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Abstract

We design and analyze an approximation method for advection-diffusion-reaction equa-
tions where the (generalized) degrees of freedom are polynomials of order k ě 0 at mesh faces.
The method hinges on local discrete reconstruction operators for the diffusive and advective
derivatives and a weak enforcement of boundary conditions. Fairly general meshes with poly-
topal and nonmatching cells are supported. Arbitrary polynomial orders can be considered,
including the case k “ 0 which is closely related to Mimetic Finite Difference/Mixed-Hybrid
Finite Volume methods. The error analysis covers the full range of Péclet numbers, including
the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain.
Computational costs remain moderate since the use of face unknowns leads to a compact
stencil with reduced communications. Numerical results are presented.
2010 Mathematics Subject Classification: 65N30, 65N08,

1 Introduction

The goal of the present work is to design and analyze an approximation method for advection-
diffusion-reaction equations where the (generalized) degrees of freedom (DOFs) are polynomials
of order k ě 0 at mesh faces. Since such faces constitute the mesh skeleton, and since DOFs can
be chosen independently at each face, we use the terminology discontinuous-skeletal method. The
proposed method offers various assets: (i) Fairly general meshes, with polytopal and nonmatching
cells, are supported; (ii) Arbitrary polynomial orders, including the case k “ 0, can be considered;
(iii) The error analysis covers the full range of Péclet numbers; (iv) Computational costs remain
moderate since skeletal DOFs lead to a compact stencil with reduced communications.

Approximation methods using face-based DOFs have been investigated recently for advection-
diffusion equations on meshes composed of standard elements. In [6], Cockburn et al. devise and
numerically investigate a Hybridizable Discontinuous Galerkin (HDG) method for the diffusion-
dominated regime based on a mixed formulation where an approximation for the total advective-
diffusive flux is sought. In [5], Chen and Cockburn carry out a convergence analysis for a variable
degree HDG method on semimatching nonconforming simplicial meshes, and investigate the im-
pact of mesh nonconformity on the supercloseness of the potential. The formulation differs from [6]
in that the flux variable now approximates the diffusive component only. In [23], Wang and Ye
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analyze a Weak Galerkin method for advection-diffusion-reaction on triangular meshes, which ap-
pears to be mainly tailored to the diffusion-dominated case. Turning to general polyhedral meshes,
we cite, in particular, the work of Beirão da Veiga, Droniou, and Manzini [2] on Hybrid Mimetic
Mixed (HMM) methods (which encompass, see [15], three families of numerical schemes for ellip-
tic equations: the Mimetic Finite Difference method [3], the Mixed Finite Volume method [14],
and the Hybrid Finite Volume – or SUSHI – method [18]). Although the analysis focuses on the
diffusion-dominated case, we show in this work that a suitable tweaking of the scheme so as to
include weakly enforced boundary conditions allows one to treat the advection-dominated case as
well.

The starting point for the present discontinuous-skeletal method is the Hybrid-High Order
(HHO) method designed in [9, 11] for purely diffusive and linear elasticity problems. The key
ideas in [9,11] are as follows: (i) In each mesh cell, a local potential reconstruction of order pk`1q
is devised from polynomials of order k in the cell and on its faces (cell- and face-based DOFs); (ii)
A local bilinear form is built using a Galerkin form based on the gradient of the local potential
reconstruction plus a stabilization form which preserves the improved order of the reconstruction;
this leads to energy-error estimates of order pk ` 1q and L2-potential estimates of order pk ` 2q
if elliptic regularity holds; (iii) The global discrete problem is assembled cellwise, and cell-based
DOFs are eliminated by static condensation, so that only the face-based DOFs remain.

The extension to advection-diffusion-reaction equations entails several new ideas: (i) We de-
vise a local reconstruction of the advective derivative from cell- and face-based DOFs using an
integration by parts formula; (ii) Stability for the advective contribution is ensured by terms that
penalize the difference between cell- and face-based DOFs at faces, and which therefore do not
preclude the possibility of performing static condensation and do not enlarge the stencil; as in [2],
the stability terms are formulated in a rather general form so as to include various approaches used
in the literature, e.g., upwind, locally θ-upwind, and Scharfetter–Gummel schemes; (iii) Boundary
conditions are enforced weakly so as to achieve robustness in the full range of Péclet numbers.

An additional novel feature of the present work is that our analysis also includes the case of lo-
cally degenerate advection-diffusion-reaction equations, where the diffusion coefficient vanishes on
a (strict) subset of the computational domain. We emphasize that such problems are particularly
delicate since the exact solution can jump at the diffusive/nondiffusive interface separating zero
and nonzero regions for the diffusion coefficient. The literature on locally degenerate advection-
diffusion-reaction problems is relatively scarce. The coupling of parabolic-hyperbolic systems in
one space dimension is considered by Quarteroni and Gastaldi [19]; see also [17]. In both cases,
ad hoc techniques are proposed based on removing suitable terms at the diffusive/nondiffusive
interface. In [10], a discontinuous Galerkin (dG) method is designed and analyzed, where the
use of weighted averages allows one to automatically handle the possibility of jumps in the exact
solution. A dG method handling the degenerate case is also considered numerically by Houston,
Schwab, and Süli [21]. In the present setting, a perhaps surprising result at first sight is that
an approximation method hinging on face-based DOFs can capture well a discontinuous solution.
This result is achieved owing to a tailored design of the stabilization terms ensuring that the
interface unknown approximates well the exact solution from the diffusive side.

The material is organized as follows. In Section 2, we present the model problem. In Section 3,
we introduce the discrete setting. In Section 4, we define the local bilinear forms and introduce the
novel ideas to discretize the advective terms. In Section 5, we build the discrete problem, introduce
several norms for the analysis, and state our main results on stability and error estimates. The
dependence on the physical parameters is tracked in the error estimate so as to capture the
variation in convergence order between the diffusive and the advective regimes. We also study
the link with the HMM methods of [2] in the case k “ 0. Such a link was already noticed in [11]
for HHO methods in the purely diffusive case. Finally, numerical results on standard and general
polygonal meshes are presented to assess the sharpness of the error estimate both in the uniformly
vanishing diffusion and locally degenerate case. Finally, in Section 6, we prove our main results.
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2 Model problem

Let Ω Ă R
d, d ě 1, be an open bounded connected polytope of boundary BΩ and unit outer normal

n. We denote by ν : Ω Ñ R
` the diffusion coefficient, which we assume to be piecewise constant

on a partition PΩ :“ tΩiu1ďiďNΩ
of Ω into polytopes and such that ν ě ν ě 0 almost everywhere

in Ω. The case of locally heterogeneous anisotropic diffusion can be considered as well using the
ideas in [8]. For the advective velocity β : Ω Ñ R

d, we assume the regularity β P LippΩqd, and for
the reaction coefficient µ : Ω Ñ R, we assume and that µ is bounded from below by a real number
µ0 ą 0. For simplicity, we work under the assumption ∇¨β ” 0; the case ∇¨β ı 0 can be treated
similarly, provided µ ` 1

2
∇¨β ě µ0 ą 0. We introduce the following sets (cf. Figure 3 below for

an illustration):

Γν,β :“ tx P BΩ | ν ą 0 or β¨n ă 0u , (1a)

I˘
ν,β

:“ tx P Iν | ˘ pβ¨nIqpxq ą 0u, (1b)

where Iν is the diffusive/nondiffusive interface and nI is the unit normal to Iν pointing out of
the diffusive region. More precisely, Iν is the set of points in Ω located at an interface between
two distinct subdomains Ωi and Ωj of PΩ such that ν|Ωi

ą ν|Ωj
“ 0. We assume that

pβ¨nIqpxq ‰ 0 for a.e. x P Iν .

