A discontinuous-skeletal method for advection-diffusion-reaction on general meshes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

A discontinuous-skeletal method for advection-diffusion-reaction on general meshes

Résumé

We design and analyze an approximation method for advection-diffusion-reaction equa-tions where the (generalized) degrees of freedom are polynomials of order k>=0 at mesh faces. The method hinges on local discrete reconstruction operators for the diffusive and advective derivatives and a weak enforcement of boundary conditions. Fairly general meshes with poly-topal and nonmatching cells are supported. Arbitrary polynomial orders can be considered, including the case k=0 which is closely related to Mimetic Finite Difference/Mixed-Hybrid Finite Volume methods. The error analysis covers the full range of Péclet numbers, including the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain. Computational costs remain moderate since the use of face unknowns leads to a compact stencil with reduced communications. Numerical results are presented.
Fichier principal
Vignette du fichier
adho.pdf (507.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01079342 , version 1 (01-11-2014)
hal-01079342 , version 2 (07-09-2015)
hal-01079342 , version 3 (27-05-2018)

Identifiants

  • HAL Id : hal-01079342 , version 1

Citer

Daniele Antonio Di Pietro, Jerome Droniou, Alexandre Ern. A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. 2014. ⟨hal-01079342v1⟩
831 Consultations
351 Téléchargements

Partager

More