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Abstract

We design and analyze an approximation method for advection-diffusion-reaction equa-
tions where the (generalized) degrees of freedom are polynomials of order £ > 0 at mesh faces.
The method hinges on local discrete reconstruction operators for the diffusive and advective
derivatives and a weak enforcement of boundary conditions. Fairly general meshes with poly-
topal and nonmatching cells are supported. Arbitrary polynomial orders can be considered,
including the case k = 0 which is closely related to Mimetic Finite Difference/Mixed-Hybrid
Finite Volume methods. The error analysis covers the full range of Péclet numbers, including
the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain.
Computational costs remain moderate since the use of face unknowns leads to a compact
stencil with reduced communications. Numerical results are presented.

2010 Mathematics Subject Classification: 65N30, 65N08,

1 Introduction

The goal of the present work is to design and analyze an approximation method for advection-
diffusion-reaction equations where the (generalized) degrees of freedom (DOFSs) are polynomials
of order k£ > 0 at mesh faces. Since such faces constitute the mesh skeleton, and since DOF's can
be chosen independently at each face, we use the terminology discontinuous-skeletal method. The
proposed method offers various assets: (i) Fairly general meshes, with polytopal and nonmatching
cells, are supported; (ii) Arbitrary polynomial orders, including the case k = 0, can be considered;
(iii) The error analysis covers the full range of Péclet numbers; (iv) Computational costs remain
moderate since skeletal DOF's lead to a compact stencil with reduced communications.
Approximation methods using face-based DOFs have been investigated recently for advection-
diffusion equations on meshes composed of standard elements. In [6], Cockburn et al. devise and
numerically investigate a Hybridizable Discontinuous Galerkin (HDG) method for the diffusion-
dominated regime based on a mixed formulation where an approximation for the total advective-
diffusive flux is sought. In [5], Chen and Cockburn carry out a convergence analysis for a variable
degree HDG method on semimatching nonconforming simplicial meshes, and investigate the im-
pact of mesh nonconformity on the supercloseness of the potential. The formulation differs from [6]
in that the flux variable now approximates the diffusive component only. In [23], Wang and Ye

*daniele.di-pietro@Quniv-montp2.fr, corresponding author
fjerome.droniou@monash.edu
fernQ@cermics.enpc.fr


mailto:daniele.di-pietro@univ-montp2.fr
mailto:jerome.droniou@monash.edu
mailto:ern@cermics.enpc.fr

analyze a Weak Galerkin method for advection-diffusion-reaction on triangular meshes, which ap-
pears to be mainly tailored to the diffusion-dominated case. Turning to general polyhedral meshes,
we cite, in particular, the work of Beirdo da Veiga, Droniou, and Manzini 2] on Hybrid Mimetic
Mixed (HMM) methods (which encompass, see |15], three families of numerical schemes for ellip-
tic equations: the Mimetic Finite Difference method [3], the Mixed Finite Volume method [14],
and the Hybrid Finite Volume — or SUSHI — method [18]). Although the analysis focuses on the
diffusion-dominated case, we show in this work that a suitable tweaking of the scheme so as to
include weakly enforced boundary conditions allows one to treat the advection-dominated case as
well.

The starting point for the present discontinuous-skeletal method is the Hybrid-High Order
(HHO) method designed in [9,[11] for purely diffusive and linear elasticity problems. The key
ideas in [9,11] are as follows: (i) In each mesh cell, a local potential reconstruction of order (k+ 1)
is devised from polynomials of order k in the cell and on its faces (cell- and face-based DOFs); (ii)
A local bilinear form is built using a Galerkin form based on the gradient of the local potential
reconstruction plus a stabilization form which preserves the improved order of the reconstruction;
this leads to energy-error estimates of order (k + 1) and L?-potential estimates of order (k + 2)
if elliptic regularity holds; (iii) The global discrete problem is assembled cellwise, and cell-based
DOFs are eliminated by static condensation, so that only the face-based DOF's remain.