For given source term f P L2pΩq and boundary datum g P L2pΓν,βq, the continuous problem reads

∇¨p´ν∇u ` βuq ` µu “ f in ΩzIν , (2a)

rr´ν∇u ` βuss¨nI “ 0 on Iν , (2b)

rruss “ 0 on I`
ν,β, (2c)

u “ g on Γν,β, (2d)

where rr¨ss denotes the jump across Iν (the sign is irrelevant). Notice that the boundary condition
is enforced at portions of the boundary touching a diffusive region or a nondiffusive region provided
the advective field flows into the domain. A weak formulation for (2) has been analyzed in [10].
In the non-degenerate case ν ą 0, Γν,β “ BΩ and the usual weak formulation in the space H1

0 pΩq
holds, cf., e.g., [7, Section 4.6.1].

3 Discrete setting

This section presents the discrete setting: admissible mesh sequences, analysis tools on such
meshes, DOFs, reduction maps, and reconstruction operators.

3.1 Assumptions on the mesh

Denote by H Ă R
`
˚ a countable set of meshsizes having 0 as its unique accumulation point.

Following [7, Chapter 4], we consider h-refined mesh sequences pThqhPH where, for all h P H, Th is
a finite collection of nonempty disjoint open polyhedral elements T such that Ω “ Ť

TPTh
T and

h “ maxTPTh
hT with hT standing for the diameter of the element T . A face F is defined as a

hyperplanar closed connected subset of Ω with positive pd´1q-dimensional Hausdorff measure and
such that (i) either there exist T1pF q, T2pF q P Th such that F Ă BT1pF q X BT2pF q and F is called
an interface or (ii) there exists T pF q P Th such that F Ă BT pF q X BΩ and F is called a boundary
face. In what follows, the dependence on F of T1pF q and T2pF q (when F is an interface) and of
T pF q (when F is a boundary face) is omitted when no ambiguity can arise. Interfaces are collected
in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of a face F P Fh

is denoted by hF . For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces contained
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in BT (with BT denoting the boundary of T ) and, for all F P FT , nTF is the unit normal to F

pointing out of T . Symmetrically, for all F P Fh, we let TF :“ tT P Th | F Ă BT u the set of
elements having F as a face. For each interface F P F i

h, we fix an orientation as follows: we select
a fixed ordering for the elements T1, T2 P Th such that F Ă BT1 X BT2 and we let nF :“ nT1,F .
For a boundary face, we simply take nF “ n, the outward unit normal to Ω. In what follows, we
denote by |¨|l the l-dimensional Hausdorff measure.

Our analysis hinges on the following two assumptions on the mesh sequence.

Assumption 1 (Admissible mesh sequence). For all h P H, Th admits a matching simplicial
submesh Th and there exists a real number ̺ ą 0 independent of h such that, for all h P H, (i) for
all simplex S P Th of diameter hS and inradius rS, ̺hS ď rS and (ii) for all T P Th, and all
S P Th such that S Ă T , ̺hT ď hS.

Assumption 2 (Compatible mesh sequence). (i) Any mesh cell belongs to one and only one
subdomain Ωi of the partition PΩ; (ii) Any mesh face having an intersection with the interface
Iν,β (of positive pd ´ 1q-dimensional Hausdorff measure) is included in one of the two sets I˘

ν,β;
(iii) In any mesh face such that the diffusion coefficient vanishes on both of its sides, the normal
component of β is nonzero in a subset of positive measure.

The simplicial submesh in Assumption 1 is just a theoretical tool used to prove the results
in Section 3.2, and it is not used in the actual construction of the discretization method. Fur-
thermore, a straightforward consequence of Assumption 2(i) is that ν is piecewise constant on Th.
Assumption 2(ii) is important in the error analysis so that the face unknowns on Iν,β capture the
exact solution from the diffusive side. Assumption 2(iii) can be avoided by adding some crosswind
diffusion to the stabilization of the advective-reactive bilinear form in the spirit of a Lax–Friedrichs
flux, so that the difference between cell- and face-based DOFs is always penalized on faces included
in the nondiffusive region.

3.2 Analysis tools

We recall some results that hold uniformly in h on admissible mesh sequences. In what follows,
for X Ă Ω, we respectively denote by p¨, ¨qX and }¨}X the standard inner product and norm in
L2pXq, with the convention that the subscript is omitted whenever X “ Ω. The same notation is
used in the vector-valued case L2pXqd. According to [7, Lemma 1.42], for all h P H, all T P Th,
and all F P FT , hF is comparable to hT in the sense that

̺2hT ď hF ď hT . (3)

Moreover, [7, Lemma 1.41] shows that there exists an integer NB depending on ̺ such that

@h P H, max
TPTh

cardpFT q ď NB. (4)

Let l ě 0 be a nonnegative integer. For an n-dimensional subset X of Ω (n ď d), P
l
npXq is

spanned by the restriction to X of n-variate polynomials of total degree ď l. Then, there exists
a real number Ctr depending on ̺ and l, but independent of h, such that the following discrete
trace inequality holds for all T P Th and F P FT , cf. [7, Lemmas 1.46]:

}v}F ď Ctrh
´1{2
F }v}T @v P P

l
dpT q. (5)

Furthermore, the following inverse inequality holds for all T P Th with Cinv again depending on ̺

and l, but independent of h, cf. [7, Lemma 1.44],

}∇v}T ď Cinvh
´1
T }v}T @v P P

l
dpT q. (6)

Moreover, using [7, Lemma 1.40] together with the results of [16], one can prove that there exists
a real number Capp depending on ̺ and l, but independent of h, such that, for all T P Th, denoting
by πl

T the L2-orthogonal projector on P
l
dpT q, the following holds: For all s P t1, . . . , l ` 1u and all

v P HspT q,

|v ´ πl
T v|HmpT q ` h

1{2
T |v ´ πl

T v|HmpBT q ď Capph
s´m
T |v|HspT q @m P t0, . . . , s ´ 1u. (7)
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3.3 Degrees of freedom, interpolation, and reconstruction

Let a polynomial degree k ě 0 be fixed. For all T P Th, the local space of DOFs is

U
k
T :“ P

k
dpT q ˆ

#
ą

FPFT

P
k
d´1pF q

+
,

and we use the notation vT “ pvT , pvF qFPFT
q for a generic element vT P U

k
T . We define the local

interpolation operator IkT : H1pT q Ñ U
k
T such that, for all v P H1pT q,

I
k
T v :“

`
πk
T v, pπk

F vqFPFT

˘
,

where πk
F denotes the L2-orthogonal projector on P

k
d´1pF q. Following [11], for all T P Th, we

define the local potential reconstruction operator pkT : Uk
T Ñ P

k`1
d pT q such that, for all vT :“

pvT , pvF qFPFT
q P U

k
T ,

p∇pkT vT ,∇wqT “ p∇vT ,∇wqT `
ÿ

FPFT

pvF ´ vT ,∇w¨nTF qF @w P P
k`1
d pT q,

ż

T

pkT vT “
ż

T

vT .

(8)

The discrete Neumann problem (8) is well-posed. The following result has been proved in [11,
Lemma 3].

Lemma 1 (Approximation properties for pkT I
k
T ). There exists a real number C ą 0, depending on

̺ and k, but independent of hT , such that, for all v P Hk`2pT q,

}v ´ pkT I
k
T v}T ` h

1{2
T }v ´ pkT I

k
T v}BT

` hT }∇pv ´ pkT I
k
T vq}T ` h

3{2
T }∇pv ´ pkT I

k
T vq}BT ď Chk`2

T }v}Hk`2pT q. (9)

4 Local bilinear forms

In this section we define the local bilinear forms. These forms are expressed in terms of local
DOFs and are instrumental to derive the discrete problem in Section 5.

