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Multivariate processes with long-range dependent properties are found in a large number of applications including finance, geophysics and neuroscience. For real data applications, the correlation between time series is crucial. Usual estimations of correlation can be highly biased due to phase-shifts caused by the differences in the properties of autocorrelation in the processes. To address this issue, we introduce a semiparametric estimation of multivariate long-range dependent processes. The parameters of interest in the model are the vector of the long-range dependence parameters and the long-run covariance matrix, also called functional connectivity in neuroscience. This matrix characterizes coupling between time series. The proposed multivariate wavelet-based Whittle estimation is shown to be consistent for the estimation of both the long-range dependence and the covariance matrix and to encompass both stationary and nonstationary processes. A simulation study and a real data example are presented to illustrate the finite sample behaviour.

Introduction

The long-range dependence has attracted lots of interest in statistics and in many applications since the seminal paper of Mandelbrot in 1950. First the fractional Brownian motion model was introduced as the unique Gaussian process having stationary increments and self-similarity index H in (0, 1) [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]). This model is characterized by one parameter called the Hurst exponent. Since then, several extensions were introduced in order to get more complex modellings that better match real data, such as ARIMA, FD, FIN. . . We refer to [START_REF] Percival | Wavelet methods for time series analysis[END_REF] and references therein for an overview of long-range dependence models. These models were used in a large scope of applications, for example finance [START_REF] Gençay | An introduction to wavelets and other filtering methods in finance and economics[END_REF] (see also the references in [START_REF] Nielsen | Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration[END_REF]), internet traffic analysis [START_REF] Abry | Wavelet analysis of long-range-dependent traffic. Information Theory[END_REF], [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF] studied a two-dimensional estimation, based on univariate wavelet basis, which defines estimators using a regression of the cross-covariance between the wavelet coefficients. This approach also appears difficult to generalize to high multidimensional settings. The present work defines a wavelet Whittle estimator for multivariate models. The extension to multivariate processes presents two issues. First, a vector of long memory parameters has to be estimated along with the covariance matrix that is modelling the interactions between the time series. Second, as noted in Robinson (1994b); [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF], the multivariate extension of the fractional integrated model introduces a phase-shift that has to be taken into account in the estimation procedures. The new wavelet-based proposed methodology is shown to be adequate for nonstationary long-range dependence models.

The paper is organised as follows. Section 2 introduces the specific framework of multivariate long memory processes based on the definition of the spectral density matrix. The multivariate wavelet Whittle estimators of both the long memory parameters and the covariance matrix are defined in Section 3. The properties of this new estimation scheme are derived in Section 4 where consistency of both estimations are established. Finally, Section 5 presents a simulation study which illustrates that the wavelet Whittle estimators have comparable performances to the Fourier-based ones. In addition, our method provides a very flexible approach to handle both stationary and nonstationary processes. Section 6 deals with a real data application in neuroscience.

The semiparametric multivariate long-memory framework

Let X = {X (k), k ∈ Z, = 1, . . . , p} be a multivariate stochastic process. Each process X is not necessarily stationary. Denote by ∆X the first order difference, (∆X )(k) = X (k) -X (k -1), and by ∆ D X the D-th order difference. For every component X , there exists D ∈ N such that the D -th order difference ∆ D X is covariance stationary. Following [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF]; [START_REF] Chambers | The simulation of random vector time series with given spectrum[END_REF]; [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF], we consider a long memory process X with memory parameters d = (d 1 , d 2 , . . . , d p ). For any D > d -1/2, we suppose that the multivariate process Z = diag(∆ D , = 1, . . . , p)X is covariance stationary with a spectral density matrix given by for all ( , m) , f

(D ,D m ) ,m (λ) = 1 2π Ω ,m (1 -e -iλ ) -d s (1 -e iλ ) -d s m f S ,m (λ), λ ∈ [-π, π],
where the long memory parameters are given by d S m = d m -D m for all m. The functions f S ,m (•) correspond to the short memory behaviour of the process. The generalized cross-spectral density of processes X and X m can be written as

f ,m (λ) = 1 2π Ω ,m (1 -e -iλ ) -d (1 -e iλ ) -d m f S ,m (λ), λ ∈ [-π, π].
As it will be explained in Section 2.1, this model corresponds to a subclass of multivariate longrange dependent time series. In a general case, an additional multiplicative term of the form e iϕ is required, see e.g. [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]; [START_REF] Sela | The averaged periodogram estimator for a power law in coherency[END_REF].

In the case of a multivariate setting, the spectral density of the multivariate process X is thus,

f (λ) = Ω • (Λ 0 (d) f S (λ)Λ 0 (d) * ), λ ∈ [-π, π], with Λ 0 (d) = diag((1 -e -iλ ) -d ) (1)
where d = D + d s . The exponent * is the conjugate operator and • denotes the Hadamard product. The matrix Ω is supposed real symmetric positive definite.

In this semiparametric framework, the spectral density f S (•) corresponds to the short-memory behaviour and the matrix Ω is called fractal connectivity by [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF] or long-run covariance matrix by [START_REF] Robinson | Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction[END_REF]. Similarly to [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF], we assume that f S (•) ∈ H(β, L) with 0 < β 2 and 0 < L. The space H(β, L) is defined as the class of non-negative symmetric functions g(•) on [π, π] such that g ,m (0) = 1 for all ( , m) ∈ {1, . . . , p} 2 and that for all λ ∈ (-π, π), max{|g(λ) -1|, ( , m) ∈ {1, . . . , p} 2 } ∞ L|λ| β . The assumption f S ,m (0) = 1 for all ( , m) is necessary for Ω to be identifiable in model (1).

The spectral density specifies that the two processes X and X m have long-memory parameters respectively d and d m . Parameters with absolute value greater that 1/2 are allowed, covering nonstationary time series (in this case D , D m 1). If orders are different, the estimation of the memory parameters is still available but some bias issues occur for the estimation of the underlying covariance Ω, which is detailled in Section 3.

In order to derive semiparametric estimations of the memory parameters and the matrix Ω, the term inside the matrix Λ 0 (d) can be simplified using the equality 1e -iλ = 2 sin(λ/2)e i(π-λ)/2 . Consequently, when λ tends to 0, the spectral density matrix is approximated at first order by f (λ) ∼ Λ(d)Ω Λ(d) * , when λ → 0, with Λ(d) = diag(|λ| -d e -i sign(λ)πd/2 ).

(2)

Here and subsequently ∼ means that the ratio left-and right-hand side converges to one.

A similar approximation has been carried out in [START_REF] Lobato | Consistency of the averaged cross-periodogram in long memory series[END_REF] or [START_REF] Phillips | Local Whittle estimation in nonstationary and unit root cases[END_REF], while [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF] derived a second order approximation. [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF] used Λ(d) = diag(|λ| -d ) as an approximation of f (•). Whereas [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF] chose to approximate f (•) using Λ(d) = diag(λ -d e -i(π-λ)d/2 ), which corresponds to a second order approximation due to the remaining term λ in the exponential. As mentioned by [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF], intriguingly, the two defined estimators of long memory parameters are consistent, but only for the estimation of d. The estimation of the covariance matrix is affected by the choice of Λ(d). In Section 3, we introduce our estimators using approximation (2), corresponding to a trade-off between [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF] and [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF]. The resulting estimator for d is equivalent to the one defined in [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF]. However a specific correction for the estimation of the covariance matrix overcomes the bias caused by the presence of a phase-shift through the complex exponential term. This point has also been raised in the context of detecting cointegration, when the cross-spectral density presents an additional phase parameter comparing to the case studied in this paper.

Examples of processes

This section provides some examples of processes which satisfy our semiparametric modelling.

The matrix Ω has been defined via the spectral representation of the process, the link between Ω and the covariance of the multivariate process in the temporal space is detailed hereafter. Let X = 1 N ∑ N t=1 X(t) be the empirical mean of the process. If the cross-spectral density is defined and continuous at the frequency λ = 0, Fejer's theorem states that n 1/2 X converges in distribution to a zero-mean Gaussian distribution with a covariance matrix equals to 2π f (0). When the crossspectral density satisfies an approximation (1), [START_REF] Robinson | Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction[END_REF] indicates that

D n E(XX T )D n ---→ n→∞ 2πΩ • Q(d)
where

D n = diag(n 1/2-d ) and Q ,m (d) = sin(πd )+sin(πd m ) Γ(d +d m +2) sin(π(d +d m ))
. The exponent T denotes the transpose operator. [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF] define Long-Range Dependence (LRD) with a more general setting for the phase. Let X be a p-multivariate time series. We suppose that X is second-order stationary and that it admits a spectral density. The time series X is long-range dependent in the sense of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF] if its spectral density f (•) satisfies:

Causal linear representations of Kechagias and Pipiras (2014)

f (λ) = 1 2π diag(|λ| -d ) G(λ) diag(|λ| -d ) with d = d 1 . . . d p ∈ (0, 1/2) p and G(•) a C p×p -valued Hermitian non negative definite matrix function satisfying G(λ) ∼ λ→0 + G = (Ω ,m e iϕ ,m ) ,m=1,...,p with Ω ,m ∈ R, , m = 1, . . . , p and ϕ ,m ∈ (-π, π].
The phases ϕ ,m measure the dissymmetry of the process X at large lags. Indeed the specificity of multivariate time series is that the autocovariance function may no longer be symmetric compared with the univariate framework (i.e. γ(-h) = γ(h) T may not be equal to γ(h)). When the process is time reversible, the autocovariance function is symmetric. Time reversible series will satisfy ϕ ,m = 0 for all , m = 1, . . . , p. We refer to proposition 2.1 of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF] that gives some highlights on the phase parameters. In Proposition 3.1 [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF] give examples of LRD linear time series where any combinations of (d, G) can be chosen.

Many results of the present work can be generalized to LRD processes of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]. Yet as our goal is to recover the matrix Ω, an assumption on the form of the phase ϕ is necessary (since we consider a real filter which deletes the imaginary part). The most widely used definition of phase is ϕ ,m = -π 2 (dd m ) which includes a large scope of models, see section 2.1.2.

Such a definition of phase is verified, for example, using a causal representation of processes described in [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]. Let {ε k } k∈Z be a R p -valued white noise, satisfying

E[ε k ] = 0 and E[ε k ε T k ] = I p . Let also {B k = (B ,m,k ) ,m=1,...,p } k∈N be a sequence of real-valued matrices such that B ,m,k = L ,m (k) k d a -1 , k ∈ N, where d ∈ (0, 1/2) and L(k), k = 1, ..., p, is an R p×p -valued function satisfying L(k) ∼ k→+∞ A
for some R p×p -valued matrix A. We define the time series X given by the causal linear representation

X(k) = +∞ ∑ j=0 B j ε k-j .
Corollary 4.1 of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF] states that the process X is LRD with

Ω ,m = Γ(d )Γ(d m ) 2π (AA * ) ,m , ϕ ,m = - π 2 (d -d m ).
Such causal linear representations thus satisfies (2). An example of such a representation is the multivariate ARFI MA(0, d, 0) model presented in next subsection.

Multivariate ARFIMA of Lobato (1997)

The composition of linear filters does not commute in the multivariate case. Consequently there are multiple extensions of univariate ARFIMA to the multivariate framework. We detail in this section the multivariate ARFIMA models of [START_REF] Lobato | Consistency of the averaged cross-periodogram in long memory series[END_REF].

Let u be a p-dimensional white noise with E[u(t)

| F t-1 ] = 0 and E[u(t)u(t) T | F t-1 ] = Σ, where F t-1
is the σ-field generated by {u(s), s < t}, and Σ is a positive definite matrix. The spectral density of u satisfies f u (λ) = Σ/(2π).

Let (A k ) k∈N be a sequence of R p×p -valued matrices with A 0 the identity matrix and

∑ ∞ k=0 A k 2 < ∞. Let A(•) be the discrete Fourier transform of the sequence, A(λ) = ∑ ∞ k=0 A k e ikλ .
We assume that all the roots of |A(L)| are outside the closed unit circle. [START_REF] Lobato | Consistency of the averaged cross-periodogram in long memory series[END_REF] defines two multivariate ARFIMA models which both satisfy approximation (2).

Model A. Let X be defined by A(L) diag(1 1 -L) d X(t) = B(L)u(t). The spectral density satisfies

f ,m (λ) ∼ λ→0 + 1 2π Ω ,m e -iπ/2(d -d m ) λ -(d +d m )
with Ω = A(1) -1 B(1)ΣB(1) T A(1) T -1 . It is straightforward that Model A statifies approximation (2).