The extension to advection-diffusion-reaction equations entails several new ideas: (i) We de-
vise a local reconstruction of the advective derivative from cell- and face-based DOF's using an
integration by parts formula; (ii) Stability for the advective contribution is ensured by terms that
penalize the difference between cell- and face-based DOFs at faces, and which therefore do not
preclude the possibility of performing static condensation and do not enlarge the stencil; as in [2],
the stability terms are formulated in a rather general form so as to include various approaches used
in the literature, e.g., upwind, locally 8-upwind, and Scharfetter—Gummel schemes; (iii) Boundary
conditions are enforced weakly so as to achieve robustness in the full range of Péclet numbers.

An additional novel feature of the present work is that our analysis also includes the case of lo-
cally degenerate advection-diffusion-reaction equations, where the diffusion coefficient vanishes on
a (strict) subset of the computational domain. We emphasize that such problems are particularly
delicate since the exact solution can jump at the diffusive/nondiffusive interface separating zero
and nonzero regions for the diffusion coefficient. The literature on locally degenerate advection-
diffusion-reaction problems is relatively scarce. The coupling of parabolic-hyperbolic systems in
one space dimension is considered by Quarteroni and Gastaldi [19]; see also [17]. In both cases,
ad hoc techniques are proposed based on removing suitable terms at the diffusive/nondiffusive
interface. In [10], a discontinuous Galerkin (dG) method is designed and analyzed, where the
use of weighted averages allows one to automatically handle the possibility of jumps in the exact
solution. A dG method handling the degenerate case is also considered numerically by Houston,
Schwab, and Siili [21]. In the present setting, a perhaps surprising result at first sight is that
an approximation method hinging on face-based DOF's can capture well a discontinuous solution.
This result is achieved owing to a tailored design of the stabilization terms ensuring that the
interface unknown approximates well the exact solution from the diffusive side.

The material is organized as follows. In Section 2] we present the model problem. In Section [3]
we introduce the discrete setting. In Section[d] we define the local bilinear forms and introduce the
novel ideas to discretize the advective terms. In Section[5] we build the discrete problem, introduce
several norms for the analysis, and state our main results on stability and error estimates. The
dependence on the physical parameters is tracked in the error estimate so as to capture the
variation in convergence order between the diffusive and the advective regimes. We also study
the link with the HMM methods of [2] in the case k = 0. Such a link was already noticed in [11]
for HHO methods in the purely diffusive case. Finally, numerical results on standard and general
polygonal meshes are presented to assess the sharpness of the error estimate both in the uniformly
vanishing diffusion and locally degenerate case. Finally, in Section [6] we prove our main results.



2 Model problem

Let Q < R?, d > 1, be an open bounded connected polytope of boundary 92 and unit outer normal
n. We denote by v : Q — R the diffusion coefficient, which we assume to be piecewise constant
on a partition Py 1= {Q;}1<i<ng of Q into polytopes and such that v > v > 0 almost everywhere
in . The case of locally heterogeneous anisotropic diffusion can be considered as well using the
ideas in [8]. For the advective velocity 3 : Q — RY, we assume the regularity 8 € Lip(2)¢, and for
the reaction coefficient p : 2 — R, we assume and that p is bounded from below by a real number
o > 0. For simplicity, we work under the assumption V-3 = 0; the case V-3 # 0 can be treated
similarly, provided p + %V-ﬁ > po > 0. We introduce the following sets (cf. Figure [3[ below for
an illustration):

Igi={xecdl|v>0o0rBn<0}, (1a)
I g={zeZ,| +(Bni)(@) >0}, (1b)

where Z, is the diffusive/nondiffusive interface and m; is the unit normal to Z, pointing out of
the diffusive region. More precisely, Z,, is the set of points in €2 located at an interface between
two distinct subdomains €; and €2; of Py such that vq, > v|q, = 0. We assume that

(Bn;)(x) #0 for ae. zeZ,.

For given source term f € L?(2) and boundary datum g € L?*(T,, g), the continuous problem reads

V(—vVu+Bu)+pu=f  in N, (2a)
[-vVu+ Bu]n; =0 onZ, (2b)

[u] =0 on I;rﬂ, (2¢)

u=g onTI'y g, (2d)

where [[-]] denotes the jump across Z,, (the sign is irrelevant). Notice that the boundary condition
is enforced at portions of the boundary touching a diffusive region or a nondiffusive region provided
the advective field flows into the domain. A weak formulation for has been analyzed in [10].
In the non-degenerate case v > 0, I', g = dQ and the usual weak formulation in the space H{ ()
holds, cf., e.g., |7, Section 4.6.1].