4.1 Diffusion

To discretize the diffusion term in (2), we introduce, for all T P Th, the bilinear form aν,T on

U
k
T ˆ U

k
T such that

aν,T pwT , vT q :“ pνT∇pkTwT ,∇pkT vT qT ` sν,T pwT , vT q, (10)

with stabilization bilinear form sν,T on U
k
T ˆ U

k
T such that

sν,T pwT , vT q :“
ÿ

FPFT

νT

hF

pπk
F pwF ´ P k

TwT q, πk
F pvF ´ P k

T vT qqF . (11)

In (11), the potential reconstruction P k
T : Uk

T Ñ P
k`1
d pT q is such that, for all vT P U

k
T ,

P k
T vT :“ vT ` ppkT vT ´ πk

T p
k
T vT q,

where the second term can be interpreted as a high-order correction of vT .
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4.2 Advection-reaction

For all T P Th, we introduce the discrete advective derivative Gk
β,T : Uk

T Ñ P
k
dpT q such that, for

all vT P U
k
T and all w P P

k
dpT q,

pGk
β,T vT , wqT “ ´pvT ,β¨∇wqT `

ÿ

FPFT

ppβ¨nTF qvF , wqF (12a)

“ pβ¨∇vT , wqT `
ÿ

FPFT

ppβ¨nTF qpvF ´ vT q, wqF , (12b)

where we have integrated by parts the first term in the right-hand side and used ∇¨β ” 0 to pass
from (12a) to (12b). We introduce, for all T P Th, the local bilinear form aβ,µ,T on U

k
T ˆ U

k
T such

that
aβ,µ,T pwT , vT q :“ ´pwT , G

k
β,T vT qT ` pµwT , vT qT ` s´

β,T pwT , vT q.

The local stabilization bilinear forms s˘
β,T on U

k
T ˆ U

k
T are such that

s˘
β,T pwT , vT q :“

ÿ

FPFT

p νF

hF
A˘pPeTF qpwF ´ wT q, vF ´ vT qF .

Here, νF :“ minTPTF
νT is the lowest diffusion coefficient from the (one or) two cells sharing F ,

and the local (oriented) Péclet number PeTF is defined if νF ą 0 by

PeTF “ hF

β¨nTF

νF
, (13)

while we use (14) below if νF “ 0. Since, for all F P Fb
h , there is a unique T P Th such that

F Ă BT , we simply write PeF instead of PeTF in this case. Notice that the local Péclet number
PeTF is a function F Ñ R.

The functions A˘ : R Ñ R are such that A˘psq “ 1
2

p|A|psq ˘ sq for all s P R, and the function
|A| : R Ñ R is assumed to satisfy the following design conditions:

(A1) |A| is a Lipschitz-continuous function such that |A|p0q “ 0 and, for all s P R, |A|psq ě 0 and
|A|p´sq “ |A|psq;

(A2) there exists a ě 0 such that |A|psq ě a|s| for any |s| ě 1;

(A3) If ν “ 0, limsÑ`8
|A|psq

s
“ 1 (and, consistently with (A1)), limsÑ´8

|A|psq
s

“ ´1. Coherently,
for all T P Th and all F P FT such that νF “ 0, we set

νF

hF
A˘pPeTF q :“ lim

νÑ0`

´
ν
hF

A˘
´

hF

ν
β¨nTF

¯¯
“ pβ¨nTF q˘, (14)

where, for a real number s, we have denoted s˘ :“ 1
2

p|s| ˘ sq.

As already pointed out in [2, 4, 13], using the generic functions A˘ in the definition of the
advective terms allows for a unified treatment of several classical discretizations. The centered
scheme corresponds to |A|psq “ 0, which fails to satisfy (A2)-(A3). Instead, Properties (A1)–(A3)
are fulfilled by the following methods:

• Upwind scheme: |A|psq “ |s| (so that A˘psq “ s˘ and νF

hF
A˘pPeTF q “ pβ¨nTF q˘).

• Locally upwinded θ-scheme: |A|psq “ p1´ θpsqq|s|, where θ P C1
c p´1, 1q, 0 ď θ ď 1 and θ ” 1

on r´1{2, 1{2s, corresponding to the centered scheme if s P r´1{2, 1{2s (dominating diffusion)
and the upwind scheme if s ě 1 (dominating advection).

• Scharfetter–Gummel scheme: |A|psq “ 2
`
s
2
cothp s

2
q ´ 1

˘
.
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The advantage of the locally upwinded θ-scheme and the Scharfetter–Gummel scheme over the
upwind scheme is that they behave as the centered scheme, and thus introduce less artificial
diffusion, when s is close to zero (dominating diffusion).

Remark 2 (Assumption (A2)). This assumption implies that |A˘psq| ď a|Apsq| for all |s| ě 1
with a “ 1

2
p1 ` a´1q. Furthermore, the threshold |s| ě 1 is arbitrary. If it is changed into |s| ě b

for some fixed b ě 1, then the only modification in the error estimate (29) below is to change the
term minp1,PeT q into minpb,PeT q.
Remark 3 (Assumption (A3)). Assumption (A3) is only required in the locally degenerate case
where the diffusion coefficient vanishes in one part of the domain.

5 Discrete problem and main results

We build in this section the discretization of (2) using the local bilinear forms of Section 4. A key
point is the weak enforcement of boundary conditions to achieve robustness with respect to the
Péclet number.

5.1 Discrete bilinear forms

Local DOFs are collected in the following global space obtained by patching interface values:

U
k
h :“

#
ą

TPTh

P
k
dpT q

+
ˆ
#

ą

FPFh

P
k
d´1pF q

+
.

We use the notation vh “ ppvT qTPTh
, pvF qFPFh

q for a generic element vh P U
k
h and, for all T P Th,

it is understood that vT denotes the restriction of vh to U
k
T .

Denoting by ς ą 0 a user-dependent boundary penalty parameter, we define the global diffusion
bilinear form aν,h on U

k
h ˆ U

k
h such that

aν,hpwh, vhq :“
ÿ

TPTh

aν,T pwT , vT q `
ÿ

FPFb

h

"
´pνF∇pkT pF qwT ¨nTF , vF qF ` ςνF

hF

pwF , vF qF
*
, (15)

and the global advection-reaction bilinear form aβ,µ,h such that

aβ,µ,hpwh, vhq :“
ÿ

TPTh

aβ,µ,T pwT , vT q `
ÿ

FPFb

h

p νF

hF
A`pPeF qwF , vF qF . (16)

The rightmost terms in (15) and (16) are responsible for the weak enforcement of the boundary
condition on Γν,β. Finally, we set

ahpwh, vhq :“ aν,hpwh, vhq ` aβ,µ,hpwh, vhq, (17)

and we define the linear form lh on U
k
h such that

lhpvhq :“
ÿ

TPTh

pf, vT qT `
ÿ

FPFb

h

"
p νF

hF
A´pPeF qg, vF qF ` ςνF

hF

pg, vF qF
*
. (18)

The discrete problem reads: Find uh P U
k
h such that, for all vh P U

k
h,

ahpuh, vhq “ lhpvhq. (19)

Remark 4 (Variations of aν,h). A symmetric expression of aν,h is obtained by adding the term
´ř

FPFb

h
pwF , νF∇pk

T pF qvT ¨nTF qF , to the right-hand side of (15), and correspondingly the term

´ř
FPFb

h
pg, νF∇pk

T pF qvT ¨nTF qF to the right-hand side of (18). This variation is not further

pursued here since the problem (2) is itself nonsymmetric.
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5.2 Discrete norms and stability

The analysis of the discrete problem (19) involves several norms. For the sake of easy reference,
their definitions are gathered here, as well as some related stability properties. The energy-like
diffusion (semi)norm is defined on U

k
h by

}vh}2ν,h :“
ÿ

TPTh

}vT }2ν,T ` |vh|2ν,BΩ with:

}vT }2ν,T :“ aν,T pvT , vT q and |vh|2ν,BΩ :“
ÿ

FPFb

h

νF

hF

}vF }2F ,
(20)

and owing to [11, Lemma 3.1], we observe that there is η ą 0, depending only on ̺, d, and k, such
that, for all vT P U

k
T ,

η}vT }2ν,T ď νT }∇vT }2T `
ÿ

FPFT

νT

hT

}vF ´ vT }2F ď η´1}vT }2ν,T . (21)

The advection-reaction (semi)norm is defined on U
k
h by

}vh}2β,µ,h :“
ÿ

TPTh

}vT }2β,µ,T ` |vh|2β,BΩ with:

}vT }2β,µ,T :“ 1

2

ÿ

FPFT

}
“
νF

hF
|A|pPeTF q

‰1{2pvF ´ vT q}2F ` τ´1
ref,T }vT }2T and

|vh|2β,BΩ :“ 1

2

ÿ

FPFb

h

}
“
νF

hF
|A|pPeF q

‰1{2
vF }2F .