Model B.

Let X be defined by diag(1 1 -L) d A(L) X(t) = B(L)u(t). The spectral density satisfies

f ,m (λ) ∼ λ→0 + 1 2π ∑ a,b β a,b α ,a α m,b e -iπ/2(d a -d b ) λ -(d a +d b )
with α ,m = (A(1) -1 ) ,m and β ,m = (B(1)ΣB(1) T ) ,m . In Model B the spectral density is equivalent around the zero frequency to the term in (a, b) [START_REF] Sela | The averaged periodogram estimator for a power law in coherency[END_REF], where the authors propose an estimator for d 1,2 in a bivariate framework.) Setting 2) holds. This means that if there is cointegration, the corresponding long-run covariance value is set to zero.

= argmax{|d a + d b |, β a,b α ,a α m,b = 0}. It gives a more general setting f ,m (λ) ∼ λ→0 + G ,m λ -d ,m with |d ,m | (d + d m )/2. (This model is studied more extensively in
Ω ,m = 0 if |d ,m | < (d + d m )/2 equation (
In particular, Model A and Model B of [START_REF] Lobato | Consistency of the averaged cross-periodogram in long memory series[END_REF] include FIVAR and VARFI models of [START_REF] Sela | Computationaly efficient methods for two multivariate fractionnaly integrated models[END_REF]. These multivariate ARFIMA models admit a causal linear representation. They include short-range dependence behaviour, through the terms A(L) and B(L). When these terms are equal to identity, we obtain an ARFI MA(0, d, 0) satisfying the causal linear representation given in subsection 2.1.1. This (causal) multivariate ARFI MA(0, d, 0) is a subclass of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]'s (possibly non causal) definition.

Remark. In the univariate setting, when A(•) and B(•) have no common zeros, [START_REF] Kokoszka | Fractional arima with stable innovations[END_REF] establish that the time series X admits a linear representation

X(k) = ∑ +∞ j=0 C j ε k-j with C j = B(1)
A(1)Γ(d) j d-1 + O(j -1 ) when j goes to infinity. The terms of the linear representation thus satisfy approximately the condition of [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]. The extension to multivariate setting would yield information about the link between Lobato (1997)'s models and [START_REF] Kechagias | Definitions and representations of multivariate long-range dependent time series[END_REF]'s condition on causal representations. However, it has not been explored in this paper since we will not use this fact in any essential way.

Multivariate wavelet Whittle estimation

This section first defines the wavelet transform of the processes and then gives some results on the cross behaviour of the wavelet coefficients. The main point is the presence of a phase-shift caused by the differences in the long-memory parameters. Finally the proposed estimation scheme is derived, defining simultaneous estimators of the long-memory parameters and of the long-run covariance, which takes into account the phase-shift (based on the first order approximation (2)).

The wavelet analysis

Let (φ(•), ψ(•)) be respectively a father and a mother wavelets. Their Fourier transforms are given by φ

(λ) = ∞ -∞ φ(t)e -iλt dt and ψ(λ) = ∞ -∞ ψ(t)e -iλt dt.
At a given resolution j 0, for k ∈ Z, we define the dilated and translated functions

φ j,k (•) = 2 -j/2 φ(2 -j • -k) and ψ j,k (•) = 2 -j/2 ψ(2 -j • -k).
Thoughout the paper, we adopt the same convention as in [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] and [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF], that is large values of the scale index j correspond to coarse scales (low frequencies).

Let X(t) = ∑ k∈Z X(k)φ(tk). The wavelet coefficients of the process X are defined by

W j,k = R X(t)ψ j,k (t)dt j 0, k ∈ Z. For given j 0 and k ∈ Z, W j,k is a p-dimensional vector W jk = W j,k (1) W j,k (2) . . . W j,k (p) , where W j,k ( ) = R X (t)ψ j,k (t)dt.
The regularity conditions on the wavelet transform are expressed in the following assumptions.

They will be needed throughout the paper.

(W1) The functions φ(•) and ψ(•) are integrable, have compact supports, R φ(t)dt = 1 and ψ 2 (t)dt = 1;

(W2) There exists α > 1 such that sup λ∈R | ψ(λ)|(1 + |λ|) α < ∞, i.e. the wavelet is α-regular;

(W3) The mother wavelet ψ(•) has M > 1 vanishing moments.

(W4) The function ∑ k∈Z k φ(•k) is polynomial with degree for all = 1, . . . , M -1.

(W5) For all i = 1, . . . , p, (1 + β)/2 -α < d i M.
These conditions are not restrictive, and many standard wavelet basis satisfy them. Among them, Daubechies wavelets are compactly supported wavelets parametrized by the number of vanishing moments M. They are α-regular with α an increasing function of M going to infinity (see [START_REF] Daubechies | Ten lectures on wavelets[END_REF]). Assumptions (W1)-(W5) will hold for Daubechies wavelet basis with sufficiently large M.

Remark. The couple of functions (φ(•), ψ(•)) can be associated with a multiresolution analysis, but this condition is not necessary. Similarly, the orthogonality of the family {ψ j,k (•)} is not required. See [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF], Section 3.

Under assumption (W3), the wavelet transform performs an implicit differentiation of order M.

Thus it is possible to apply it on nonstationary processes. In Fourier analysis, tapering procedures are necessary to consider directly nonstationary frameworks, see e.g. [START_REF] Velasco | Whittle pseudo-maximum likelihood estimation for nonstationary time series[END_REF] and references therein. Some recent works propose a procedure that differentiates the data before tapering [START_REF] Hurvich | An efficient taper for potentially overdifferenced long-memory time series[END_REF] and references therein). Another extension of Fourier to nonstationary frameworks has been proposed by [START_REF] Abadir | Nonstationarity-extended local Whittle estimation[END_REF] and applied by [START_REF] Nielsen | Local Whittle estimation of multi-variate fractionally integrated processes[END_REF] in multivariate analysis.

In practice, a finite number of realisation of the process X, say X(1), . . . X(N), is observed. Since the wavelets have a compact support only a finite number n j of coefficients are non null at each scale j. Suppose without loss of generality that the support of ψ(•) is included in [0, T ψ ] with T ψ 1. For every j 0, define n j := max (0, 2 -j (N -T ψ + 1)).

(3)

Then for every k < 0 and k > n j , the coefficients W j,k are set to zero because all the observations are not available. In the following, n = ∑ j 1 j=j 0 n j denotes the total number of non-zero coefficients used for estimation.

Spectral approximation of wavelet coefficients

Let us first recall some results of [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] for the wavelet transform of a univariate process. Let W j,k denote the wavelet coefficient of a unidimensional process X, with spectral density f (λ) = |1e iλ | -2d 0 f S (λ), where d 0 ∈ R (note that d 0 can be outside of the interval [-1/2, 1/2]). [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] state that under assumptions (W1)-(W5), the wavelet coefficients process (W j,k ) k∈Z is covariance stationary for any given j 0. However they also stress that the betweenscale coefficients are not decorrelated. It is shown that the wavelet coefficients are decorrelated when the wavelet bases is orthonormal and d 0 = 0 but it is not valid in general settings. Many proposition of estimators of long-memory can be found in [START_REF] Abry | Wavelet analysis of long-range-dependent traffic. Information Theory[END_REF]; [START_REF] Gonzaga | A wavelet Whittle estimator of generalized long-memory stochastic volatility[END_REF][START_REF] Jensen | An approximate wavelet MLE of short and long memory parameters[END_REF]; [START_REF] Wornell | Estimation of fractal signals from noisy measurements using wavelets[END_REF], among others. These works assume that the wavelet coefficients are decorrelated. We follow [START_REF] Bardet | Wavelet estimator of long-range dependent processes[END_REF] or [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] in taking into account the within and between scales behaviour.

Let j 0 and j = ju j be two given scales. Following [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF], the between-scale process is defined as the sequence {W j,k , W j-u,2 u k+τ , τ = 0, . . . 2 u -1} k∈Z . Let D j,u (•; d 0 ) be the crossspectral density between {W j,k } k∈Z and {W j-u,2 u k+τ , τ = 0, . . . 2 u -1} k∈Z . For any λ ∈ (-π, π), D j,u (λ; d 0 ) is a 2 u -dimensional vector. Theorem 1 in [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] establishes that under assumptions (W1)-(W5) there exists a positive constant C such that for all λ ∈ (-π, π),

D j,u (λ; d 0 ) -2 2jd 0 D ∞,u (λ; d 0 ) C2 j(2d 0 -β) ,
where

D ∞,u (λ; d 0 ) := ∑ t∈Z |λ + 2tπ| -2d 0 ψ * (λ + 2tπ)2 -u/2 ψ(2 -u (λ + 2tπ))e u (λ + 2tπ) with e u (ξ) = 1 e -i2 -u ξ . . . e -i2 -u (2 u -1)ξ T .
The key point of our estimation is the extension of results obtained by [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] to the multivariate framework. Due to the complexity of the multivariate setting, we choose not to characterize the behaviour of the wavelet coefficients in terms of cross-spectral densities.

First, in order to extend the results of [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] to a multivariate framework, the covariance behaviour of W j,k for given (j, k) is derived. Let θ ,m (j) denote the wavelet covariance at scale j between processes X and X m , θ ,m (j) = Cov(W j,k ( ), W j,k (m)) for any position k. Using the spectral density representation, θ ,m (j) satisfies

θ ,m (j) = π -π (1 -e -iλ ) -d (1 -e iλ ) -d m Ω ,m f S ,m (λ)|H j (λ)| 2 dλ,
where H j is the gain function of the wavelet filter.

The following proposition establishes a second order approximation of the spectral density in a neighbourhood of zero, such as the one derived in [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF].

Proposition 1. Let assumptions (W1)-(W5) hold. Let j 0, , m = 1, . . . , p. Let K j be defined by

K j (d , d m ) = ∞ -∞ |λ| -(d +d m ) cos(2 -j λ(d -d m )/2)| ψ(λ)| 2 dλ.
Then there exists a constant C 0 depending on β,

min i d i , max i d i , Ω, φ(•) and ψ(•) such that |θ ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2)K j (d + d m )| C 0 L2 (d +d m -β)j . ( 4 
)
Note that the second order approximation of the spectral density depends on j also through the function K j . The following proposition is deriving a first order approximation so that its logarithm is linear in j.

Proposition 2. Let K(•) be defined by

K(δ) = ∞ -∞ |λ| -δ | ψ(λ)| 2 dλ, δ ∈ (-α, M).
Under assumptions (W1)-(W5), there exists a constant C depending on β, min i d i , max i d i , Ω, φ(•) and ψ(•) such that, for all j 0, for all , m = 1, . . . , p,

|θ ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2)K(d + d m )| CL2 (d +d m -β)j . ( 5 
)
Observe that the approximation (5) shows that the difficulty with the case of multivariate longmemory processes is the appearance of a phase-shift that has to be taken into account for the estimation of the covariance Ω. Indeed, θ ,m (j) is proved to be close to a term proportional to cos(π(d

-d m )/2). Then, if d ∈ [-1/2, 1/2] and d m = 2k + 1 + d S with k ∈ N, Proposition 2
implies that for all j, θ ,m (j) is negligible, meaning that the covariance of the wavelet coefficients is close to zero. Consequently, using the covariance of the wavelet coefficients does not allow to estimate the matrix Ω accurately. This example corresponds to a covariance-stationary process X and a process X m such that ∆X m is covariance stationary, both with the same long-memory parameter d . We show in what follows that the consistency of the long memory parameters is not affected by bias in the estimation of Ω.

The covariance behaviour for the between scale process is derived in the following proposition.