3 Discrete setting

This section presents the discrete setting: admissible mesh sequences, analysis tools on such
meshes, DOFs, reduction maps, and reconstruction operators.

3.1 Assumptions on the mesh

Denote by H < R} a countable set of meshsizes having 0 as its unique accumulation point.
Following |7, Chapter 4], we consider h-refined mesh sequences (T, )re where, for all h € H, T, is
a finite collection of nonempty disjoint open polyhedral elements T" such that Q = (J;.7. T and
h = maxrpeT;, hr with hp standing for the diameter of the element 7. A face F is defined as a
hyperplanar closed connected subset of Q with positive (d—1)-dimensional Hausdorff measure and
such that (i) either there exist Ty (F), To(F) € Ty, such that F' < 0T (F) n dT»(F) and F is called
an interface or (ii) there exists T'(F') € T such that F < dT(F) n Q2 and F is called a boundary
face. In what follows, the dependence on F' of T1(F') and T»(F') (when F is an interface) and of
T(F) (when F is a boundary face) is omitted when no ambiguity can arise. Interfaces are collected
in the set .7-"}1, boundary faces in }"}L), and we let Fy, 1= .F}L v .7-'};. The diameter of a face F' € Fj,
is denoted by hp. For all T € Ty, Fr := {F € F, | F < 0T} denotes the set of faces contained



in 0T (with 0T denoting the boundary of T') and, for all F' € Fr, nrp is the unit normal to F'
pointing out of T. Symmetrically, for all F' € F, we let Tp := {T € T, | F < 0T} the set of
elements having F as a face. For each interface F' € F}, we fix an orientation as follows: we select
a fixed ordering for the elements 77,75 € 7, such that F' < 017 n 015 and we let ng := np, p.
For a boundary face, we simply take nyp = n, the outward unit normal to €2. In what follows, we
denote by |-|; the [-dimensional Hausdorff measure.

Our analysis hinges on the following two assumptions on the mesh sequence.

Assumption 1 (Admissible mesh sequence). For all h € H, T, admits a matching simplicial
submesh Tp, and there exists a real number o > 0 independent of h such that, for allh € H, (i) for
all simplex S € Tp, of diameter hg and inradius rs, ohs < rs and (#) for all T € Ty, and all
S e %y such that S < T, ohr < hg.

Assumption 2 (Compatible mesh sequence). (i) Any mesh cell belongs to one and only one
subdomain €; of the partition Pq; (i) Any mesh face having an intersection with the interface
T, s (of positive (d — 1)-dimensional Hausdorff measure) is included in one of the two sets Iyiﬁ;
(i) In any mesh face such that the diffusion coefficient vanishes on both of its sides, the normal
component of 3 is nonzero in a subset of positive measure.

The simplicial submesh in Assumption [1] is just a theoretical tool used to prove the results
in Section and it is not used in the actual construction of the discretization method. Fur-
thermore, a straightforward consequence of Assumption (1) is that v is piecewise constant on 7p.
Assumption (ii) is important in the error analysis so that the face unknowns on 7, g capture the
exact solution from the diffusive side. Assumption (iii) can be avoided by adding some crosswind
diffusion to the stabilization of the advective-reactive bilinear form in the spirit of a Lax—Friedrichs
flux, so that the difference between cell- and face-based DOF's is always penalized on faces included
in the nondiffusive region.

3.2 Analysis tools

We recall some results that hold uniformly in A on admissible mesh sequences. In what follows,
for X < Q, we respectively denote by (-,-)y and |-|x the standard inner product and norm in
L?(X), with the convention that the subscript is omitted whenever X = €. The same notation is
used in the vector-valued case L2(X)?. According to [7, Lemma 1.42], for all h € H, all T € Ty,
and all F' € Fr, hp is comparable to hr in the sense that