(22)

Following [7, Chapter 2], the reference time τref,T and velocity βref,T are defined by

Lβ,T :“ max
1ďiďd

}∇βi}L8pT qd , τref,T :“ tmaxp}µ}L8pT q, Lβ,T qu´1 , βref,T :“ }β}L8pT qd , (23)

(recall that β P LippΩqd implies β P W 1,8pΩqd). Finally, we define two advection-diffusion-reaction
norms on U

k
h as follows:

}vh}25,h :“ }vh}2ν,h ` }vh}2β,µ,h and }vh}27,h :“ }vh}25,h `
ÿ

TPTh

hTβ
´1
ref,T }Gk

β,T vT }2T , (24)

where the summand is taken only if βref,T ‰ 0. The error estimate stated in Theorem 9 below
uses the }¨}7,h-norm, and therefore delivers information on the advective derivative of the error,
which is important in the advection-dominated regime. The }¨}5,h-norm is, on the other hand, the
natural coercivity norm for the bilinear form ah, and is used as an intermediary step in the error
analysis. The coercivity norm is sufficient for the error analysis in the diffusion-dominated regime.

Remark 5 (Norms). Owing to Assumption 2(iii), we infer that νF ‰ 0 or β¨nF ı 0 (on a
subset with positive measure). Hence, }¨}5,h and }¨}7,h are norms on U

k
h. Indeed, if νF ­“ 0, then

by (21) the diffusive norm controls the term vF ´ vT and, if νF “ 0, owing to (14), we obtain
νF

hF
|A|pPeTF q “ |β¨nTF | ı 0 and the advective norm controls vF ´ vT .

Our first important result concerns stability. The proof is postponed to Section 6.1.

Lemma 6 (Stability of ah). Assume ς ě 1 ` C2

tr
NB

2
and (A1)–(A3). Then, for all vh P U

k
h, the

following holds:
ζ}vh}25,h ď ahpvh, vhq, (25)

with ζ :“ minTPTh
p 1
2
, τref,Tµ0q ą 0. Assume additionally that, for all T P Th,

hTLβ,T ď βref,T and hTµ0 ď βref,T , (26)
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where Lβ,T , βref,T , and τref,T are defined by (23). Then, there exists a real number γ ą 0,

independent of h, ν, β, and µ, such that, for all wh P U
k
h,

γζ}wh}7,h ď sup
vhPUk

h
zt0u

ahpwh, vhq
}vh}7,h

. (27)

Remark 7 (Threshold for ς). The dependency on Ctr of the threshold on ς introduced in Lemma 6
can be removed by considering a lifting-based penalty term such as the one discussed in [7, Sec-
tion 5.3.2] and originally introduced by Bassi, Rebay et al. [1] in the context of discontinuous

Galerkin methods. Furthermore, the strict minimal threshold in Lemma 6 is ς ą C2

tr
NB

4
.

Remark 8 (Assumption (26)). The first inequality in (26) stipulates that the meshsize resolves the
spatial variations of the advective velocity β. The quantity DaT :“ hTµ0β

´1
ref,T is a local Damköhler

number relating the reactive and advective time scales. The second inequality in (26) assumes that
DaT ď 1 for all T P Th, meaning that we are not concerned with the reaction-dominated regime.
We could of course state a stability result without (26), but the dependency on the various constants
would be somewhat more intricate.

5.3 Error estimate

For all F P Fh, we denote by TνpF q one element of TF such that TνpF q P argmaxTPTF
νT (such

an element may not be unique when F is an interface). Consider now an interface F P F i
h such

that F Ă I´
ν,β. Since the exact solution can jump on F , we have to deal with a possibly two-

valued trace for the exact solution. It turns out that, in this case, the face unknown captures
the trace from the diffusive side, i.e., from the unique element TνpF q P TF such that ν|Tν pF q ą 0.

We therefore define the global interpolation operator I
k
h : H1pΩzIν,βq Ñ U

k
h is such that, for all

v P H1pΩzIν,βq:
I
k
hv :“

`
pπk

T vqTPTh
, pπk

F rv|Tν pF qsqFPFh

˘
. (28)

Our main result is the following estimate on the discrete approximation error pIkhu´uhq measured
in the }¨}7,h-norm. The proof is postponed to Section 6.2.

Theorem 9 (Error estimate). Assume ς ě 1 ` C2

tr
NB

2
, (A1)–(A3), and (26). Denote by u and uh

the unique solutions to (2) and (19), respectively, and assume that u|T P Hk`2pT q for all T P Th.
Then, there exists a real number γ1 ą 0 depending on ̺, d, and k, but independent of h, ν, β, and
µ, such that, letting puh :“ I

k
hu and ζ “ minTPTh

p 1
2
, τref,Tµ0q,

γ1ζ}puh ´ uh}7,h

ď
#

ÿ

TPTh

pνT }u}2Hk`2pT q ` τ´1
ref,T }u}2Hk`1pT qqh2pk`1q

T ` βref,T minp1,PeT qh2k`1
T }u}2Hk`1pT q

+1{2

(29)

where PeT “ maxFPFT
}PeTF }L8pF q is a local Péclet number (conventionally, }PeTF }L8pF q “ `8

if νF “ 0).

Remark 10 (Regime-dependent estimate). Using the local Péclet number in (29) allows us to
establish an error estimate which locally adjusts to the various regimes of (2). In mesh cells where

diffusion dominates so that PeT ď hT , the contribution to the right-hand side of (2) is Oph2pk`1q
T q.

In mesh cells where advection dominates so that PeT ě 1, the contribution is Oph2k`1
T q. The tran-

sition region, where PeT is between hT and 1, corresponds to intermediate orders of convergence.

Notice also that the diffusive contribution exhibits the superconvergent behavior Oph2pk`1q
T q typical

of HHO methods, see [9, 11]. As a result, the balancing with the advective contribution is slightly
different with respect to other methods where the diffusive contribution typically scales as Oph2k

T q.
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5.4 Link with Hybrid Mixed Mimetic methods

We assume here that the diffusion is not degenerate, i.e. ν ą 0, and show that, under a slight
modification of the definition of PeTF , see (30) below, the present discontinuous-skeletal method for
k “ 0 corresponds to an edge-based Hybrid Mimetic Mixed (HMM) method studied for advective-
diffusive equations in [2]. In this section, we consider that the local Péclet number PeTF is no
longer a function defined on the edge F , but the average of this function, i.e.,

PeTF “ 1

|F |

ż

F

hF

νF
β¨nTF . (30)

With this new definition, and assuming that ν ą 0, the edge-based HMM method for (2) with
µ “ 0 can be written (see [2, Eqs. (2.48)–(2.49)]) in the flux balance and continuity form as follows:

@T P Fh :
ÿ

FPFT

|F | rpFdqTF ` pFaqTF s “
ż

T

f (31)

@F P FT X FT 1 with T ­“ T 1 : pFdqTF ` pFaqTF ` pFdqT 1F ` pFaqT 1F “ 0, (32)

where Fd and Fa are diffusion and advection fluxes, constructed from the unknown uh P U
0
h.