Proposition 3. For all j 0, u 0 and λ ∈ (-π, π), we define

D (j) u;τ (λ; f ,m (•)) = ∑ t∈Z f ,m (2 -j (λ + 2tπ))2 -j H j (2 -j (λ + 2tπ))H * j-u (2 -j (λ + 2tπ))e -i2 -u τ(λ+2tπ) D u,τ (λ; δ) = ∑ t∈Z |λ + 2tπ| -δ ψ * (λ + 2tπ)2 -u/2 ψ(2 -u (λ + 2tπ))e -i2 -u τ(λ+2tπ) and K u,τ (v; δ) = π -π D u,τ (λ; δ)e iλv dλ.
Then for all j 0, for all u, v 0, τ = 0, . . . , 2 u -1,

Cov(W j,k ( ), W j-u,2 -u k +τ (m)) = π -π D (j) u;τ (λ; ( , m))e iλ(k-k ) dλ.
Under assumptions (W1)-(W5), there exists a constant C depending on β, min i d i , max i d i , Ω, φ(•) and ψ(•) such that, for all j 0, for all u, v 0, τ = 0, . . . , 2 u -1, for all λ ∈ (-π, π),

D (j) u;τ (λ; f ,m (•)) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2) D u,τ (λ; d + d m ) CL2 (d +d m -β)j .
and

Cov[W j,k ( )W j-u,2 -u k +τ (m)] -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2)K u,τ (k -k ; d + d m ) CL2 (d +d m -β)j .
When u = 0 and 2 u k + τ = k, the quantity K 0,0 (0

; d + d m ) is equal to ∞ -∞ |λ| -(d +d m ) | ψ(λ)| 2 dλ. Let us remark that K 0,0 (0; •) is equal to the function K(•) defined in Proposition 2.

Wavelet Whittle estimation

Let j 1 j 0 1 be respectively the maximal and the minimal resolution levels that are used in the estimation procedure. The estimation is based on the vectors of wavelets coefficients W j,k , j 0 j j 1 , k ∈ Z .

The wavelet Whittle approximation of the negative log-likelihood is denoted by L(•). The criterion corresponds to the negative log-likelihood of Gaussian vectors (W j,k ( )) j,k, . [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent stationary gaussian time series[END_REF]; [START_REF] Hannan | The asymptotic theory of linear time-series models[END_REF] prove that the Whittle approximation is giving satisfactory results for nongaussian processes. In our framework, the wavelet Whittle criterion is defined as,

L(G(d), d) = 1 n j 1 ∑ j=j 0 n j log det Λ j (d)G(d)Λ j (d) + n j ∑ k=0 W T j,k Λ j (d)G(d)Λ j (d) -1 W j,k , (6) 
where Λ j (d) and the matrix G(d) are obtained with Proposition 2,

Λ j (d) = diag 2 jd and the ( , m)-th element of the matrix G(d) is G ,m (d) = Ω ,m K(d + d m )cos(π(d -d m )/2).
For each j 0, the quantity

∑ k W T j,k Λ j (d)G(d)Λ j (d) -1 W j,k has a dimension equal to 1 and is equal to its trace. Thus, L(G(d), d) = 1 n j 1 ∑ j=j 0 n j log det Λ j (d)G(d)Λ j (d) + trace Λ j (d)G(d)Λ j (d) -1 I(j) , (7) 
where

I(j) = ∑ n j k=0 W j,k W T j,k .
Note that this expression is very similar to the multivariate Fourier Whittle estimator of [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF]. Here we replace the periodogram by the wavelet scalogram I(j).

Remark. In Fourier analysis, e.g. [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF], the periodogram is normalized. In wavelet analysis, the normalization factor may depend on the resolution j, and the scalogram is not normalized. For every j the scalogram I(j) should be normalized by n j . In the remainder of the paper, we will keep the initial I(j) for convenience.

Deriving expression (7) with respect to the matrix G yields

∂L ∂G (G, d) = 1 n j 1 ∑ j=j 0 n j G -1 -G -1 Λ j (d) -1 I(j)Λ j (d) -1 G -1 .
Hence, the minimum for fixed d is attained at

G(d) = 1 n j 1 ∑ j=j 0 Λ j (d) -1 I(j)Λ j (d) -1 . ( 8 
)
Replacing G(d) by G(d), the objective criterion is defined as

R(d) := L( G(d), d) -1 = log det( G(d)) + 1 n j 1 ∑ j=j 0 n j log(det Λ j (d)Λ j (d) , = log det( G(d)) + 2 log(2) 1 n j 1 ∑ j=j 0 jn j p ∑ =1 d . ( 9 
)
The In a second step of estimation we define G( d), estimator of G(d). Finally applying the correction of phase-shift yields the estimation of the covariance matrix Ω

Ω ,m = G ,m ( d)/(cos(π( d -d m )/2)K( d + d m )). (10) 
Equation ( 10) is correctly defined as the probability that dd m is exactly congruent to 1 modulo 2 is null. Consequently estimator Ω is defined almost surely. Yet, empirically when dd m is close to 1 modulo 2, the estimation of Ω may be strongly biased.

Main results

In the above, we have defined the MWW estimator, the following section deals with the asymptotic behaviour of the estimators. The consistency of the estimators is established, under a condition which controls the variance of the empirical wavelet cross-covariances. The first part of this section introduces this condition and characterizes a class of processes for which it is satisfied. The second part details the asymptotic results of convergence.

Additional condition

The following condition is an additional assumption, which gives an asymptotic control of the wavelet scalogram.

Condition (C)

For all , m = 1, . . . , p, sup

n sup j 0 1 n j 2 2j(d +d m ) Var (I ,m (j)) < ∞
This condition is slightly more restrictive than condition (9) of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] in a univariate framework, where their spectral density of the process is only defined on a neighbourhood of zero.

The following proposition gives a class of multivariate processes such that Condition (C) holds.

Proposition 4. Suppose that there exists a sequence {A(u)} u∈Z in R p×p such that

∑ u A(u) 2 ∞ < ∞ and ∀t, ∆ D X(t) = µ + ∑ u∈Z A(t + u)ε(t)
with ε(t) weak white noise process, in R p . Let F t-1 denote the σ-field of events generated by {ε(s), s t -1}. Assume that The proof is given in appendix B.

ε satisfies E[ε(t)|F t-1 ] = 0, E[ε a (t)ε b (t)|F t-1 ] = 1 1 a=b and E[ε a (t)ε b (t)ε c (t)ε d (t)|F t-1 ] = µ a,b,c,d with |µ a,b,c,d | µ ∞ < ∞,
This assumption of a Cramer-Wold type decomposition of the process X with a linear fourth-order stationary process was made among others by [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF], [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF], [START_REF] Giraitis | Rate optimal semiparametric estimation of the memory parameter of the gaussian time series with long-range dependence[END_REF], or Theorem 1 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF]. As discussed in [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF], there exist models with density (1), where the condition (C) is not satisfied, however, it is not particularly restrictive.

Convergence

We suppose that we have N observations of a multivariate p-vector process X, namely X(1), . . . X(N) with a spectral density satisfying approximation (2) around the zero frequency. For given functions (φ(•), ψ(•)), and for given levels 0 j 0 j 1 , the estimator of d is the argument minimizing R, defined by ( 9), and the matrix G is estimated by G( d) defined by ( 8). From now on, we will add the superscript 0 to denote the true parameter values, d 0 and G 0 .

The following assumptions on the resolution levels j 0 and j 1 will be needed throughout the paper. We assume that either the difference j 1j 0 is constant or it tends to infinity as N tends to infinity.

The following result shows the consistency of the estimators and the rate of convergence. The proofs are given in Appendix.

Theorem 5. Assume that (W1)-(W5) and Condition (C) hold. If j 0 and j 1 are chosen such that 2 -j 0 β + N -1/2 2 j 0 /2 → 0 and j 0 < j 1 j N with j N = max{j, n j 1}, then

d -d 0 = o P (1).
This result generalises that of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF]. It deals with multivariate settings, with the same assumption on the wavelet filter and on the choice of the scale j 0 . The condition in Theorem 5 is equal to the one obtained in Proposition 9 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF], in the univariate case, that is 1/j 0 + N -1/2 2 j 0 /2 → 0. We choose here to express the condition with the parameter β since the optimal choice of j 0 depends on β as it is shown in Corollary 7 below.

The convergence of G( d) to G 0 is not established under assumptions of Theorem 5. However, we prove it in the following theorem, under more restrictive conditions. Theorem 6. Assume that (W1)-(W5) and Condition (C) hold. If j 0 and j 1 are chosen such that log(N) 2 (2 -j 0 β + N -1/2 2 j 0 /2 ) → 0 and j 0 < j 1 j N then

d -d 0 = O P (2 -j 0 β + N -1/2 2 j 0 /2 ), ∀( , m) ∈ {1, . . . , p} 2 , G ,m ( d) -G ,m (d 0 ) = O P (log(N)(2 -j 0 β + N -1/2 2 j 0 /2 )), Ω ,m -Ω ,m = O P (log(N)(2 -j 0 β + N -1/2 2 j 0 /2 )).
The condition in Theorem 6 is slightly different from Theorem 3 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF]. Our result presents an additional log(N) term due to technical simplifications in the proof. However, it may be suppressed by adding technical details. The same arguments apply for the log(N) term appearing in the rate of the convergence of the matrix.

The optimal rate is then expressed by balancing the two terms appearing in the bound above.

Corollary 7. Assume that (W1)-(W5) and Condition (C) hold. Taking

2 j 0 = N 1/(1+2β) , d -d 0 = O P (N -β/(1+2β) ).
This corresponds to the optimal rate [START_REF] Giraitis | Rate optimal semiparametric estimation of the memory parameter of the gaussian time series with long-range dependence[END_REF]. Fourier Whittle estimators in [START_REF] Lobato | A semiparametric two-step estimator in a multivariate long memory model[END_REF] and [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF] obtained the rate m 1/2 where m is the number of discrete frequencies used in the Fourier transform. When m ∼ cN ζ with a positive constant c, the convergence is obtained for 0 < ζ < 2β/(1 + 2β). Wavelet estimators thus give a slightly better rate of convergence.

Result of Corollary 7 stresses that it is necessary to fix the finest frequency j 0 in the wavelet procedure at a given scale depending on the regularity β of the density f S (•). A possible extension is to develop an estimation which is adaptive relatively to the parameter β. This is done e.g. in univariate Fourier analysis by [START_REF] Iouditsky | Adaptive estimation of the fractional differencing coefficient[END_REF]. However, this topic exceeds the scope of this paper.

Further results on asymptotic normality, and in particular the asymptotic variance of the estimators, would give important information to quantify the quality of the estimators. In particular it would give a theoretical mean of comparison between the Fourier-based and the wavelet-based approaches or between the univariate and the multivariate estimations of d. This work is in progress and will be established in a future paper. Here, the comparison is done with a simulation study.

Simulations

In this section, simulated data are used to study the behaviour of the proposed procedure using one illustrative example. An extensive simulation study would exceed the scope of this paper, and will be provided in a future paper. Here, we consider an ARFI MA(0, d, 0) with a long-run correlation matrix Ω = A set of different values of d is considered. The choices are restricted to settings where the two components of the processes share the same order of stationarity. Indeed, it seems natural that time series measuring similar phenomena have similar stationary properties. We simulated both stationary and nonstationary ARFIMA processes, d 1 = 0.2 and d 1 = 1.2. Our MWW estimator is shown to be consistent and the quality increases when |ρ| increases. We also conducted a comparison between our estimators and multivariate Fourier Whittle (MFW) estimators developed by [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF] for stationary processes only. In nonstationary cases, [START_REF] Nielsen | Local Whittle estimation of multi-variate fractionally integrated processes[END_REF] proposed a similar approach based on the extended Fourier transform of [START_REF] Abadir | Nonstationarity-extended local Whittle estimation[END_REF]. However in our simulations, this approach gives satisfactory results only for d < 1.5.

A wavelet-based procedure with M vanishing moments should be compared with an estimation based on tapered Fourier of order M. Such a comparison has been driven in [START_REF] Faÿ | Estimators of long-memory: Fourier versus wavelets[END_REF] in one-dimensional settings. The authors established that wavelet-based estimation outperforms tapered Fourier estimation. Similar observations are expected in multivariate framework. Yet as multivariate Whittle estimation based on tapered Fourier transform has not been studied in literature, we choose not to display such a comparison.

It is worth pointing out that the main advantage of wavelets is their flexibility. Wavelet-based estimators can be applied for a large set of data, whatever the degree of stationarity is (if still smaller than the number of vanishing moments) and even if the processes contain polynomial trends which is very attractive for real data applications.

Parameters used for estimation.

The quality of estimation by wavelets relies on the choice of the wavelet bases. A trade-off is necessary between the number of vanishing moments and the support size of the wavelets. In time series analysis, the number of vanishing moments enables to consider polynomial trends or nonstationary time series, due to the constraint sup d M. Yet, the support size of the wavelet is proportional to the number of vanishing moments and increases the variance of estimation.