0*hr < hp < hr. (3)
Moreover, |7, Lemma 1.41] shows that there exists an integer Ny depending on g such that
VheH, max card(Fr) < Np. (4)
TeTh
Let [ > 0 be a nonnegative integer. For an n-dimensional subset X of Q (n < d), PL(X) is
spanned by the restriction to X of n-variate polynomials of total degree < [. Then, there exists

a real number C}, depending on g and [, but independent of h, such that the following discrete
trace inequality holds for all T € T, and F € Fr, cf. |7, Lemmas 1.46]:

lo)r < Cuhip Zlolr Vo e PY(T). (5)

Furthermore, the following inverse inequality holds for all T' € T}, with Cj,, again depending on o
and [, but independent of h, cf. [7, Lemma 1.44],

|Volz < Civhz'lolr Yo e PY(T). (6)

Moreover, using |7, Lemma 1.40] together with the results of [16], one can prove that there exists
a real number Cyp,;, depending on g and [, but independent of h, such that, for all 7' € 7}, denoting
by 7k the L2-orthogonal projector on P,(T)), the following holds: For all s € {1,...,l+ 1} and all
ve H(T),

v — 750 grm 7y + th/2|v — 75| g o) < Capphi ™ 0] e (1) Vm e {0,...,s — 1}. (7)



3.3 Degrees of freedom, interpolation, and reconstruction

Let a polynomial degree k > 0 be fixed. For all T' € T}, the local space of DOFs is
U - B4 x | X B )
FE]“T

and we use the notation v = (vr, (Vr)per,) for a generic element v, € U%. We define the local
interpolation operator I% : H'(T') — U% such that, for all v e H(T),

v = (70, (Tpv) Ferr) |

where 7% denotes the L?-orthogonal projector on PX_, (F). Following [11], for all T € Tp, we
define the local potential reconstruction operator pk. : Ql% — ]P’ZH(T ) such that, for all v :=
(VT7 (VF)FE_FT) € ul%7

(Vp?yT, V’U})T = (VVT, V’IU)T + 2 (VF — VT, VU}'TLTF)F Yw € IP)];J'_l(T),

FG]‘—T
ko —
Pr¥p = | VT-
T T

The discrete Neumann problem is well-posed. The following result has been proved in |11}
Lemma 3].

(8)

Lemma 1 (Approximation properties for p’%llfp). There ezists a real number C' > 0, depending on
o and k, but independent of hr, such that, for all ve H**2(T),

1
lo — phlbv|z + hi o — phliv]or

+ bV (v = p5IE0) |1 + b [V (0 = phlo) |or < CRE2 o] avagry- (9)

4 Local bilinear forms

In this section we define the local bilinear forms. These forms are expressed in terms of local
DOFs and are instrumental to derive the discrete problem in Section

4.1 Diffusion

To discretize the diffusion term in , we introduce, for all T' € 7Ty, the bilinear form a, 7 on
Ql} X Q]% such that

aV7T(wT7MT) = (VTVpl%ﬂTv VI#MT)T + su.17(Wr, V7)), (10)

with stabilization bilinear form s, 7 on Q? X Q’% such that

vr
sur(Wp,vp) == ) E(Wfr(wF — Ppwg), 75 (ve — Prvy)) e (11)
FeFr

In (TI), the potential reconstruction P : U%. — PA¥1(T) is such that, for all v, € U%.,
Ppyy = vr + (pfyy — Thplyr),

where the second term can be interpreted as a high-order correction of vp.



4.2 Advection-reaction

For all T' € T}, we introduce the discrete advective derivative GBT Uk - PX(T) such that, for
all vy € U and all w e P5(T),

(G vy, w)r = —(vp, B-Vw)r + Z (Bnrp)ve,w)F (12a)
FeFr
= (BVvr,w)r + Y (Bnrr)(ve —vr),w)r, (12b)
FeFr

where we have integrated by parts the first term in the right-hand side and used V-3 = 0 to pass
from (12a) to (I2h). We introduce, for all T € 7Ty, the local bilinear form ag , 7 on U% x U% such
that

ag,u,r(Wp, vr) := —(wr, GE,TMT)T + (pwr,vr)r + Sg p(Wp, V).
The local stabilization bilinear forms sg o on Ql% X Ql% are such that
shr(wp,vp) = Y (¥ A*(Perp)(wp —wr),ve —vr)p.
FE]:T

Here, vp := minper, v is the lowest diffusion coefficient from the (one or) two cells sharing F,
and the local (oriented) Péclet number Perp is defined if vp > 0 by

Perr = hFﬂ.nTF7 (13)

Vp

while we use below if vz = 0. Since, for all F' € ]—"}L’, there is a unique T € 7} such that
F < 0T, we simply write Pep instead of Perp in this case. Notice that the local Péclet number
Perr is a function F' — R.