We additionally assume that boundary conditions are strongly enforced by considering the space
U
0
h,0 :“

 
vh P U

0
h | vF ” 0 @F P Fb

h

(
(we are entitled to strongly enforce boundary conditions

since we assume ν ą 0 in this section). Taking vh P U
0
h,0, multiplying (31) by the constant value

vT , summing on the cells T P Th, and using the flux conservativity (32) and the strong boundary
condition to introduce the constant value vF in the sums, we see that these two equations are
equivalent to ÿ

TPFh

ÿ

FPFT

|F | rpFdqTF ` pFaqTF s pvT ´ vF q “ lhpvhq, (33)

for all vh P U
0
h,0. As seen in [11], the definition of the diffusive flux Fd in [15, Eq. (2.25)]

shows that, when the stabilization matrices BT in the HMM method are diagonal with coefficients
p νT

hF
|F |qFPFT

, the local diffusive term
ř

FPFT
|F |pFdqTF pvT ´ vF q is identical to the local diffusive

bilinear form aν,T defined in (10). Therefore, it remains to study the advective term in (33) and see
that it corresponds to aβ,0,hpuh, vhq. With the choice (30), using the diffusive scaling mentioned
in [2, §2.4.1] and applying a local geometric scaling based on the edge diameter hF rather than
the distance between the two neighboring cell centers, the advective flux is written [2, Eq. (2.46)]

pFaqTF “ νF

hF

`
A`pPeTF quT ´ A´pPeTF quF

˘
.

Since A`psq ´ A´psq “ s and invoking the assumption ∇¨β ” 0, we find that the advective
contribution in (33) is

ÿ

TPFh

ÿ

FPFT

|F |
”
νF

hF
A`pPeTF quT ´ νF

hF
A´pPeTF quF

ı
pvT ´ vF q

“
ÿ

TPFh

ÿ

FPFT

|F |
”
νF

hF

`
A`pPeTF q ´ A´pPeTF q

˘
uT ` νF

hF
A´pPeTF qpuT ´ uF q

ı
pvT ´ vF q

“
ÿ

TPFh

ÿ

FPFT

ˆż

F

β¨nTF

˙
uT pvT ´ vF q `

ÿ

TPFh

ÿ

FPFT

|F | νF

hF
A´pPeTF qpuT ´ uF qpvT ´ vF q

“
ÿ

TPFh

uT vT

ż

T

∇¨β ´
ÿ

TPFh

uT

ÿ

FPFT

ˆż

F

β¨nTF

˙
vF ` s´

β,hpuh, vhq

“ ´
ÿ

TPFh

|T |uT
˜

1

|T |
ÿ

FPFT

ˆż

F

β¨nTF

˙
vF

¸
` s´

β,hpuh, vhq.
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Figure 1: Meshes for the test case of Section 5.5.1. From left to right, the meshes are refereed to
as triangular, Kershaw and hexagonal, respectively

It is then a simple matter of inspecting the definition (12a) in the case k “ 0 to notice that

Gk
β,T vT “ 1

|T |
ÿ

FPFT

ˆż

F

β¨nTF

˙
vF ,

and therefore conclude that the advective contribution in (33) is indeed aβ,0,hpuh, vhq.

5.5 Numerical results

To close this section, we provide numerical results illustrating the error estimate of Theorem 9.

5.5.1 Uniform diffusion

To numerically assess the sharpness of estimate (29) in the uniform diffusion case, we solve on
the unit square the problem (2) with boundary conditions and right-hand side inferred from the
following exact solution:

upxq “ sinpπx1q sinpπx2q.
We take βpxq “ p1{2´x2, x1 ´ 1{2q, µ “ 1, and we let ν vary in t0, 10´3, 1u. In Figure 2 we display
the convergence results for the three mesh families depicted in Figure 1. From left to right, these
correspond, respectively, to the mesh families 1 (triangular) and 4.1 (Kershaw) of the FVCA5
benchmark [20], and to the (predominantly) hexagonal mesh family first introduced in [12]. Each
line in Figure 2 corresponds to a different mesh family, and the value of ν increases from left
to right. In all the cases, an increase in the asymptotic convergence rate of about half a unit is
observed as we increase the value of ν, as predicted by (29). The results also show that the method
behaves consistently on a variety of meshes possibly including general polygonal elements. The
slightly higher convergence rates for the Kershaw mesh family are possibly due to the fact that
the mesh regularity changes when refining.

5.5.2 Locally degenerate diffusion

To validate the method in the locally degenerate case, we consider the configuration originally
proposed in [10, Section 6.1], cf. Figure 3. The domain is Ω “ p´1, 1q2zr´0.5, 0.5s2. Denoting by
pr, θq the standard polar coordinates (with azimuth θ measured anticlockwise starting from the
positive x-axis) and by eθ the azimuthal vector, the problem coefficients are

νpθ, rq “
#
π if 0 ă θ ă π,

0 if π ă θ ă 2π,
βpθ, rq “ eθ

r
, µ “ 10´6,

The exact solution, also used to infer the value of the forcing term f and boundary datum g, is
given by

upθ, rq “
#

pθ ´ πq2 if 0 ă θ ă π,

3πpθ ´ πq if π ă θ ă 2π.

11
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(a) ν “ 0, triangular
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k “ 3

(b) ν “ 10´3, triangular
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k “ 0
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(c) ν “ 1, triangular
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(d) ν “ 0, Kershaw
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(e) ν “ 10´3, Kershaw
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(f) ν “ 1, Kershaw
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(g) ν “ 0, hexagonal

10´2.5 10´2 10´1.5

10´6

10´5

10´4

10´3
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(h) ν “ 10´3, hexagonal

10´2.5 10´2 10´1.5

10´6

10´5

10´4

10´3

10´2

10´1

100

1.04

2.11

3.11

4.15

k “ 0
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(i) ν “ 1, hexagonal

Figure 2: }puh ´ uh}7,h-norm vs. h for different mesh families (rows) and values of the diffusion
coefficient ν (columns) in the test case of Section 5.5.1

I+
ν,β

β

I−

ν,β

β

ν = π

ν = 0

Figure 3: Configuration for the test case of Section 5.5.2 (left) and numerical solution for k “ 3
and h “ 1.29ˆ10´2 (right). The jump discontinuity across I´

ν,β is clearly visible.
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(a) L2-error on u
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4.3

k “ 0
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(b) }puh ´ uh}7,h

Figure 4: Convergence results for the locally degenerate test case of Section 5.5.2

In Figure 4 we show the convergence results for a refined family of triangular meshes. The left

panel displays the L2-error on the potential measured by the quantity
 ř

TPTh
}puT ´ uT }2T

(1{2
with

pu :“ I
k
hu, while the right panel contains the error in the }¨}7,h-norm defined by (24). In both cases

the relative error is displayed and we have taken ς “ 1.

6 Proofs

This section is concerned with the proof of our two main results: Lemma 6 on stability and
Theorem 9 on the error estimate. In what follows, we often abbreviate a À b the inequality
a ď Cb with C ą 0 independent of h, ν, β, and µ, but possibly depending on ̺, d, and k.

6.1 Stability analysis

This section is organized as follows. First, we examine separately the coercivity of the diffusive
and the advective-reactive bilinear forms. Combining these results readily yields the coercivity of
the bilinear form ah, see (25) in Lemma 6. Then, we prove the inf-sup condition (27).

Lemma 11 (Stability of aν,h). Assume ς ě 1` C2

tr
NB

2
. Then, for all vh P U

k
h, the following holds:

1

2
}vh}2ν,h À aν,hpvh, vhq.

Proof. We use the Cauchy–Schwarz and discrete trace (5) inequalities, the definition (20) of the
}¨}ν,T -seminorm, and we recall (4) to obtain

ˇ̌
ˇ̌
ˇ
ÿ

FPFb

h

pνF∇pkT pF qvT pF q¨nTF , vF qF

ˇ̌
ˇ̌
ˇ ď

$
&
%

ÿ

FPFb

h

hF }ν1{2
F ∇pkT pF qvT pF q}2F

,
.
-

1{2

|vh|ν,BΩ

ď CtrN
1{2
B

#
ÿ

TPTh

}vT }2ν,T

+1{2

|vh|ν,BΩ.

