κ` > 0 for ` > 1 and κ` → 2 when `→ ∞, the sequence κj1−j0 is bounded below by a positive
constant. The rate of convergence for d̂− d0 in Theorem 6 follows.

E.3 Convergence of Ĝ(d̂) and of Ω̂

Recall Ĝ`,m(d̂) = 2< J >(d̂`−d0
`+d̂m−d0

m)G`,m(d̂). Equation (24) with the rate obtained for
the convergence of d̂ − d0 state that G`,m(d̂) = G0

`,m(1 + OP(log(N)(2−j0β + N−1/22j0/2)) +

OP
(
2−j0β + N−1/22j0/2) under assumptions of Theorem 6. The rate of convergence of Ĝ`,m(d̂) in

Theorem 6 is then derived from the fact that 2< J >u − 1 = j0u log(2)(1 + o(1)) when u→ 0.

The convergence of Ω̂ is straightforward, thanks to the fact that K(·) is a continuous function of
d. To obtain the rate of convergence, we observe first that cos(u) = 1 + o(u2) when u goes to 0.
Second,

K(d̂` + d̂m)− K(d0
` + d0

m) =
∫ ∞

−∞
(|λ|−d̂`−d̂m − |λ|−d0

`−d0
m)|ψ̂(λ)|2dλ

6 |d̂` + d̂m − d0
` − d0

m|
∫ ∞

−∞
| log |λ|||λ|−d0

`−d0
m |ψ̂(λ)|2dλ.

Using assumption (W2) and (W5),

|K(d̂` + d̂m)− K(d0
` + d0

m)| 6 |d̂` + d̂m − d0
` − d0

m|C
∫ ∞

−∞
| log |λ|| |λ|−(1+β)dλ
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with C positive constant. The integral on the right-hand side is finite and thus K(d̂` + d̂m)−K(d0
` +

d0
m) = OP(maxi=1,...,p |d̂i − d0

i |). When maxi=1,...,p |d̂i − d0
i | = OP

(
2−j0β + N−1/22j0/2), we have

1/(K(d̂` + d̂m)cos(π
2 (d̂` − d̂m))) = (1 + OP

(
2−j0β + N−1/22j0/2)) which concludes the proof.

E.4 Additional tools

These results correspond to Lemma 13 of Moulines et al (2008)

Define the sequences ηL and κL for any L > 0 by

ηL :=
L

∑
i=0

i
2−i

2− 2−L (29)

κL :=
L

∑
i=0

(i− ηL)
2 2−i

2− 2−L (30)

It is straightforward that

n ∼ N2−j0(2− 2−(j1−j0)) (31)
< J > ∼ j0 + ηj1−j0 (32)

1
n

j1

∑
j=j0

(j− < J >)2nj ∼ κj1−j0 (33)

For every L > 1 the quantities ηL and κL are strictly positive. When L goes to infinity, the sequences
ηL and κL respectively converge to 1 and 2.

And for all u > 0,
1
κL

L−u

∑
i=0

2−i

2− 2−L (i− ηL)(i + u− ηL)→ 1 when L→ ∞ (34)
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