The functions A* : R — R are such that A*(s) = 1(|A|(s) + s) for all s € R, and the function
|A] : R — R is assumed to satisfy the following design conditions:

(A1) |A] is a Lipschitz-continuous function such that |A](0) = 0 and, for all s € R, |4|(s) = 0 and
[Al(=s) = [A](s);

(A2) there exists @ = 0 such that |A|(s) = a|s| for any |s| = 1;

(A3) Ifv = 0, lims—, 4o % = 1 (and, consistently with (A1)), lims_, o ‘AL(S) = —1. Coherently,
for all T € Ty, and all F € Fr such that vp = 0, we set

HEAF (Perp) = lir, (ﬁAi (hTFﬁ'”TF)) = (Bnrr)?, (14)

v
where, for a real number s, we have denoted s* := 1 (|s| + s).

As already pointed out in [2,[4,|[13], using the generic functions A* in the definition of the
advective terms allows for a unified treatment of several classical discretizations. The centered
scheme corresponds to |A|(s) = 0, which fails to satisfy (A2)-(A3). Instead, Properties (Al)—(A3)
are fulfilled by the following methods:

o Upwind scheme: |A|(s) = |s| (so that AT (s) = sT and Z—‘;Ai(PeTF) = (Bnrr)t).

e Locally upwinded 0-scheme: |A|(s) = (1—0(s))|s|, where € C}(-1,1),0 <0 <land =1
on [—1/2,1/2], corresponding to the centered scheme if s € [—1/2,1/2] (dominating diffusion)
and the upwind scheme if s > 1 (dominating advection).

o Scharfetter-Gummel scheme: |A|(s) = 2 (£ coth($) — 1).



The advantage of the locally upwinded 6-scheme and the Scharfetter-Gummel scheme over the
upwind scheme is that they behave as the centered scheme, and thus introduce less artificial
diffusion, when s is close to zero (dominating diffusion).

Remark 2 (Assumption (A2)). This assumption implies that |A%(s)| < @|A(s)| for all |s] = 1
with @ = (14 a~'). Furthermore, the threshold |s| > 1 is arbitrary. If it is changed into |s| > b
for some fixed b = 1, then the only modification in the error estimate below is to change the
term min(1, Per) into min(b, Per).

Remark 3 (Assumption (A3)). Assumption (A3) is only required in the locally degenerate case
where the diffusion coefficient vanishes in one part of the domain.

5 Discrete problem and main results

We build in this section the discretization of using the local bilinear forms of Section |4l A key
point is the weak enforcement of boundary conditions to achieve robustness with respect to the
Péclet number.

5.1 Discrete bilinear forms

Local DOFs are collected in the following global space obtained by patching interface values:

Uy = { X IP”&(T)} x { X IPZ_l(F)}~
TeTh FeFy

We use the notation v, = ((vr)rer,, (VF)rer, ) for a generic element v, € U} and, for all T € T,
it is understood that v, denotes the restriction of v, to Ql%.

Denoting by ¢ > 0 a user-dependent boundary penalty parameter, we define the global diffusion
bilinear form a, , on Qﬁ X QZ such that

(9%
ay (W, vy) = . ayr(Wp,ve) + ) {(VFVp'%(F)WTﬂTF,vF)FJrhF(WF,vF)F}7 (15)
TeTh FeFp F

and the global advection-reaction bilinear form ag , ; such that

ag (Wi, vy) = Y agur(wr,ve) + Y, ($EAY (Pep)wr, ve)p. (16)
TeTh FeFp

The rightmost terms in and are responsible for the weak enforcement of the boundary
condition on I', g. Finally, we set

an(Wp, V) 1= ay n(Wp,, vy) + agun (W, vy), (17)
and we define the linear form [;, on QZ such that