Hence,

ahpvh, vhq ě
ÿ

TPTh

}vT }2ν,T ´ CtrN
1{2
B

#
ÿ

TPTh

}vT }2ν,T

+1{2

|vh|ν,BΩ ` ς|vh|2ν,BΩ. (34)
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For a real number A ą 0, assuming B ą A2, the following inequality holds for all positive real

numbers x, y: x2 ´ 2Axy ` By2 ě B´A2

1`B
px2 ` y2q. Using this result with x “

 ř
TPTh

}vT }2ν,T
(1{2

,

y “ |vh|ν,BΩ, 2A “ CtrN
1{2
B , and B “ ς in the right-hand side of (34) yields the assertion since

B´A2

1`B
ě 1

2
.

Lemma 12 (Stability of aβ,µ,h). Assume (A1)–(A3). The following holds for all vh P U
k
h:

η}vh}2β,µ,h ď aβ,µ,hpvh, vhq,

with η :“ minTPTh
p1, τref,Tµ0q.

Proof. Step 1. Let us first prove that, for all wh, vh P U
k
h, the following holds:

ÿ

TPTh

!
pGk

β,TwT , vT qT ` pwT , G
k
β,T vT qT

)
“

´
ÿ

TPTh

ÿ

FPFh

ppβ¨nTF qpwF ´ wT q, vF ´ vT qF `
ÿ

FPFb

h

ppβ¨nF qwF , vF qF . (35)

For all T P Th, we use (12b) with vT “ wT and w “ vT and (12a) with w “ wT to infer that

ÿ

TPTh

pGk
β,TwT , vT qT

“
ÿ

TPTh

#
pβ¨∇wT , vT qT `

ÿ

FPFT

ppβ¨nTF qpwF ´ wT q, vT qF
+

“
ÿ

TPTh

#
´pwT , G

k
β,T vT qT `

ÿ

FPFT

ppβ¨nTF qwT , vF qF `
ÿ

FPFT

ppβ¨nTF qpwF ´ wT q, vT qF
+
.

(36)
Formula (35) follows adding to the right-hand side of (36) the quantity

0 “
ÿ

FPFb

h

ppβ¨nF qwF , vF qF ´
ÿ

TPTh

ÿ

FPFT

ppβ¨nTF qwF , vF qF . (37)

To prove (37), we observe that, rearranging the sums,

ÿ

TPTh

ÿ

FPFT

ppβ¨nTF qwF , vF qF “
ÿ

FPF i

h

ÿ

TPTF

ppβ¨nTF qwF , vF qF `
ÿ

FPFb

h

ppβ¨nF qwF , vF qF .

Using, for all F P F i
h such that F Ă BT1 X BT2, the fact that β¨nT1F “ ´β¨nT2F “ β¨nF , we infer

that the first addend in the right-hand side is zero.
Step 2. Owing to (13) (see also (14) if νF “ 0) and since A`psq ´ A´psq “ s, we observe that, for
all T P Th and all F P FT ,

νF

hF
A`pPeTF q ´ νF

hF
A´pPeTF q “ β¨nTF . (38)

Owing to (35), we infer that, for all wh, vh P U
k
h,

aβ,µ,hpwh, vhq
“

ÿ

TPTh

 
´pwT , G

k
β,T vT qT ` pµwT , vT qT

(
` s´

β,hpwh, vhq `
ÿ

FPFb

h

p νF

hF
A`pPeF qwF , vF qF (39a)

“
ÿ

TPTh

 
pGk

β,TwT , vT qT ` pµwT , vT qT
(

` s`
β,hpwh, vhq `

ÿ

FPFb

h

p νF

hF
A´pPeF qwF , vF qF , (39b)
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where the global stabilization bilinear forms s˘
β,h on U

k
hˆU

k
h are assembled element-wise by setting

s˘
β,hpwh, vhq :“ ř

TPTh
s˘
β,T pwT , vT q.

Step 3. Let vh P U
k
h. Using (35) with wh “ vh and (38), we infer that

´
ÿ

TPTh

pGk
β,T vT , vT qT “

ÿ

TPTh

ÿ

FPFT

ˆ
νF
hF

A`pPeTF q´
νF
hF

A´pPeTF q

2
pvF ´ vT q, vF ´ vT

˙

F

´
ÿ

FPFb

h

ˆ
νF
hF

A`pPeF q´
νF
hF

A´pPeF q

2
vF , vF

˙

F

.

(40)

Taking wh “ vh in (39a) and using (40) to substitute the first term in the right-hand side, we
obtain

aβ,µ,hpvh, vhq ě
ÿ

TPTh

#
ÿ

FPFT

ˆ
νF
hF

A`pPeTF q`
νF
hF

A´pPeTF q

2
pvF ´ vT q, vF ´ vT

˙

F

` µ0}vT }2T

+

` 1

2

ÿ

FPFb

h

ˆ
νF
hF

A`pPeF q`
νF
hF

A´pPeF q

2
vF , vF

˙

F

,

and the conclusion follows recalling (23) and since |A|psq “ A`psq ` A´psq.

Proof of (25). Sum the results of Lemmas 11 and 12.

Proof of the inf-sup condition (27). The proof hinges on the use of the locally scaled advective
derivative as a test function, an idea which can be found, e.g., in the work of Johnson and
Pitkäranta [22]. We denote by $ the supremum in the right-hand side of (27). Let wh P U

k
h and

define vh P U
k
h such that,

vT “ hTβ
´1
ref,T pGk

β,TwT q @T P Th, vF ” 0 @F P Fh. (41)

The following result is proved in Lemma 13:

}vh}7,h À }wh}7,h. (42)

Using (41) in (17) and recalling (39b), it is inferred that

ÿ

TPTh

hTβ
´1
ref,T }Gk

β,TwT }2T “ ahpwh, vhq ´ aν,hpwh, vhq ´
ÿ

TPTh

pµwT , vT qT

´ s`
β,hpwh, vhq ´

ÿ

FPFb

h

p νF

hF
A´pPeF qwF , vF qF .

(43)

Denote by T1, . . . ,T5 the addends in the right-hand side of (43). Using (42), we have

|T1| ď $}vh}7,h À $}wh}7,h. (44)

Since vF “ 0 for any face F , using the Cauchy-Schwarz inequality on the positive semi-definite
bilinear form aν,T and recalling the definition (20) of }¨}ν,h, it is inferred, thanks to (42), that

|T2| ď }wh}ν,h}vh}ν,h À }wh}5,h}wh}7,h. (45)

The estimate on T3 is trivial:

|T3| À }wh}β,µ,h}vh}β,µ,h À }wh}5,h}wh}7,h. (46)

Let us now turn to T4. Using Remark 2 (if νF ą 0) and (A3) (otherwise) we see that

| νF

hF
A`pPeTF q| À νF

hF

` νF

hF

|A|pPeTF q.
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Using the fact that νF ď νT and hT À hF owing to (3) whenever F P FT , the norm equivalence
(21), the Cauchy–Schwarz inequality, and the definition (22) of the advective seminorm }¨}β,µ,h,
we therefore find

|T4| ď
ÿ

TPTh

ÿ

FPFT

p| νF

hF
A`pPeTF q| |wF ´ wT |, |vF ´ vT |qF

À
ÿ

TPTh

ÿ

FPFT

νT

hT
p|wF ´ wT |, |vF ´ vT |qF

`
ÿ

TPTh

ÿ

FPFT

p νF

hF
|A|pPeTF q |wF ´ wT |, |vF ´ vT |qF

À }wh}ν,h}vh}ν,h ` }wh}β,µ,h}vh}β,µ,h À }wh}5,h}vh}7,h. (47)

Proceeding similarly, it is inferred for T5:

|T5| À }wh}5,h}wh}7,h. (48)

Hence, using (44)–(48) to bound the right-hand side of (43), we obtain

ÿ

TPTh

hTβ
´1
ref,T }Gk

β,TwT }2T À $}wh}7,h ` }wh}5,h}wh}7,h. (49)

Adding }wh}25,h to both sides of inequality (49), and observing that, as a consequence of (25),

}wh}25,h ď ζ´1 ahpwh,whq
}wh}7,h

}wh}7,h ď ζ´1$}wh}7,h, (50)

we infer the existence of C depending on ̺, d, and k, but independent of h, ν, β, and µ, such that

C}wh}27,h ď ζ´1$}wh}7,h ` }wh}5,h}wh}7,h ď ζ´1$}wh}7,h ` 1

2C
}wh}25,h ` C

2
}wh}27,h,

and the result follows using again (50) for the second term in the right-hand side.