The wavelet basis used in this section is the Daubechies wavelet with M = 4 vanishing moments. Its regularization parameter is α = 1.91. In our framework, when considering stationary time series, we could also apply our procedure using Haar bases. Estimation based on Haar wavelet indeed gives better results, possibly better than Fourier (see e.g. [START_REF] Gencay | Multi-scale tests for serial correlation[END_REF] in the case of tests of serial correlation). As explained above a lower number of vanishing moments improves the quality of the wavelet-based estimators, see [START_REF] Faÿ | Estimators of long-memory: Fourier versus wavelets[END_REF] in the univariate case. Similar results are observed in multivariate estimations. They are not presented here for the sake of concision. As our goal is to propose a flexible method for real data application, we prefer to consider a higher vanishing moments bases to stress its flexibility.

The method is controlled by the scales j 0 and j 1 . The scale j 1 is fixed equal to log 2 (N) while j 0 is chosen so that the optimal mean square error is minimal. Increasing j 0 leads to a smaller bias but a higher variance since less coefficients are used in the estimation process, which may be controlled by an adaptive procedure. As stated by Theorem 5, the finest scales have to be removed from estimation to get rid of the presence of the short-range dependence f S (•). Similar considerations can be found in [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF] and [START_REF] Faÿ | Estimators of long-memory: Fourier versus wavelets[END_REF].

Concerning MFW estimation, the main parameter is the number m of frequencies used in the procedure. An usual choice in literature is m = N 0.65 (see e.g. [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF] or [START_REF] Nielsen | Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration[END_REF]). Additionally MFW estimators are evaluated using values of m giving the same number of Fourier coefficients than of wavelet coefficients. The final m kept is the one giving the optimal mean square error. The parallel between the number of wavelet scales and the number of Fourier frequencies has been discussed in [START_REF] Faÿ | Estimators of long-memory: Fourier versus wavelets[END_REF].

Measures of quality.

The quality of the estimators is measured by the bias, the standard deviation (std) and the RMSE which is equal to the square root of (bias 2 + std 2 ). In order to display an easy comparison between the univariate and the multivariate approaches, we compute the ratio between the RMSE obtained with the multivariate wavelet Whittle estimation and the RMSE obtained with univariate wavelet Whittle estimations. It is denoted by ratio M/U. A similar quantity is defined for the comparison with MFW estimation. We define ratio W/S to be the ratio between the RMSE respectively using wavelet-based estimators and Fourier-based estimators.

Estimation of the long-memory parameters d

Results for the estimation of d are presented in Table 1. The ratio M/U points out that the quality of estimation is increased with the multivariate approach with respect to the univariate procedure. When the series are correlated, it is better to use MWW estimators to infer the long-memory parameters. The estimation is still satisfactory in nonstationary settings.

Table 2 displays the results of the MFW estimators described in [START_REF] Shimotsu | Gaussian semiparametric estimation of multivariate fractionally integrated processes[END_REF]. With the usual number of frequencies m = N 0.65 in Fourier-based estimation, our wavelet-based procedure leads to lower RMSEs, as quantified by the ratio W/F. More precisely the good performance of our scheme of estimation is due to a lower variance, even if the bias is higher. With a higher number of frequencies in Fourier-based estimation, taking a value that minimizes the RMSE, the MWW estimators are no more preferable to MFW. Yet, the ratio W/F stays close to 1 and the analysis of the bias and variances reveals similar orders of magnitude.

Estimation of the long-run covariance Ω

This section deals with the estimation of the long-run covariance matrix Ω and the estimation of the correlation Ω 12 / √ Ω 11 Ω 22 . This latter quantity corresponds in literature to the power-law coherency between the two time series [START_REF] Sela | The averaged periodogram estimator for a power law in coherency[END_REF] or to the fractal connectivity [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF]. The results obtained in simulations for MWW estimation of the covariance and correlation are given in Table 3. The quality is satisfactory in all settings, especially in the stationary ones.

The results for MFW estimation are displayed in Table 4. When MFW is applied with m = N 0.65 frequencies, the ratio W/F is less than 1. Like for the estimation of d the good performance of MWW estimators is principally due to a smaller variance. When MFW estimators are implemented with a higher number of frequencies, giving optimal results for the estimation of d, the difference between MWW and MFW procedures decreases. The quality of the two estimation schemes are similar, with comparable values for bias and variances. 

Application on neuroscience data

We apply our approach to neuroscience data where the recorded data are typical example of multivariate long-range dependent time series. Researchers are interested in characterising the brain connectivity. Usually, the connectivity is evaluated using correlations at different frequencies between time series measuring the brain activity. We will show in this section that our method is perfectly adequate to deal with these real data.

The study concerns MEG data acquired from a healthy 43 year old woman studied during rest with eyes open at the National Institute of Mental Health Bethesda, MD using a 274-channel CTF MEG system VSM MedTech, Coquitlam, BC, Canada operating at 600 Hz. The data were previously used in [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF]. We consider N = 2 15 time points for each of the 274 time series.

Figure 1 displays the time series for arbitrary four channels. It is clear that they present nonlinear trends. Consequently, Fourier methods are not adequate to analyse such data, and methods based on wavelets are better to use. Our procedure was applied using scales 4 to 8. It corresponds to frequencies between 1 to 20 Hz. This choice was motivated by discussions with neuroscientists. It takes into account the presence of high-frequency noise which is modelled by f S (•). The data were preprocessed, and the lowfrequencies were removed. Figure 2 presents the results of the estimation of the long-memory parameters d and of the long-run covariance matrix Ω.

First, the histogram of the estimate d shows that the maximal difference between the values of the long-memory parameters is less than 0.5, and the problem of identifiability of Ω does not occur with these data. This allows us to give an estimate of the fractal connectivity. It is worth noticing that clusters appear in the correlation matrix. Most of them are situated along the diagonal, corresponding to spatially closed channels. Some channels are still correlated, even far from each others. It would be interesting to relate this result to a neuroscience interpretation. This will be investigated in future work. 

A Proof of Propositions 1, 2 and 3

This section deals with the proof of Propositions 1 and 2. The proof of Proposition 3 is based on similar arguments and is omitted.

The covariance between W j,k ( ) and W j,k (m) can be written with the cospectrum, θ ,m (j) = R Re( f ,m (λ))|H j (λ)| 2 dλ. Indeed as the cross-spectral density is Hermitian, its imaginary part is an odd function,

θ ,m (j) = Ω ,m R |2 sin(λ/2)| -(d +d m ) cos((πsign(λ) -λ)(d -d m )/2) f S ,m (λ)|H j (λ)| 2 dλ.
The sinus function being odd,

θ ,m (j) = Ω ,m cos(π(d -d m )/2) R |2 sin(λ/2)| -(d +d m ) cos(λ(d -d m )/2) f S ,m (λ)|H j (λ)| 2 dλ.
The proof is very similar to Theorem 1 of [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF]. Define the quantities A ,m (j) and R ,m (j),

A ,m (j) = Ω ,m 2 j cos(π(d -d m )/2) π -π |2 sin(λ/2)| -(d +d m ) cos(λ(d -d m )/2) f S ,m (λ)| φ(λ) ψ(2 j λ)| 2 dλ R ,m (j) = θ ,m (j) -A ,m (j)
Following the proof of [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF], we can rewrite A ,m (j),

A ,m (j) = Ω ,m 2 j cos(π(d -d m )/2) π -π g ,m (λ)|λ| -(d +d m ) cos(λ(d -d m )/2) f S ,m (λ)| φ(λ)| 2 | ψ(2 j λ)| 2 dλ with g ,m (λ) = 2 sin(λ/2) λ -(d +d m )
for all λ ∈ (-π, π).

• The assumption f S (•) ∈ H(β, L) states that f S ,m (λ) -1 L|λ| β for all λ ∈ (-π, π).

• Under assumption (W1) the function | φ(•)| 2 is infinitely differentiable and bounded on (-π, π).

• Using a Taylor expansion, the function g(•) belongs to H(2, L g ) with L g = sup ,m=1,...,p sup λ∈ (-π,π) |g ,m "(λ)| where g"(•) denotes the second derivative of g(•).

This implies that there exists a constant C φ,d depending on φ(•) and d such that

A ,m (j) -Ω ,m 2 j cos(π(d -d m )/2) π -π |λ| -(d +d m ) cos(λ(d -d m )/2)| ψ(2 j λ)| 2 dλ C φ,d L2 j π -π |λ| (β-d -d m ) | ψ(2 j λ)| 2 dλ.
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With a change of variable,

A ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2) 2 j π -2 j π |λ| -(d +d m ) cos(2 -j λ(d -d m )/2)| ψ(λ)| 2 dλ C φ,d L2 j(d +d m -β) -2 j π -2 j π |λ| (β-d -d m ) | ψ(λ)| 2 dλ.
Under assumptions (W2), there exists a positive constant

C ψ such that π -π |λ| (β-d -d m ) | ψ(λ)| 2 dλ C ψ ∞ -∞ |λ| (β+2α)-d -d m dλ. (W5) states that (β + 2α) -d -d m < 1,
the right-hand side of the inequality is bounded by a constant depending on ψ(•), β and min i=1,...,p d i . Using assumptions (W2) and (W5), we also have 1+β) dλ. The right-hand side is bounded by a constant depending on ψ and β. We obtain that there exists a constant C 0 depending on α, β, φ(•), ψ(•), min i=1,...,p d i and Ω ,m such that

|λ|>2 j π |λ| -(d +d m ) cos(2 -j λ(d -d m )/2)| ψ(λ)| 2 dλ C ψ |λ|>2 j π |λ| -(
A ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2)K j (d + d m ) C 0 L2 j(d +d m -β) , with K j (d , d m ) = ∞ -∞ |λ| -(d +d m ) cos(2 -j λ(d -d m )/2)| ψ(λ)| 2 dλ.
On the other hand, we can consider a first order approximation. Let

A ,m (j) = Ω ,m 2 j cos(π(d -d m )/2) π -π g ,m (λ)|λ| -(d +d m ) f S ,m (λ)| φ(λ)| 2 | ψ(2 j λ)| 2 dλ with now g ,m (λ) = 2 sin(λ/2) λ -(d +d m ) cos(λ(d -d m )/2) for all λ ∈ (-π, π).
Then a similar approximation is obtained,

A ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2) 2 j π -2 j π |λ| -(d +d m ) | ψ(λ)| 2 dλ C φ,d L2 j(d +d m -β) 2 j π -2 j π |λ| (β-d -d m ) | ψ(λ)| 2 dλ.
Using assumptions (W2) and (W5),

A ,m (j) -Ω ,m 2 j(d +d m ) cos(π(d -d m )/2)K(δ) CL2 j(d +d m -β) , with K(δ) = ∞ -∞ |λ| -(δ) | ψ(λ)| 2 dλ. Finally, R ,m (j) is bounded by R ,m (j) CL2 (d +d m -β)j
. This inequality follows from the approximation of the squared gain function of the wavelet filter given in Proposition 3 of [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF] and from similar arguments to those given for A ,m (j). We do not detail the proof here for the sake of concision and we refer to the proof of Theorem 1 in [START_REF] Moulines | On the spectral density of the wavelet coefficients of longmemory time series with application to the log-regression estimation of the memory parameter[END_REF].

B Proof of Proposition 4

Since the wavelet ψ admits M vanishing moments, at each scale j 0, the associated filter H j is factorised as H j (λ) = (1e iλ ) M H j (λ), with H j trigonometric polynomial, H j (λ) = ∑ t∈Z h j,t e itλ . Since M D, the wavelet coefficients may be written as

W j,k ( ) = ∑ t∈Z h j,2 j k-t (∆ D X )(t) = ∑ t∈Z B (j, 2 j k -t)ε(t),
where B (j, 2 j kt) = h j,2 j k-t (∆ M-D A )(t). For all = 1, . . . , p, the sequence {B (j, u)} u∈Z belongs to 2 (Z).