Ih(vy) = > (fvo)r + D {(Zf;A(PeF)g,VF)F + g,i(gyVF)F} (18)

TeTh FeFP

The discrete problem reads: Find uj, € U} such that, for all v, € U¥,

an(Up, Vp) = ln(vy)- (19)
Remark 4 (Variations of a, ;). A symmetric expression of a, j, is obtained by adding the term
—ZFE}-}% (WF,VFVp’%(F)yT-nTF)F, to the right-hand side of , and correspondingly the term
—ZFEH; (g, VFVp’%(F)yT'nTF)F to the right-hand side of . This variation is not further
pursued here since the problem 18 itself monsymmetric.



5.2 Discrete norms and stability

The analysis of the discrete problem involves several norms. For the sake of easy reference,
their definitions are gathered here, as well as some related stability properties. The energy-like
diffusion (semi)norm is defined on U} by

Hyhﬁ,h = 2 HMT E,T + ‘!hﬁ,f}ﬂ with:
TeTh
VF (20)
HMTHE,T = a,,7(vp,vp) and |¥h|12/,a§2 = Z fTHVFH%N

FeFp

and owing to |11, Lemma 3.1], we observe that there is > 0, depending only on p, d, and k, such
that, for all v, € Q’},

vr

Iy Ive —vrlE <7yl o (21)

nlvrlsr <vr|Vvelz + )
FeFr

The advection-reaction (semi)norm is defined on UF by

HMhH%,u,h = 2 HMTH%,M,T‘FNH%,&Q with:

TeTy
1 v 1/2 _
vrlfr =5 2 I[FEIAIPerr)] " (ve —vo)[f + 7t vl and (22)
FeF:
2 . 1 : vVEp 1/2 2
vy, 3,00 =3 Z I[7=1Al(Per)] Vel %
FeFp

Following |7, Chapter 2], the reference time Tyef, 7 and velocity Srer,r are defined by
Lp,r := max IV Bilperyas  Tret,r := {max(|plrocry, Lgr)} s Bretyr = Blre(rye, (23)

(recall that 3 € Lip(Q)? implies 3 € W1 (2)49). Finally, we define two advection-diffusion-reaction
norms on U} as follows:

|§,h = H!hH?,h + Z hTﬁr;%,T”Gfa,T!TH?m (24)
TeT

HMhHE,h = v, 12/,h + Hyh”%,u,h and |y,

where the summand is taken only if Bief,r # 0. The error estimate stated in Theorem |§| below
uses the [|4,5-norm, and therefore delivers information on the advective derivative of the error,
which is important in the advection-dominated regime. The |-, ,-norm is, on the other hand, the
natural coercivity norm for the bilinear form ay, and is used as an intermediary step in the error
analysis. The coercivity norm is sufficient for the error analysis in the diffusion-dominated regime.

Remark 5 (Norms). Ouwing to Assumption [4(iii), we infer that vp # 0 or Bnp # 0 (on a
subset with positive measure). Hence, |-|, , and ||-|s,» are norms on UF. Indeed, if ve = 0, then
by the diffusive norm controls the term vp — vy and, if vp = 0, owing to , we obtain
7E|A|(Perr) = [Bnrr| # 0 and the advective norm controls vp — vr.

Our first important result concerns stability. The proof is postponed to Section [6.1

Lemma 6 (Stability of ay). Assume ¢ = 1+ C%Na and (A1)-(A3). Then, for all v, € UF, the
following holds:
C”Mhuﬁh < an(Vp,Vp), (25)

with ¢ = minTeTh(%, Tref, 7o) > 0. Assume additionally that, for all T € Tp,

hrLgr < Bret,r and  hrpo < Brer,T, (26)



where Lg T, Bref, 7, and Tief, 7 are defined by . Then, there exists a real number v > 0,
independent of h, v, B, and p, such that, for all wy, € Qﬁ,

ah(whalh)
f,h

gh < Sup (27)

7<||wh|
v, eUR\{0} vy,

Remark 7 (Threshold for ¢). The dependency on Cy, of the threshold on < introduced in Lemma@
can be removed by considering a lifting-based penalty term such as the one discussed in [7, Sec-

tion 5.3.2] and originally introduced by Bassi, Rebay et al. [1] in the context of discontinuous
CENs

Galerkin methods. Furthermore, the strict minimal threshold in Lemmal|6] is ¢ > =

Remark 8 (Assumption ) The first inequality in stipulates that the meshsize resolves the
spatial variations of the advective velocity 8. The quantity Dar := hT/J,()Br_e% o 45 a local Damkdohler
number relating the reactive and advective time scales. The second inequalify m assumes that
Dar < 1 for all T € Ty, meaning that we are not concerned with the reaction-dominated regime.
We could of course state a stability result without , but the dependency on the various constants
would be somewhat more intricate.