Lemma 13. Under the assumptions of Lemma 6, let wh P U
k
h and vh P U

k
h be defined as in (41).

Then, (42) holds.

Proof. Using (12b), we observe that, for all zT P U
k
T ,

?
νT }Gk

β,T zT }T “ sup
wPPk

d
pT q,}w}T “1

?
νT pGk

β,T zT , wqT

À
#
νT }β¨∇zT }2T `

ÿ

FPFT

νT

hF
}|β¨nTF |pzF ´ zT q}2

+1{2

À βref,T }zT }ν,T .
(51)

The first inequality results from multiple applications of the Cauchy–Schwarz inequality together
with the discrete trace inequality (5) and the bound (4) on NB, while the second is an immediate
consequence of the definition (23) of βref,T and of the equivalence (21).

(i) Diffusive contribution. Recalling (21), using the discrete inverse (6) and trace (5) inequal-
ities followed by (3) to write hT {hF ď ̺´2 and the bound (4) on NB for the boundary term, it is
inferred that

}vh}2ν,h À
ÿ

TPTh

#
νTh

2
Tβ

´2
ref,T }∇Gk

β,TwT }2T `
ÿ

FPFT

νThTβ
´2
ref,T }Gk

β,TwT }2F

+

À
ÿ

TPTh

νTβ
´2
ref,T }Gk

β,TwT }2T À }wh}2ν,h,
(52)

where, for all T P Th, we have used (51) with zT “ wT to conclude.
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(ii) Advective and reactive contributions. If νF ą 0 then, since |A| is Lipschitz-continuous and
vanishes at 0,

νF

hF
|A|pPeTF q À νF

hF
|PeTF | “ |β¨nTF | ď βref,T .

Owing to (A3), this inequality is also valid in the case νF “ 0. Hence, recalling the definition (41)
of vh and using the discrete trace inequality (5), it is inferred, for all T P Th and all F P FT ,

}
“
νF

hF
|A|pPeTF q

‰1{2pvF ´ vT q}F “ }
“
νF

hF
|A|pPeTF q

‰1{2
vT }F À h

1{2
T β

´1{2
ref,T }Gk

β,TwT }T . (53)

Using (53) together with the uniform bound (4) on NB and the definition (41) of vh, we deduce
that

}vh}2β,µ,h À
ÿ

TPTh

!
hTβ

´1
ref,T }Gk

β,TwT }2T ` h2
T τ

´1
ref,Tβ

´2
ref,T }Gk

β,TwT }2T
)

À
ÿ

TPTh

hTβ
´1
ref,T }Gk

β,TwT }2T , (54)

where the conclusion follows by noticing that (26) yields hTβ
´1
ref,T τ

´1
ref,T ď 1. Moreover, recalling

(12a) and using the Cauchy–Schwarz and inverse (6) inequalities together with the definition (23)
of βref,T to infer |pvT ,β¨∇wqT | ď }vT }Tβref,TCinvh

´1
T }w}T , one has, for all T P Th,

}Gk
β,T vT }T “ sup

wPPk
d

pT q,}w}T “1

´pvT ,β¨∇wqT À βref,Th
´1
T }vT }T “ }Gk

β,TwT }T , (55)

where we have used the definition (41) of vT to conclude. Hence, using (54) and (55), we estimate
the advective and reactive contributions to }vh}7,h as follows:

}vh}2β,µ,h `
ÿ

TPTh

hTβ
´1
ref,T }Gk

β,T vT }2T À
ÿ

TPTh

hTβ
´1
ref,T }Gk

β,TwT }2T . (56)

The conclusion then follows from (24) recalling (52) and (56).

6.2 Error analysis

We prove here Theorem 9. Owing to (27), we infer that

}puh ´ uh}7,h ď pγζq´1 sup
vhPUk

h
zt0u

Ehpvhq
}vh}7,h

, (57)

where

Ehpvhq :“ ahppuh ´ uh, vhq “ ahppuh, vhq ´ lhpvhq “ aν,hppuh, vhq ` aβ,µ,hppuh, vhq ´ lhpvhq,

is the consistency error. We derive a bound for this quantity for a generic vh P U
k
h proceeding in

the same spirit as [11, Theorem 8]. Recalling that f “ ∇¨p´ν∇u`βuq`µu a.e. in Ω, we perform
an element-by-element integration by parts on the first term in the definition (18) of lhpvhq. We
then use the conservation property

p´ν∇u ` βuq|T1
¨nT1F ` p´ν∇u ` βuq|T2

¨nT2F “ 0

valid for any interface F Ă BT1 X BT2 to introduce vF in the resulting sums. We also notice
that, for any face F P Fb

h ,
νF

hF
A´pPeF qg “ νF

hF
A´pPeF qu on F , which results from the boundary

condition (2d) if νF ą 0 and from the definition (14) if νF “ 0. Letting quT :“ pkTpuT and using the
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definitions (10) and (15) for aν,h, and (39a) and (12b) for aβ,µ,h, we then find

Ehpvhq “
ÿ

TPTh

#
pνT∇pquT ´ u,∇vT qT `

ÿ

FPFT

pνT∇pquT ´ u|T q¨nTF , vF ´ vT qF ` sν,T ppuh, vhq
+

`
ÿ

TPTh

#
pu ´ puT ,β¨∇vT ` µvT qT `

ÿ

FPFT

ppβ¨nTF qpu|T ´ puT q, vF ´ vT qF `s´
β,T ppuh, vhq

+

`
ÿ

FPFb

h

!
pνF p∇pu ´ quT q¨nTF , vF qF ` νF

hF
pA`pPeF qppuF ´ uq, vF qF

)
.

(58)

We have used the fact that
ř

FPFb

h

ςνF

hF
ppuF ´g, vF qF “ 0. Indeed, for all F P Fb

h , either νF “ 0 and

the corresponding addend vanishes, or νF ą 0 so that F Ă Γν,β (cf. (1a)) and hence puF “ πk
F g

owing to (2d) and ppuF ´ g, vF qF “ pπk
F g ´ g, vF qF “ 0 since vF P P

k
d´1pF q.

Denote by T1, T2, T3 the lines composing the right-hand side of (58) and corresponding,
respectively, to diffusive terms, advective terms, and weakly enforced boundary conditions.
(i) Diffusive terms. Proceeding as in the proof of [11, Theorem 8] yields

|T1| À
#

ÿ

TPTh

νTh
2pk`1q
T }u}2Hk`2pT q

+1{2

}vh}ν,h. (59)

Observe that, to obtain (59), a crucial point is the choice to interpolate puF from the diffusive
side whenever F Ă I´

ν,β since this guarantees that quT enjoys the approximation properties (9)
whenever νT ‰ 0.
(ii) Advective-reactive terms. Denote by T2,1, T2,2, and T2,3 the three addends that compose T2.
For the first term, observing that pπ0

Tβq¨∇vT P P
k´1
d pT q Ă P

k
dpT q and recalling that, owing to (28),

puT “ πk
Tu, we infer that T2,1 “ ř

TPTh
pu ´ πk

Tu, pβ ´ π0
Tβq¨∇vT qT . Hence,

|T2,1| À
ÿ

TPTh

 
}β ´ π0

Tβ}L8pT qd}u ´ πk
Tu}T }∇vT }T ` }µ}L8pT q}u ´ πk

Tu}T }vT }T
(

À
#

ÿ

TPTh

τ´1
ref,Th

2pk`1q
T }u}2Hk`1pT q

+1{2

}vh}β,µ,h,

(60)

where the second inequality is obtained using the fact that β is Lipschitz continuous to infer
}β´π0

Tβ}L8pT qd ď Lβ,ThT followed by the inverse inequality (6) together with the definition (23)
of τref,T .