We first give a preliminary result on the second order moment of W j,k ( ),

E[W j,k ( ) 2 ] = ∑ t,t ∈Z ∑ a,b=1,...p B ,a (j, 2 j k -t)B ,b (j, 2 j k -t )E[ε a (t)ε b (t )].
Using the second-order properties of the process ε, the variance is equal to

E[W j,k ( ) 2 ] = ∑ t∈Z ∑ a=1,...p B ,a (j, 2 j k -t) 2 . ( 11 
) Consider now E[I ,m (j) 2 ], E[I ,m (j) 2 ] = E   ∑ k W j,k ( )W j,k (m) 2   = ∑ k,k ∑ t,t ,t",t" ∈Z ∑ a,b,c,d=1,...p B ,a (j, 2 j k -t)B m,b (j, 2 j k -t )B ,c (j, 2 j k -t")B m,d (j, 2 j k -t ) E[ε a (t)ε b (t )ε c (t")ε d (t )].
The fourth order behaviour of ε implies that

E[I ,m (j) 2 ] = ∑ k,k ∑ t∈Z ∑ a,b,c,d=1,...p µ a,b,c,d B ,a (j, 2 j k -t)B m,b (j, 2 j k + t)B ,c (j, 2 j k -t)B m,d (j, 2 j k -t) + ∑ k,k ∑ t =t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,a (j, 2 j k -t)B ,b (j, 2 j k -t )B m,b (j, 2 j k -t ) + ∑ k,k ∑ t =t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,b (j, 2 j k -t )B ,a (j, 2 j k -t)B m,b (j, 2 j k -t ) + ∑ k,k ∑ t =t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,b (j, 2 j k -t )B ,b (j, 2 j k -t )B m,a (j, 2 j k -t). As E[I ,m (j)] 2 = ∑ k,k ∑ t,t ∑ a,b B ,a (j, 2 j k -t)B m,a (j, 2 j k -t)B ,b (j, 2 j k -t )B m,b (j, 2 j k -t ), the
variance of the scalogramm satisfies,

Var(I ,m (j)) = ∑ k,k ∑ t∈Z ∑ a,b,c,d=1,...p µ a,b,c,d B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)B ,c (j, 2 j k -t)B m,d (j, 2 j k -t) + ∑ k,k E[W j,k ( )W j,k ( )]E[W j,k (m)W j,k (m)] + ∑ k,k E[W j,k ( )W j,k (m)]E[W j,k (m)W j,k ( )] -∑ k,k ∑ t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,a (j, 2 j k -t)B ,b (j, 2 j k -t)B m,b (j, 2 j k -t) -∑ k,k ∑ t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)B ,a (j, 2 j k -t)B m,b (j, 2 j k -t) -∑ k,k ∑ t ∑ a,b=1,...p B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)B ,b (j, 2 j k -t)B m,a (j, 2 j k -t).
Finally, 0,0 (λ; ( , )) Ω , 2 j2d D 0,0 (λ; 2d ) + CLπ2 (2d -β)j . Then, using Minkowski inequality

Var(I ,m (j)) V 1 + V 2 + V 3 with V 1 = | ∑ k,k E[W j,k ( )W j,k ( )]E[W j,k (m)W j,k (m)]|, V 2 = | ∑ k,k E[W j,k ( )W j,k (m)]E[W j,k (m)W j,k ( )]|, V 3 = (1 + µ ∞ ) ∑ k,k ∑ t∈Z ∑ a,b,c,d=1,...p |B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)B ,c (j, 2 j k -t)B m,d (j, 2 j k -t)|. Bounds V 1 and V 2 Proposition 3 states that Cov(W j,k ( ), W j,k ( )) = π -π e iλ(k-k ) D (j 
1 n j 2 2j(d +d m ) V 2 2(Ω 2 , I 0 (2d ) + C 2 L 2 π 2 2 -2βj ) 1/2 (Ω 2 m,m I 0 (2d m ) + C 2 L 2 π 2 2 -2βj ) 1/2 .
where

I 0 (δ) = π -π D 0,0 (λ; δ) 2 dλ. It follows that 1 n j 2 2j(d +dm ) V 1

is bounded by a constant independent of j and depending only on d, Ω, β, φ(•) and ψ(•).

Similar arguments apply to V 2 . Therefore 1

n j 2 2j(d +dm ) V 2 is bounded by π -π D 0,0 (λ;d +d m ) 2 dλ 2 2j(d +dm )
. By Proposition 3, 1 n j 2 2j(d +dm ) V 2 is bounded by a constant depending only on d, Ω, β, φ(•) and ψ(•).

Bound V 3

The quantity V 3 is equal to

(1 + µ ∞ ) ∑ k ∑ t∈Z t ∈{t+2 j (k-k ),k ∈Z} ∑ a,b,c,d=1,...p |B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)B ,c (j, 2 j k -t )B m,d (j, 2 j k -t )|.
Applying Minkowski inequality on V 3 ,

V 3 (1 + µ ∞ ) ∑ k ∑ t∈Z ∑ a,b=1,...p |B ,a (j, 2 j k -t)B m,b (j, 2 j k -t)|   ∑ t ∈{t+2 j k ,k ∈Z} ∑ c,d=1,...p B ,c (j, 2 j k -t ) 2   1/2   ∑ t ∈{t-2 j k ,k ∈Z} ∑ c,d=1,...p B m,d (j, 2 j k -t ) 2   1/2 . Hence, V 3 (1 + µ ∞ ) ∑ k ∑ t∈Z ∑ a,b=1,...p B ,a (j, 2 j k -t) 2 1/2 ∑ t∈Z ∑ a,b=1,...p B m,b (j, 2 j k -t) 2 1/2 ∑ t ∈Z ∑ c,d=1,...p B ,c (j, 2 j k -t ) 2 1/2 ∑ t ∈Z ∑ c,d=1,...p B m,d (j, 2 j k -t ) 2 1/2 .
Together with (11) the following inequality is obtained,

V 3 (1 + µ ∞ )n j p 2 θ , (j)θ m,m (j). To conclude 1 n j 2 2j(d +d m ) V 1 (1 + µ ∞ )p 2 θ , (j)θ m,m (j) 2 2j(d +d m ) . Condition (C) is proved since θ , (j)θ m,m (j) 2 2j(d +dm )
tends to a constant independent of j thanks to Proposition 2.

C Preliminary results

Let us take and m in 1, . . . , p, and define, for any sequence µ = {µ j , j 0},

S ,m (µ) = ∑ j,k µ j W j,k ( )W j,k (m) 2 j(d 0 +d 0 m ) -G 0 ,m = j 1 ∑ j=j 0 µ j I ,m (j) 2 j(d 0 +d 0 m ) -n j G 0 ,m . (12) 
Proposition 8. Assume that the sequences µ belong to the set {{µ j } j 0 , |µ j | 1

n j }. Under condition (C), sup {µ,|µ j | 1 n j } S ,m (µ) is uniformly bounded by 2 -j 0 β + N -1/2 2 j 1 /2 up to a multiplicative constant, that is, sup µ∈{(µ j ) j 0 , |µ j | 1 n j } {S ,m (µ)} = O P (2 -j 0 β + N -1/2 2 j 1 /2 ). Proof. S ,m (µ) is decomposed in two terms S (0) ,m (µ) and S (1) ,m (µ), S (0) ,m (µ) = j 1 ∑ j=j 0 µ j 1 2 j(d 0 +d 0 m ) ∑ k W j,k ( )W j,k (m) -θ ,m (j) , S (1) 
,m (µ) =

j 1 ∑ j=j 0 n j µ j θ ,m (j) 2 j(d 0 +d 0 m ) -G 0 ,m .
From Proposition 2,

|S

,m (µ)|

j 1 ∑ j=j 0 |µ j | ∑ k W j,k ( )W j,k (m) -n j θ ,m (j) , (13) 

|S

(1)

,m (µ)| C j 1 ∑ j=j 0 2 -βj n j |µ j |. ( 14 
)
Under the assumption |µ j | 1 n j , we have the inequality |S

(1)

,m (µ)| C ∑ j 1 j=j 0 2 -βj . The right-hand bound is equivalent to 2 -j 0 β up to a constant. Condition (C) gives E    sup {µ,|µ j | 1 n j } S (0) ,m (µ)    C j 1 ∑ j=j 0 n -1/2 j , with a positive constant C . As n j = N2 -j (1 + o(1)) the right-hand side of the inequality is equivalent to C N -1/2 2 j 1 /2 .
Proposition 9. Let 0 < j 0 j 1 j N . Assume that the sequences µ belong to the set S(q, γ, c) = {{µ j } j 0 , |µ j | c n |jj 0 + 1| q 2 (j-j 0 )γ ∀j = j 0 , . . . j 1 } with 0 γ < 1. Under condition (C), sup µ∈S (q,γ,c) S ,m (µ) is uniformly bounded by 2 -j 0 β + H(N -1/2 2 j 0 /2 ) up to a constant,

sup µ∈S (q,γ,c) {S ,m (µ)} = O P (2 -j 0 β + H γ (N -1/2 2 j 0 /2 )) with H γ (u) =      u if 0 γ < 1/2, log(1 + u -2 ) q+1 u if γ = 1/2, log(1 + u -2 ) q u 2(1-γ) if 1/2 < γ < 1.
In particular, for any 0 γ < 1, under the assumption 2 -j 0 β + N -1/2 2 j 0 /2 → 0, we have sup µ∈S (q,γ,c) {S ,m (µ)} = o P (1)

Proof. Under the assumptions of the proposition, one deduce from inequality (14) that, sup µ∈S (q,γ,c)

|S (1) ,m (µ)| cC 1 n j 1 ∑ j=j 0 n j 2 (-βj+γ(j-j 0 )) (j -j 0 + 1) q cC2 -βj 0 j 1 -j 0 ∑ i=0 2 -(1+β-γ)i (i + 1) q .
Proof. In order to evaluate the performances of the estimator of the long memory parameters, the first step consists in proving that the proposed estimator for d is consistent. The equivalent properties for Ω will be detailed in a second step. The proof is based on the following inequality,

R(d) -R(d 0 ) L(d -d 0 ) + ∆(d, d 0 ), (15) 
where L is a deterministic and convex function of d and the remaining term ∆ tends uniformly to zero in probability.

We first establish inequality (15). The difference between the criterion evaluated at d and at the true long-memory parameters is equal to

R(d) -R(d 0 ) = log det( G(d)) -log det( G(d 0 )) + 2 log(2)< J > ∑ d -d 0 where < J > = 1 n ∑ j 1 j=j 0 j n j and n = ∑ j 1 j=j 0 n j .
The equality can be rewritten as

R(d) -R(d 0 ) = log det 1 n j 1 ∑ j=j 0 Λ < J > (d -d 0 )Λ j (d) -1 I(j)Λ j (d) -1 Λ < J > (d -d 0 ) -log det( G(d 0 )) = log det 1 n j 1 ∑ j=j 0 Λ j-< J > (d -d 0 ) -1 Λ j (d 0 ) -1 I(j)Λ j (d 0 ) -1 Λ j-< J > (d -d 0 ) -1 -log det( G(d 0 )).
Define λ j (δ) = 2 -(j-< J >)δ for any j 0 and δ ∈ R.

Let us first recall Oppenheim's inequality (see e.g. page 480 of [START_REF] Horn | Matrix analysis[END_REF]).

Proposition 11 (Oppenheim's inequality). Let E and B be two semi-definite positive matrices. Then det(E • B) det(E) ∏ B , .

Let A be the following matrix,

A = 1 n j 1 ∑ j=j 0 Λ j-< J > (d -d 0 ) -1 Λ j (d 0 ) -1 I(j)Λ j (d 0 ) -1 Λ j-< J > (d -d 0 ) -1 .
Oppenheim's inequality will be applied to matrices B and E(dd 0 ) where the ( , m)-th element of B is defined by

B ,m = 1 n ∑ j 1 j=j 0 n j λ j (d -d 0 )λ j (d m -d 0 m ) and E(d -d 0 ) = A • B where B ,m = B -1 ,m . The relation A = E(d -d 0 ) • B holds. The ( , m)-th element of E(d -d 0 ) is equal to E ,m (d) = j 1 ∑ j=j 0 µ j, ,m (d -d 0 )I ,m (j)2 -j(d 0 +d 0 m ) with µ j, ,m (δ) = 2 -j(δ +δ m ) 2 < J >(δ +δ m ) ∑ j 1 a=j 0 n a 2 -a(δ +δ m ) 2 < J >(δ +δ m ) = 2 -j(δ +δ m ) ∑ j 1 a=j 0 n a 2 -a(δ +δ m )
.

• The matrix E can be expressed as E = ∑ j,k W j,k W j,k . Consequently E is positive semi-definite being the sum of positive semi-definite matrices.