5.3 Error estimate

For all F' € F},, we denote by T, (F') one element of 7z such that T, (F) € arg maxyer,. vr (such
an element may not be unique when F' is an interface). Consider now an interface F € .7-',2 such
that I’ I;, 8 Since the exact solution can jump on F', we have to deal with a possibly two-
valued trace for the exact solution. It turns out that, in this case, the face unknown captures
the trace from the diffusive side, i.e., from the unique element 7, (F) € Tr such that v|p, () > 0.
We therefore define the global interpolation operator 12 - H 1(Q\Iy’ 5) — Qﬁ is such that, for all
vE Hl(Q\IVﬁ):

v = (7o) rer,, (Tp v, (m) ) Fer,) - (28)

Our main result is the following estimate on the discrete approximation error (ﬂiu —u;,) measured
in the |-|y,-norm. The proof is postponed to Section

Theorem 9 (Error estimate). Assume ¢ > 1+ @, (A1)-(A3), and (26). Denote by u and u,
the unique solutions to and , respectiely, and assume that wr € H**2(T) for all T € Ty,.
Then, there exists a Teal number v' > 0 depending on o, d, and k, but independent of h, v, 3, and
W, such that, letting Uy, := 1’;”;u and ¢ = minTeTh(%;Tref,T,UO);

V' Cus — uplgn

1/2

— k .

< { 2 (’/THUH%IICH(T) + Trefl,THuH?{’“Jrl(T))hg‘( oy Bret,T mln(]-vPeT)h%‘kJrl'u%Ik”rl(T)} (29)
TeTh

where Per = maxper,. |Perr|p=(r) is a local Péclet number (conventionally, |Perr| e py = +0
Zf Vp = 0)

Remark 10 (Regime-dependent estimate). Using the local Péclet number in allows us to
establish an error estimate which locally adjusts to the various regimes of . In mesh cells where
diffusion dominates so that Pep < hr, the contribution to the right-hand side of 18 (’)(h;(kﬂ)).
In mesh cells where advection dominates so that Per > 1, the contribution is (’)(hQTkH). The tran-
sition region, where Per is between hp and 1, corresponds to intermediate orders of convergence.
Notice also that the diffusive contribution exhibits the superconvergent behavior O(hQT(kH)) typical
of HHO methods, see [9,11|]. As a result, the balancing with the advective contribution is slightly
different with respect to other methods where the diffusive contribution typically scales as O(h%’“).



5.4 Link with Hybrid Mixed Mimetic methods

We assume here that the diffusion is not degenerate, i.e. v > 0, and show that, under a slight
modification of the definition of Per g, see below, the present discontinuous-skeletal method for
k = 0 corresponds to an edge-based Hybrid Mimetic Mixed (HMM) method studied for advective-
diffusive equations in [2]. In this section, we consider that the local Péclet number Perp is no
longer a function defined on the edge F', but the average of this function, i.e.,

1 hr
|F| Jp vr

With this new definition, and assuming that v > 0, the edge-based HMM method for with
w1 = 0 can be written (see [2, Egs. (2.48)—(2.49)]) in the flux balance and continuity form as follows:

Perp = —Bnrr. (30)