To treat T2,2 and T2,3, we proceed differently according to the value of the local Péclet number.
We write T2,2 “ Td

2,2 ` Ta
2,2 and T2,3 “ Td

2,3 ` Ta
2,3, where the superscript “a” corresponds to

integrals where |PeTF | ď 1, while the superscript “d” corresponds to integrals where |PeTF | ą 1
(which conventionally include all faces where νF “ 0). We denote by 1|PeTF |ď1 and 1|PeTF |ą1 the
two characteristic functions of these regions. The idea is that we use the diffusive norm of vh if
|PeTF | ď 1, whereas we use the advective norm if |PeTF | ą 1. Before proceeding, we observe that,
for all T P Th and all F P Fh, the following holds:

}puF ´ puT }F “ }πk
F pu|Tν pF q ´ puT q}F ď }u|Tν pF q ´ puT }F , (61)

where we have used that puF “ πk
Fu|Tν pF q (see (28)) puT |F P P

k
d´1pF q, and that πk

F is a projector.

For Td
2,2, it is also useful to notice that, since A´p0q “ 0,

ˇ̌
ˇ νF

hF
A´pPeTF q

ˇ̌
ˇ À νF

hF
|PeTF | “ |β¨nTF | ď βref,T (62)
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whenever νF ą 0 (which is always the case if 1|PeTF |ď1 ı 0). Hence, observing that νF ą 0
indicates that the exact solution u does not jump across F , so that we can simply write u|T in
place of u|Tν pF q,

|Td
2,2| ` |Td

2,3|
ď

ÿ

TPTh

ÿ

FPFT

p|β¨nTF |1|PeTF |ď1 |u|T ´ puT |, |vF ´ vT |qF

` LippA´q
ÿ

TPTh

ÿ

FPFT

νF

hF
p|PeTF |1|PeTF |ď1 |puF ´ puT |, |vF ´ vT |qF

À
#

ÿ

TPTh

ÿ

FPFT

νF

hF
}PeTF1|PeTF |ď1}2L8pF q}u|T ´ puT }2F

+1{2

ˆ
#

ÿ

TPTh

ÿ

FPFT

νF

hF
}vF ´ vT }2F

+1{2

À
#

ÿ

TPTh

ÿ

FPFT

βref,T minp1,PeT q}u|T ´ puT }2F

+1{2

}vh}ν,h,

(63)
where we have used (61) and (62) to bound the second addend in the first line and the norm
equivalence (21) to conclude. To estimate Ta

2,2, it suffices to observe that

|Ta
2,2| À

#
ÿ

TPTh

ÿ

FPFT

}β¨nTF1|PeTF |ą1}L8pF q}u|T ´ puT }2F

+1{2

ˆ
#

ÿ

TPTh

ÿ

FPFT

}|β¨nTF1|PeTF |ą1|1{2pvF ´ vT q}2F

+1{2

À
#

ÿ

TPTh

ÿ

FPFT

βref,T minp1,PeT q}u|T ´ puT }2F

+1{2

}vh}β,µ,h,

(64)

where the introduction of the advective norm in the last inequality is justified since, owing to (38)
(see also (14) if νF “ 0) and Assumption (A2),

|β¨nTF |1|PeTF |ą1 À νF

hF
|A|pPeTF q. (65)

To estimate Ta
2,3, recalling (61), we observe that

|Ta
2,3| ď

ÿ

TPTh

ÿ

FPFT

p| νF

hF
A´pPeTF q|1|PeTF |ą1|πk

F pu|Tν pF q ´ puT q|, |vF ´ vT |qF .

For given T P Th and F P FT , we have the following mutually exclusive cases: (i) νF ą 0 or
(νF “ 0 and F Ă I`

ν,β), in which case u|Tν pF q “ u|T since u does not have a jump at F (see (2c) if

F Ă I`
ν,β); (ii) νF “ 0 and F Ă I´

ν,β, in which case, recalling (14), νF

hF
A´pPeTF q “ pβ¨nTF q´ “ 0.

Hence, in any case, | νF

hF
A´pPeTF q||πk

F pu|Tν pF q ´ puT q| “ | νF

hF
A´pPeTF q||πk

F pu|T ´ puT q|. Using this

fact, and observing that, for all T P Th and all F P FT , | νF

hF
A´pPeTF q| À |β¨nTF | À βref,T , we

infer the estimate

|Ta
2,3| À

#
ÿ

TPTh

ÿ

FPFT

βref,T minp1,PeT q}u|T ´ puT }2F

+1{2

}vh}β,µ,h. (66)

To conclude the estimate on T2,2, we collect the bounds (63), (64), and (66), and invoke (7) to

write }u|T ´ puT }F ď Capph
k`1{2
T |u|Hk`1pT q, so that

|T2,2| ` |T2,3| À
#

ÿ

TPTh

βref,T minp1,PeT qh2k`1
T }u}2Hk`1pT q

+1{2

}vh}7,h. (67)
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(iii) Weakly enforced boundary conditions. Let us now estimate T3. Denoting by T3,1 and T3,2 the
two addends in T3, the estimate of T3,1 is a straightforward consequence of the Cauchy-Schwarz
inequality, the definition (20) }¨}ν,h, and the approximation property (9) of quT “ pkTpu:

|T3,1| ď

$
&
%

ÿ

FPFb

h

νFhF }∇pu ´ quT pF qq}2F

,
.
-

1{2

}vh}ν,h ď

$
&
%

ÿ

FPFb

h

νFh
2pk`2q
T pF q }u}2Hk`2pT pF qq

,
.
-

1{2

}vh}7,h.

(68)
To estimate T3,2, we apply similar ideas to those employed to bound T2,2. We first observe that,
for all F P Fb

h ,

}u ´ puF }F À h
k`1{2
T |u|Hk`1pT q. (69)

Since | νF

hF
A`pPeTF q| À |β¨nTF | (proved as for A´ above) and |A`pPeTF q| À |PeTF | whenever

νF ą 0, invoking the definitions (20) and (22) of the diffusive and advective norms and reasoning
as in the estimates of Td

2,2 and Ta
2,2, estimate (65) and the approximation property (69) yield

|T3,2| À
ÿ

FPFb

h

νF

hF
p|PeF |1|PeF |ď1 |puF ´ u|, |vF |qF `

ÿ

FPFb

h

p|β¨nTF |1|PeF |ą1 |puF ´ u|, |vF |qF

À

$
&
%

ÿ

FPFb

h

βref,T }PeF1|PeF |ď1}L8pF qh
2k`1
T }u}2Hk`1pT q

,
.
-

1{2

}vh}ν,h

`

$
&
%

ÿ

FPFb

h

}β¨nTF1|PeF |ą1}L8pF qh
2k`1
T }u}2Hk`1pT q

,
.
-

1{2

}vh}β,µ,h

À

$
&
%

ÿ

FPFb

h
, FĂBT

βref,T minp1,PeT qh2k`1
T }u}2Hk`1pT q

,
.
-

1{2

}vh}7,h.

(70)

The proof is completed by plugging estimates (59), (60), (67), (68), and (70) into (58), and using
the resulting bound to estimate the right-hand side of (57).
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