• The matrix B satisfies B = ∑

j 1 j=j 0 M j M j with M j = n j n 1/2 Λ j-< J > (d -d 0 ) -1 . Thus B is also positive semi-definite.
Oppenheim's inequality implies log det(A) log det(E(d

-d 0 )) + ∑ log B , . Define L(d -d 0 ) := ∑ p =1 log B , . As we have j 1 ∑ j=j 0 n j λ j (δ)λ j (δ) = ∑ j n j 2 -2jδ 2 2< J >δ = 2 2< J >δ j 1 ∑ j=j 0 n j 2 -2jδ ,
the function L satisfies the following equality,

L(d -d 0 ) = p ∑ =1 log(2 2< J >(d -d 0 ) ) + log( 1 n j 1 ∑ j=j 0 n j 2 -2j(d -d 0 ) ) .
It is easily seen that each term of the sum corresponds to the criterion defined in Proposition 6 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF]. The sequence ν belongs to the set S(0, 0, 1). Applying Proposition 9, the convergence is proved when 2 -j 0 β + N -1/2 2 j 0 /2 → 0.

E ,m (d -d 0 ) = j 1 ∑ j=j 0 µ j, ,m (d -d 0 )I ,m (j)2 -j(d 0 +d 0 m ) where µ j, ,m (δ) = 2 -j(δ +δ m ) ∑ a n a 2 -a(δ +δ m ) . As ∑ j 1 j=j 0 n j µ j, ,m (δ) = 1, the quantity E ,m (d -d 0 ) is written as E ,m (d -d 0 ) = G 0 ,m + ∑ j,k µ j, ,m (d -d 0 ) W j,k ( )W j,k (m) 2 j(d 0 +d 0 m ) -G 0 ,m where G 0 ,m = Ω ,m K(d + d m ) cos(π(d 0 -d 0 m )/2). Above expression is equal to E ,m (d -d 0 ) = G 0 ,m + S ,m (µ ,m (d -d 0 )) with S ,m ( 
The consistency has been established in Proposition 10 under the condition 2 -j 0 β + N -1/2 2 j 1 /2 → 0.

The objective is to weaken this condition in order to prove Theorem 5. The scheme of the proof is a generalization of the proof of Proposition 9 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] to multivariate cases.

The only step in the proof of Proposition 10 that needs the assumption 2 -j 0 β + N -1/2 2 j 1 /2 → 0 is the convergence study of E ,m (dd 0 ) to G 0 ,m . The proof of Theorem 5 consists in proving that d > d 0 -1/2 in probability in order to obtain a weaker convergence assumption for E ,m (dd 0 ) applying Proposition 9.

D.2 Lower bound of the estimate

We proceed to show first that there exists d min such that for all = 1, . . . , p, we have d 0 -1/2 < d min < d 0 and P inf j 1 j 0 +2 d d min tends to 0 when N goes to infinity. The proof is recursive.

STEP 1.

We introduce α defined by

α j, ,m =      1 n 2 -(j-< J >)(d -d 0 +d m -d 0 m ) if j 0 < j < J >, 1 n 2 -(j-< J >)(d min -d 0 +d min m -d 0 m ) if < J > < j j 1 , 0 otherwise
where the vector d min is taken such that ∀ = 1, . . . , p, d 0 -1/2 < d min < d 0 and lim inf

n→∞ inf {d, d d min } inf j 1 =j 0 ,...,j N j 1 ∑ j=j 0 n j α j, , > 1. ( 16 
)
Let be a given index in {1, . . . , p}. Following similar arguments as in [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] when showing their formula (59), one can find d min satisfying condition ( 16).

The quantity

R(d) -R(d 0 ) is equal to R(d) -R(d 0 ) = log det A(α(d -d 0 )) -log det G(d 0 ) with A ,m (α) = j 1 ∑ j=j 0 α j, ,m I ,m (j) and α j, ,m (δ) = 1 n 2 -(j-< J >)(δ +δ m ) .
We first want to establish that for all d in {d, ∀ d d min } we have R(d) -R(d 0 ) log det A( α)log det G(d 0 ). To this aim we will use a generalization of Corollary 7.7.4 of [START_REF] Horn | Matrix analysis[END_REF].

Proposition 12. Let A and B be two positive semi-definite matrices of C p×p . Suppose A -B is positive semi-definite. Then det A det B.

Proof. We distinguish two cases:

• Suppose det A = 0. Then there exists a unitary vector x ∈ R p such that x T Ax = 0. Using the fact that A -B is positive semi-definite, we have x T (A -B)x = -x T Bx 0 which implies x T Bx = 0 since B is positive semi-definite. Thus det B = 0 = det A.

• Suppose det A > 0. If det B = 0, inequality det B det A holds. If det B > 0, since A -B is
positive semi-definite we apply Corollary 7.7.4 of [START_REF] Horn | Matrix analysis[END_REF] which concludes the proof.

Moreover to prove the positive semi-definiteness of the matrices we will use the Schur product theorem (see e.g. page 458 of [START_REF] Horn | Matrix analysis[END_REF]).

Proposition 13 (Schur product theorem). Let B 1 and B 2 be two positive semi-definite matrices of C p×p , then B 1 • B 2 is also positive semi-definite.

Let j 0. The matrix B 1 (j) = (2 j(d 0 +d 0 m ) I ,m (j)) ,m is positive semi-definite since it can be written as W(j) T W(j). The matrix We now study the behaviour of log det A( α)log det G(d 0 ). First, we have proved previously (see end of section D.1) that log det G(d 0 ) tends uniformly in d to log det G 0 . Second, we decompose A( α) in A( α) = G + S( α) with the elements of S( α) defined in equation ( 12) and G ,m = ∑ j n j α j, ,m G 0 ,m . We distinguish the study of the two terms.

B 2 = (α j, ,m (d -d 0 ) -α j, ,
• As < J > ∼ j 0 , for sufficiently large N there exists a positive constant c such that

| α j, ,m | c n 2 (j-j 0 )(d 0 -d min +d 0 m -d min m ) .
Consequently, for all ( , m), the sequence α ,m belongs to S(0, γ, c) with γ = 2 sup a (d 0 ad min a ). As the vector d min satisfies that for any = 1, . . . , p, we have d 0 -1/2 < d min d 0 , then 0 γ < 1/2. Applying Proposition 9 we deduce that S( α) tends to 0 in probability uniformly in d.

We have established that there exists d min such that for all = 1, . . . , p, d 0 -1/2 < d min < d 0 and P sup j 1 j 0 +2 d d min tends to 0 when N goes to infinity.

Let d be a R p -vector satisfying d d min for all = 1, . . . , p. Recall that

E ,m (d) = G 0 ,m + S ,m (µ ,m (d -d 0 )) whith µ j, ,m (δ) = 2 -j(δ +δ m ) ∑ j j 0 n j 2 -j (δ +δ m ) . ( 18 
)
We bound the sequence µ as follows:

|µ j, ,m (d -d 0 )| 2 (j-j 0 )(d 0 -d min +d 0 m -d min m ) ∑ j 1 j =j 0 n j 2 (j -j 0 )(d 0 -d +d 0 m -d m ) n -1 j 0 2 (j-j 0 )(d 0 -d min +d 0 m -d min m ) .
Since n j 0 ∼ N2 -j 0 and n ∼ N2 -j 0 (2 -2 j 1 -j 0 ) there exist N sufficiently large such that n -1

j 0 2n -1 .
We introduce γ = sup =1,...,p d 0d min . Then for all ( , m), µ ,m (dd 0 ) belongs to S(0, 2γ, 2). We have 0 γ < 1/2 with a probability tending to 1. Applying Proposition 9 we deduce that

E ,m (d -d 0 ) → G 0
,m uniformly in d with a probability tending to 1. Following the proof of Proposition 10 with this result, we obtain Theorem 5.

It remains to consider the case where we do not have j 1 j 0 + 2. Since we supposed j 1j 0 is an increasing sequence of N, Proposition 10 holds, which concludes the proof.

E Rate of convergence

In order to obtain the optimal rate of convergence, we first prove the convergence with a suboptimal rate. Based on this result, we are able to obtain feasible conditions under which the rates of Theorem 6 hold.

E.1 Convergence with a suboptimal rate

We shall now establish a first rate of convergence which is not optimal but which will be useful to derive conditions for the optimal rate. Proposition 14. Assume that (W1)-(W5) and Condition (C) hold. If in addition j 0 is chosen such that 2

-j 0 β + N -1/2 2 j 0 /2 → 0 then d -d 0 = O P (N -1/4 2 j 0 /4 + 2 -βj 0 /2 ).
Proof. The proof is based on inequality (15). The procedure is to find a lower bound for R(d) -R(d 0 ) on the set {d, max =1,...,p |dd 0 | < 1/4}. By Theorem 5, dd 0 goes to 0 in probability. Therefore, for sufficiently large N, we have max

=1,...,p | d -d 0 | < 1/4.
First, a second order Taylor expansion of L(dd 0 ) at the neighbourhood of 0 for d

0 -1/4 < d d 0 is L(d -d 0 ) = d 2 L(u) du 2 u (d -d 0 ) 2 + o(max =1,...,p |d -d 0 | 2 ) with |u| 1/4. Proposition 6
of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] states that lim inf

N→∞ inf u∈[-1/2,0] inf j 1 =j 0 +1,...,j N d 2 L(u) du 2 u > 0. Thus for d 0 -1/4 < d d 0 + 1/4, there exists c > 0 such that L(d -d 0 ) > c ∑ p =1 (d -d 0 ) 2 + o(max =1,...,p |d -d 0 | 2 ).
We now want to establish an upper bound for ∆(d, d 0 ). This quantity satisfies

∆(d, d 0 ) = log det(I + G 0-1 S(µ(d -d 0 ))))
where S(µ(dd 0 )) is the matrix with ( , m)-th element S ,m (µ(dd 0 )) defined in (12) and µ j, ,m (•) defined in (18). Thus, ∆(d, d 0 ) = log(∏ p i=1 λ i ) where (λ i ) i=1,...,p denote the eigenvalues of the semidefinite positive matrix G

0-1 S(µ(d -d 0 )). Hence 0 ∆(d, d 0 ) trace(G 0-1 S(µ(d -d 0 ))).
Since max =1,...,p |dd 0 | → 0, for N sufficiently large the quantity γ = max =1,...,p |dd 0 | satisfies 0 γ < 1/4. As established previously, for all ( , m), µ ,m (dd 0 ) belongs to S(0, 2γ, 2). Then for all ( , m), S ,m (µ ,m (d

-d 0 )) = O P (2 -j 0 β + N -1/2 2 j 0 /2 ) uniformly in d ∈ [d 0 -1/4, d 0 ] applying Proposition 9. Hence ∆(d, d 0 ) = O P (2 -j 0 β + N -1/2 2 j 0 /2 ). Inequality (15) thus gives R(d) -R(d 0 ) c p ∑ =1 (d -d 0 ) 2 + o(max |d -d 0 | 2 ) + O P (2 -j 0 β + N -1/2 2 j 0 /2 )
with c > 0. It follows that for all = 1, . . . , p, ( dd 0 ) 2 = O P (2 -j 0 β + N -1/2 2 j 0 /2 ).

E.2 Proof of Theorem 6

The criterion R is equal to R

(d) = log det Λ < J > (d) G(d)Λ < J > (d) -1. It is straightforward that d = argmin d R(d) satisfies d = argmin d R(d) with R(d) = log det G(d) (19) 
and

G(d) = Λ < J > (d -d 0 ) G(d)Λ < J > (d -d 0 )
The Taylor expansion of R at d at the neighbourhood of d 0 gives

R( d) -R(d 0 ) = ∂R(d) ∂d d 0 (d -d 0 ) + ( d -d 0 ) T ∂ 2 R(d) ∂d∂d T d ( d -d 0 ) ( 20 
)
where

d is such that d -d 0 d -d 0 .
The derivatives of the criterion R(d) are equal to

∂R(d) ∂d a = trace G(d) -1 ∂G(d) ∂d a (21) ∂ 2 R(d) ∂d a ∂d b = -trace G(d) -1 ∂G(d) ∂d b G(d) -1 ∂G(d) ∂d a + trace G(d) -1 ∂ 2 G(d) ∂d a ∂d b (22) 
when G(d) -1 exists.

