A discontinuous-skeletal method for advection-diffusion-reaction on general meshes - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2015

A discontinuous-skeletal method for advection-diffusion-reaction on general meshes

Résumé

We design and analyze an approximation method for advection-diffusion-reaction equa-tions where the (generalized) degrees of freedom are polynomials of order k>=0 at mesh faces. The method hinges on local discrete reconstruction operators for the diffusive and advective derivatives and a weak enforcement of boundary conditions. Fairly general meshes with poly-topal and nonmatching cells are supported. Arbitrary polynomial orders can be considered, including the case k=0 which is closely related to Mimetic Finite Difference/Mixed-Hybrid Finite Volume methods. The error analysis covers the full range of Péclet numbers, including the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain. Computational costs remain moderate since the use of face unknowns leads to a compact stencil with reduced communications. Numerical results are presented.
Fichier principal
Vignette du fichier
adho.pdf (601.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01079342 , version 1 (01-11-2014)
hal-01079342 , version 2 (07-09-2015)
hal-01079342 , version 3 (27-05-2018)

Identifiants

Citer

Daniele Antonio Di Pietro, Jerome Droniou, Alexandre Ern. A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM Journal on Numerical Analysis, 2015, 53 (5), pp.2135-2157. ⟨10.1137/140993971⟩. ⟨hal-01079342v2⟩
831 Consultations
351 Téléchargements

Altmetric

Partager

More