E.2.1 Study of G and its derivatives

To study the asymptotic behaviour of the derivatives of the criterion it is necessary first to study the asymptotic behaviour of G and of its derivatives.

For any a = 1, . 

-log(2) 1 n j 1 ∑ j=j 0 (j -< J >)Λ < J > (d -d 0 )Λ j (d) -1 (i a I(j) + I(j)i a )Λ j (d) -1 Λ < J > (d -d 0 ).
And the second derivative, with respect to d a and d b , where ω

∂ 2 G(d) ∂d a ∂d b = log(2) 2 Λ < J > (d -d 0 ) 1 n j 1 ∑ j=j 0 (j -< J >) 2 Λ j (d) -1 (i b i a I(j) + I(j)i a i b + i b I(j)i a + i a I(j)i b ) Λ j (d) -1 Λ < J > (d -d 0 ) ( 
(0) j, ,m (d -d 0 ) = 1 n 2 -(j-< J >)(d -d 0 +d m -d 0 m ) .
Recall that < J > = (j 0 + η j 1 -j 0 )(1 + o(1)) with 0 η j 1 -j 0 1. Let d be a R p -vector such that for all = 1, . . 2 γ 2 (j-j 0 )γ . For N N γ , the sequence

ω (0)
,m ( dd 0 ) belongs to S(0, γ, 2 γ ). Proposition 9 shows that S ,m (ω (0)

,m (dd 0 )) tends to zero when 2 -j 0 β + N -1/2 2 j 0 /2 → 0 uniformly in d.

Finally, we shall prove that ∑ where ω

(1) j (δ) = 1 n (j -< J >)2 -(j-< J >)(δ +δ m ) .

We first study the behaviour of ∑ Let d be in a neighbourhood of d 0 such that sup |dd 0 | < γ with 0 γ < 1/2. As < J > ∼ j 0 + η j 1 -j 0 with 0 η j 1 -j 0 1, there exists N 0 such that for any N N 0 the sequence ω (1) (dd 0 ) belongs to S(1, γ, 2 γ ). Thanks to Proposition 9 it comes that S a,b (ω (1) (dd 0 )) = O P 2 -j 0 β + N -1/2 2 j 0 /2 uniformly on the neighbourhood. Consequently, ∂G(d) a,b = O P 2 -j 0 β + N -1/2 2 j 0 /2 . Or more generally,

∂G(d) ∂d a d 0 = i a C (1) + C (1) i a , ( 25 
)
where each term of the matrix C (1) is O P 2 -j 0 β + N -1/2 2 j 0 /2 . where ω

Convergence of

∂ 2 G a,b (d)
(2) j,a,b (δ) = 1 n (j -< J >) 2 2 -(j-< J >)(δ a +δ b ) .

First, we want to prove that

j 1 ∑ j=j 0 n j ω (2) j,a,b (d -d 0 ) = κ j 1 -j 0 (1 + o P (1)). ( 26 
)
Recall κ j 1 -j 0 = 1 n ∑ j 1 j=j 0 (j -< J >) 2 n j . Since |2 a -1| 2 |a| -1 log(2)|a|2 |a| for all a ∈ R, we have the inequality 26) holds when log(N) max =1,...,p |dd 0 | → 0. Due to Proposition 14 it is sufficient that log(N) 2 (2 -j 0 β + N -1/2 2 j 0 /2 ) → 0.

Let d be in a neighbourhood of d 0 such that sup |dd 0 | < γ with 0 γ < 1/2. As < J > ∼ j 0 + η j 1 -j 0 with 0 η j 1 -j 0 1, there exists N 0 such that for any N N 0 the sequence ω (2)

a,b = O P (2 -j 0 β + N -1/2 2 j 0 /2 ). When a = b,

trace G 0-1 (i b i a G 0 + i b G 0 i a + i a G 0 i b + G 0 i a i b ) = 2(1 + G 0(-1) a,a
G 0 a,a ). 

The matrix G 0-1 • G 0 is positive definite using Schur product theorem (Proposition 13) and hence the matrix G 0-1 • G 0 + I p is invertible.

  vector of the long-memory parameters d is estimated by d = argmin d R(d). The estimator d is exactly equal to the one introduced in Moulines et al (2008) when the matrix Ω is diagonal corresponding to univariate setting.

  for all a, b, c, d = 1, . . . , p. Then, under assumptions (W1)-(W5), Condition (C) holds.

  ρ = 0.4. The proposed multivariate wavelet Whittle (MWW) estimators are computed for N = 512 observations and 1000 Monte-Carlo replications. A R package named multiwave is available and Matlab codes are available on request.

Figure 1 :

 1 Figure 1: MEG recordings for 4 arbitrary channels.

Figure 2 :

 2 Figure 2: Results obtained by MWW estimators on the MEG dataset: histogram of the estimated long-memory parameters d (a) and estimated fractal connectivity matrix (b).

  λ; ( , ))dλ is the v-th Fourier coefficient of the function D (j) 0,0 (•; 2d ). Consequently, Parseval theorem implies that ∑ v∈Z E[W j,k ( )W j,k+v ( )]E[W j,k (m)W j,k+v (m)] (λ; (m, m))dλ. The approximation given in Proposition 3 yields D (j)

Inequality ( 15 )

 15 follows with ∆(d, d 0 ) = log det(E(dd 0 ))log det( G(d 0 )). We will now control the two terms in the right-hand side inequality (15). Control of L. L(dd 0 ) is a multivariate extension of the criterion studied in Proposition 6 of Moulines et al (2008). It is convex, positive and minimal at d = d 0 . Control of ∆. We shall prove that both log det E(dd 0 ) and log det( G(d 0 )) tend uniformly to log det(G 0 ) for d ∈ R p . • The ( , m)-th element of the matrix E(dd 0 ) is equal to

  µ) defined previously in equation (12). Since sup d |µ j (dd 0 )| • Finally we shall establish that log det G(d 0 ) tends to log det(G 0 ). Recall G ,m (d 0 ) = G 0 ,m + S ,m (ν) where ν j = 1 n .

  m ) ,m has positive terms for all d ∈ {d, ∀ d d min } and it is thus positive semi-definite. Applying Proposition 13, we obtain that B(j) = B 1 (j) • B 2 (j) is positive semi-definite. A(α(dd 0 )) -A( α) is then positive semi-definite being the sum of positive semi-definite matrices. Similarly, it is easy to check that both A( α) and A(α(dd 0 )) are positive semi-definite. Consequently Proposition 12 gives log det A(α(dd 0 )) log det A( α). This result holds for all d satisfying ∀ , d d min .

  be given indexes in {1, . . . , p}. Any ( , m)-th element of the matrix G(d) satisfies G ,m (d) = G

  . , p, d d d 0 . As sup | dd 0 | = o P (1), for any γ ∈ (0, 1/2), there exists N γ such that for any N N γ , 2 -(j-< J >)(d -d 0 +d m -d 0 m )

  m (dd 0 ) → 1. Since |2 a -1| 2 |a| -1 log(2)|a|2 |a| for all a ∈ R, (2)|j -< J >| max =1,...,p |dd 0 |2 |j-< J >| max =1,...,p |d -d 0 | 2 log(N) max =1,...,p |dd 0 |2 2 log 2 (N) max =1,...,p |d -d 0 | .The last inequality is a consequence of j 0 j 1 j N = log 2 (N). Under assumption log(N) max =1,...,p | dd 0 | → 0, the right-hand side of the inequality goes to 0 when N goes to infinityb (d) = G 0 a,b (1 + o P (log(N) max |dd 0 |)) + o P (2 -j 0 β + N -1/2 2 j 0 /2 ). (24)Due to Proposition 14, it is sufficient that log(N) 2 (2-j 0 β + N -1/2 2 j 0 /2 ) → 0 to obtain sup {d, b (d) = G 0 a,b + o P(1). Thus for sufficiently large N, G(d) is invertible and G(d) -1 converges in probability to G 0-1 on the set {d, dd 0 dd 0 }. ω (1) (dd 0 ) + S a,b (ω (1) (dd 0 )) ,

  (2)|j -< J >| max =1,...,p |dd 0 |2 |j-< J >| max =1,...,p |d -d 0 | log(N) max =1,...,p |dd 0 |2 log 2 (N) max =1,...,p |d -d 0 | It is thus sufficient that log(N) max =1,...,p | dd 0 | → 0 to have ∑ j 1 j=j 0 n j ω (1) (dd 0 ) = o P (1).

  Finally considering similarly the other terms, when log(N) max =1,...,p | dd 0 | → 0, the equivalence ∂G(d) ∂d a d = o P (1) is fulfilled under assumptions of Theorem 6.In addition, when d = d 0 we have ∑

∂d a ∂d bda

  Let d be a R p -vector such that |d -d 0 | | dd 0 | for all = 1, . . . , p. The proof is derived for ∂ 2 G a,b (d) ∂d a ∂d b d a,b, for a = b. The argumentation is similar for the diagonal terms. Introducing a sequence S a,b (•), the expression (23) is rewritten as∂ 2 G a,b (d) ∂d a ∂d b d a,b = log(2) 2 2 < J >(d a +d b -d 0 ,b (dd 0 ) + S a,b (ω(2)a,b (dd 0 ))

  ,b (dd 0 )κ j 1 -j 0 | 2 log(2)κ j 1 -j 0 log 2 (N)|dd 0 |2 2 log 2 (N)|d-d 0 | . Equation (

  (dd 0 ) belongs to the set S(2, γ, 2 γ ). Using Proposition 9, S a,b (ω (2) a,b (dd 0 )) C(2 -j 0 β + N -1/2 2 j 0 /2 ) uniformly on the neighbourhood of d for N N 0 . As a consequence, ∂ 2 G a,b (d) ∂d a ∂d b d a,b = log(2) 2 κ j 1 -j 0 G 0 a,b (1 + o P (1)) + C

Finally

  a,b (d) ∂d a ∂d b d = log(2) 2 κ j 1 -j 0 i b i a G 0 + i b G 0 i a + i a G 0 i b + G 0 i a i b + o P (1) (27) when log(N) max =1,...,p | dd 0 | = o P (1) and 2 -j 0 β + N -1/2 2 j 0 /2 → 0.E.2.2 Second derivative of the criterionLet us detail the expression of the second derivative of R with respect to d at d,∂ 2 R(d) ∂d a ∂d b d = -trace G(d) -1 ∂G(d) ∂d b d G(d) -1 ∂G(d) ∂d a d + trace G(d) -1 ∂ 2 G(d) ∂d a ∂d b d .Using (24) and the previous study that established that∂G(d) ∂d a d = o P (1), the first term tends to 0 under assumptions of Theorem 6. Combining (24) and (27) we can assert that∂ 2 R(d) ∂d a ∂d b d tends in probability to log(2) 2 κ j 1 -j 0 trace G 0-1 (i b i a G 0 + i b G 0 i a + i a G 0 i b + G 0 i a i b ) the ( , m)-th element of G 0-1 . When a = b, trace G 0-1 (i b i a G 0 + i b G 0 i a + i a G 0 i b + G 0 i a i b ) = G

  = κ j 1 -j 0 2 log(2) 2 G 0-1 • G 0 + I p + o P (1).

Table 1 :

 1 Multivariate Whittle wavelet estimation of d for a bivariate ARFI MA(0, d, 0) with ρ = 0.4, N = 512 with 1000 repetitions.

			j 0 = 1.				j 0 = 2.
	d 1	d bias	std RMSE ratio M/U	d 1	d bias	std RMSE ratio M/U
	0.2 0.2 -0.0267 0.0413 0.0492	0.9080	1.2 1.2 -0.0380 0.0830 0.0913	0.9728
		-0.2 0.0379 0.0430 0.0574	1.0595		0.8 -0.0298 0.0775 0.0831	0.9643
		0.2 -0.0298 0.0428 0.0522	0.9631		1.2 -0.0360 0.0818 0.0894	0.9702
		0.0 -0.0002 0.0438 0.0438	0.9504		1.0 -0.0346 0.0808 0.0879	0.9626
		0.2 -0.0330 0.0456 0.0563	0.9713		1.2 -0.0463 0.0853 0.0970	0.9677
		0.2 -0.0333 0.0443 0.0554	0.9831		1.2 -0.0393 0.0850 0.0936	0.9688
		0.2 -0.0304 0.0429 0.0526	0.9583		1.2 -0.0369 0.0799 0.0880	0.9589
		0.4 -0.0571 0.0461 0.0734	0.9701		1.4 -0.0482 0.0863 0.0989	0.9648

Table 2 :

 2 

				m = N 0.876 = 236.
	d bias	std RMSE ratio W/F	d bias	std RMSE ratio W/F
	0.2 -0.0087 0.0707 0.0712	0.6908	0.2 -0.0174 0.0318 0.0362	1.3581
	-0.2 -0.0001 0.0824 0.0824	0.6958	-0.2 0.0158 0.0323 0.0359	1.5964
	0.2 -0.0037 0.0679 0.0680	0.7674	0.2 -0.0170 0.0315 0.0358	1.4558
	0.0 -0.0010 0.0778 0.0778	0.5630	0.0 -0.0025 0.0318 0.0319	1.3728
	0.2 -0.0078 0.0691 0.0695	0.8101	0.2 -0.0200 0.0321 0.0378	1.4875
	0.2 -0.0043 0.0733 0.0735	0.7546	0.2 -0.0189 0.0320 0.0372	1.4905
	0.2 -0.0038 0.0705 0.0706	0.7445	0.2 -0.0201 0.0325 0.0382	1.3759
	0.4 0.0012 0.0788 0.0788	0.9320	0.4 -0.0317 0.0366 0.0484	1.5169

Multivariate Whittle Fourier estimation of d for a bivariate ARFI MA(0, d, 0) with ρ = 0.4, N = 512 with 1000 repetitions. Two number of frequencies m are presented: the usual choice m = N 0.65 and the value giving the lower RMSE. x denotes the closest integer smaller than x. m = N 0.65 = 57.

Table 3 :

 3 Wavelet Whittle estimation of Ω for a bivariate ARFI MA(0, d, 0) with ρ = 0.4, N = 512 with 1000 repetitions.

			j 0 = 1.				j 0 = 2.
	d		bias	std RMSE	d		bias	std RMSE
	(0.2,-0.2)	Ω 1,1	0.0342 0.0710 0.0788	(1.2,0.8)	Ω 1,1	0.0037 0.1473 0.1474
		Ω 1,2	0.0387 0.0605 0.0718		Ω 1,2	0.0478 0.1199 0.1290
		Ω 2,2	-0.0402 0.0709 0.0815		Ω 2,2	0.0052 0.1303 0.1304
		correlation 0.0400 0.0496 0.0637		correlation 0.0462 0.1041 0.1139
	(0.2,0.0)	Ω 1,1	0.0309 0.0697 0.0762	(1.2,1.0)	Ω 1,1	-0.0031 0.1411 0.1411
		Ω 1,2	0.0176 0.0540 0.0568		Ω 1,2	0.0182 0.1003 0.1019
		Ω 2,2	-0.0012 0.0732 0.0733		Ω 2,2	0.0027 0.1357 0.1357
		correlation 0.0113 0.0417 0.0432		correlation 0.0176 0.0781 0.0800
	(0.2,0.2)	Ω 1,1	0.0297 0.0733 0.0790	(1.2,1.2)	Ω 1,1	0.0055 0.1442 0.1443
		Ω 1,2	0.0116 0.0518 0.0530		Ω 1,2	0.0060 0.0921 0.0923
		Ω 2,2	0.0282 0.0725 0.0778		Ω 2,2	-0.0033 0.1456 0.1456
		correlation -0.0003 0.0386 0.0386		correlation 0.0052 0.0685 0.0687
	(0.2,0.4)	Ω 1,1	0.0356 0.0703 0.0788	(1.2,1.4)	Ω 1,1	0.0001 0.1496 0.1496
		Ω 1,2	0.0328 0.0568 0.0655		Ω 1,2	0.0155 0.1039 0.1051
		Ω 2,2	0.0707 0.0728 0.1015		Ω 2,2	0.0135 0.1610 0.1615
		correlation 0.0106 0.0422 0.0435		correlation 0.0125 0.0802 0.0812

Table 4 :

 4 Fourier Whittle estimation of Ω for a bivariate ARFI MA(0, d, 0) with ρ = 0.4, N = 512 with 1000 repetitions. Two number of frequencies m are presented: the usual choice m = N 0.65 and the value giving the lower RMSE. m = N 0.65 = 57.

							m = N 0.876 = 236.
	d		bias	std RMSE ratio W/F	bias	std RMSE ratio W/F
	(0.2,-0.2)	Ω 1,1	0.0394 0.2253 0.2287	0.3444	0.0492 0.0679 0.0839	0.9395
		Ω 1,2	0.0091 0.1156 0.1160	0.6189	0.0009 0.0498 0.0498	1.4414
		Ω 2,2	0.0145 0.2308 0.2313	0.3525	-0.0470 0.0640 0.0794	1.0273
		correlation -0.0002 0.0774 0.0774	0.8229	0.0006 0.0387 0.0387	1.6464
	(0.2,0.0)	Ω 1,1	0.0245 0.2245 0.2259	0.3373	0.0449 0.0666 0.0803	0.9486
		Ω 1,2	0.0124 0.1154 0.1161	0.4892	0.0105 0.0506 0.0517	1.0985
		Ω 2,2	0.0163 0.2341 0.2347	0.3121	-0.0008 0.0677 0.0677	1.0819
		correlation 0.0061 0.0793 0.0795	0.5428	0.0014 0.0383 0.0383	1.1259
	(0.2,0.2)	Ω 1,1	0.0319 0.2319 0.2341	0.3376	0.0450 0.0708 0.0839	0.9417
		Ω 1,2	0.0141 0.1191 0.1199	0.4423	0.0176 0.0520 0.0549	0.9666
		Ω 2,2	0.0236 0.2331 0.2343	0.3321	0.0438 0.0690 0.0818	0.9517
		correlation 0.0041 0.0781 0.0782	0.4935	-0.0006 0.0382 0.0382	1.0099
	(0.2,0.4)	Ω 1,1	0.0264 0.2255 0.2271	0.3470	0.0489 0.0682 0.0839	0.9392
		Ω 1,2	0.0107 0.1232 0.1237	0.5298	0.0313 0.0531 0.0616	1.0632
		Ω 2,2	0.0276 0.2462 0.2478	0.4096	0.1052 0.0705 0.1267	0.8012
		correlation 0.0001 0.0783 0.0783	0.5548	0.0002 0.0384 0.0384	1.1307

  . . , p, let i a be a p × p matrix whose a-th diagonal element is one and all other elements are zero. Let a and b be two indexes in 1, . . . , p. The first derivative of G(d) with respect to d a ,

	∂G(d) ∂d a , is equal to

To conclude, the multivariate approach increases the quality of estimation of the long-memory parameters d in comparison with a univariate estimation. In stationary frameworks, the performance is very similar to multivariate Fourier Whittle estimation, when estimating the vector d or the long-run covariance matrix. The main advantage of our wavelet-based procedure is then its flexibility. By contrast with Fourier-based estimation, our estimators can be applied in a larger scope of situations, with nonstationary processes or in the presence of polynomial trends in the time series.

n j , Proposition 8 states that E ,m (dd 0 ) → G 0,m uniformly in d when

-j 0 β + N -1/2 2 j 1 /2 → 0.
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The sum on the right-hand side of the inequality tends to 0 because 1 + βγ > 0.

Similarly, under the additional Condition (C), inequality ( 13) is rewritten as, E sup µ∈S (q,γ,c)

n 1/2 j 2 γ(j-j 0 ) (jj 0 + 1) q cC N -1/2 2 j 0 /2

We distinguish three cases depending on the values of γ.

• The result is straightforward when 0 γ < 1/2.

• If γ = 1/2, the right-hand side is bounded by cC N -1/2 2 j 0 /2 (j 1j 0 + 1) q+1 . The parameter j 1 satisfies 2 j 1 N. Consequently j 1j 0 log 2 (N) + log 2 (2 -j 0 ) = log 2 (N2 -j 0 ) and the result is proved.

• When 1/2 < γ < 1, the right-hand side admits the upper bound cC N -1/2 2 j 0 /2 (j 1j 0 + 1) q 2 (γ-1/2)(j 1 -j 0 ) with C a positive constant. Since 2 j 1 N, it is inferior to cC (j 1j 0 + 1) q (N -1 2 j 0 ) (1-γ) which concludes the proof.

D Weak consistency

We first establish the convergence under the condition 2 -j 0 β + N -1/2 2 j 1 /2 → 0. This assumption is more restrictive than the condition 2 -j 0 β + N -1/2 2 j 0 /2 → 0 given in Theorem 5. Both conditions are equivalent when j 1j 0 is finite but not in a general case.

We then prove Theorem 5 in two steps: first we establish a lower bound for d and second we develop a proof similar to the first one that has been given in section D.1 but with a weaker assumption thanks to the previous bound.

D.1 Consistency under non-optimal assumptions

In this section, we give a first result of consistency, with an assumption on j 0 and j 1 that can be weakened. This result is not necessary to obtain Theorem 5 but the scheme of the proof is similar and it points out why an additional step is necessary.

Proposition 10. Assume that (W1)-(W5) and Condition (C) hold. If in addition j 0 and j 1 are chosen such that 2

• As G 0 is a covariance matrix, it is positive semi-definite. We can apply Oppenheim's inequality (Proposition 11), log det G log det(G 0 ) + ∑ log(∑ j 1 j=j 0 n j α j, , ). As we defined d min such that (16) holds, it follows that lim inf N→∞ inf {d,∀ d d min } inf j 1 =j 0 ,...,j N log det A( α)log det G 0 > 0.

We thus get lim for all i = 1, . . . , k. We introduce α (k) defined by α

j, ,m = 0 else. It is straightforward that for such α (k) the three following points hold, 1. For all d ∈ {d, ∀ / ∈ { 1 , . . . , k } d d min }, for all j 0, for all ( , m) ∈ {1, . . . , p} 2 , we have

2. For all ( , m) ∈ {1, . . . , p} 2 , the sequence ( α (k) j, ,m ) j 0 belongs to S(0, γ, c) with 0 γ < 1/2; 3. lim inf n→∞ inf {d,∀ / ∈{ 1 ,..., k } d d min } inf j 1 =j 0 ,...,j N ∑ log(∑

Analysis similar to STEP 1 shows that there exists k+1 / ∈ { 1 , 2 , . . . k } such that, with a probability tending to 1, d k+1 d min k+1 .

Step 1 and Step 2 imply that P( d ∈ {d, ∀ = 1, . . . , p, d d min }) → 1 when N → ∞.

D.3 Proof of Theorem 5

Suppose first that for sufficiently large N we have j 1 j 0 + 2.

E.2.3 End of the proof

The Taylor expansion (20) together with (28) imply

We now study the convergence of

Using equations ( 21) and ( 25), we have the equation

So the asymptotic behaviour of the first derivative of the criterion is

Plugging this result into the expression above, it comes

Since κ > 0 for 1 and κ → 2 when → ∞, the sequence κ j 1 -j 0 is bounded below by a positive constant. The rate of convergence for dd 0 in Theorem 6 follows. 24) with the rate obtained for the convergence of dd 0 state that G ,m ( d) = G 0 ,m (1 + O P (log(N)(2 -j 0 β + N -1/2 2 j 0 /2 )) + O P 2 -j 0 β + N -1/2 2 j 0 /2 under assumptions of Theorem 6. The rate of convergence of G ,m ( d) in Theorem 6 is then derived from the fact that 2 < J >u -1 = j 0 u log(2)(1 + o(1)) when u → 0.

E.3 Convergence of G( d) and of

The convergence of Ω is straightforward, thanks to the fact that K(•) is a continuous function of d. To obtain the rate of convergence, we observe first that cos(u) = 1 + o(u 2 ) when u goes to 0. Second,

Using assumption (W2) and (W5),

with C positive constant. The integral on the right-hand side is finite and thus

) which concludes the proof.

E.4 Additional tools

These results correspond to Lemma 13 of [START_REF] Moulines | A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series[END_REF] Define the sequences η L and κ L for any L 0 by

(29)

It is straightforward that n ∼ N2 -j 0 (2 -2 -(j 1 -j 0 ) ) (31) < J > ∼ j 0 + η j 1 -j 0 (32)

For every L 1 the quantities η L and κ L are strictly positive. When L goes to infinity, the sequences η L and κ L respectively converge to 1 and 2.

And for all u 0, 1 (34)