VTe Fp - Z |F|[(Fa)rr + (Fa)rr] = f f (31)
FeFr T

VF e FrnFpr withT = T - (Fd)TF + (Fa)TF + (Fd)T’F + (]Fa)T’F =0, (32)

where Fq and F, are diffusion and advection fluxes, constructed from the unknown u, € Q?L.
We additionally assume that boundary conditions are strongly enforced by considering the space
U0 = {vh eU) |vp=0 VFe fb} (we are entitled to strongly enforce boundary conditions
since we assume v > 0 in this section). Taking v, € U Uh.os multlplymg . ) by the constant value
vy, summing on the cells T € Ty, and using the flux conservativity (32]) and the strong boundary
condition to introduce the constant value vy in the sums, we see that these two equations are

equivalent to

D0 2 IFI(Fa)rr + (Fa)rr] (vo —ve) = la(vy), (33)

TeFn FeFr

for all v, € Q?L,O' As seen in [11], the definition of the diffusive flux Fq in |15, Eq. (2.25)]
shows that, when the stabilization matrices B” in the HMM method are diagonal with coefficients
(FZ|F|) Fery, the local diffusive term Y pe 7 |F|(Fa)7r(vr — vr) is identical to the local diffusive
bilinear form a,, 7 defined in . Therefore, it remains to study the advective term in and see
that it corresponds to ag o, (up,Vvy,). With the choice , using the diffusive scaling mentioned
in |2, §2.4.1] and applying a local geometric scaling based on the edge diameter hp rather than
the distance between the two neighboring cell centers, the advective flux is written |2, Eq. (2.46)]

(Fa)TF = % (A+(PGTF)UT — A_(PGTF)UF) .

Since AT (s) — A~ (s) = s and invoking the assumption V-3 = 0, we find that the advective
contribution in is

2 2 ‘F‘ [%A+(P6TF)UT — %A_(PGTF)UF] (VT — VF)

TeFy FeFr
-3 N A [ﬁ (A* (Perr) — A™ (Perp)) ur + 2 A™ (Perr)(ur — uF)] (v — Vi)
TeFn FeFr
= > > (J ﬁ'nTp) (v —ve)+ >, D) |FI#EA™ (Perp)(ur — up)(vr — vr)
TeFn FeFr TeFy, FeFr
Z uTvTJ V-3- Z ur Z <J ,BnTF> VF+SB h(uhth)
TeF, TeF, FeFr
1 -
= _TZ T |ur <|T Z (JF /B'nTF> VF> + Slﬁ’h(ﬂhvyh).
E]'-h FE]'-T

10
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Figure 1: Meshes for the test case of Section From left to right, the meshes are refereed to
as triangular, Kershaw and hexagonal, respectively

It is then a simple matter of inspecting the definition ((12a)) in the case k = 0 to notice that

1
Gkv=2<f,8~n )v
B,7YT TF | VF,
|T| FeFr F

and therefore conclude that the advective contribution in is indeed ag 0,5 (uy,, vy )-

5.5 Numerical results

To close this section, we provide numerical results illustrating the error estimate of Theorem [9]

5.5.1 TUniform diffusion

To numerically assess the sharpness of estimate in the uniform diffusion case, we solve on
the unit square the problem with boundary conditions and right-hand side inferred from the
following exact solution:

u(x) = sin(rzy) sin(rzs).

We take B(z) = (/2 — 9,21 —1/2), p = 1, and we let v vary in {0,1073,1}. In Figurewe display
the convergence results for the three mesh families depicted in Figure [I} From left to right, these
correspond, respectively, to the mesh families 1 (triangular) and 4.1 (Kershaw) of the FVCA5
benchmark [20], and to the (predominantly) hexagonal mesh family first introduced in [12]. Each
line in Figure [2| corresponds to a different mesh family, and the value of v increases from left
to right. In all the cases, an increase in the asymptotic convergence rate of about half a unit is
observed as we increase the value of v, as predicted by . The results also show that the method
behaves consistently on a variety of meshes possibly including general polygonal elements. The
slightly higher convergence rates for the Kershaw mesh family are possibly due to the fact that
the mesh regularity changes when refining.

5.5.2 Locally degenerate diffusion

To validate the method in the locally degenerate case, we consider the configuration originally
proposed in [10, Section 6.1], cf. Figure |3} The domain is Q = (—1,1)?\[-0.5,0.5]?. Denoting by
(r,0) the standard polar coordinates (with azimuth 6 measured anticlockwise starting from the
positive z-axis) and by ey the azimuthal vector, the problem coefficients are

T f0<f<m ey
97 = ’ 97 = :10_6a
v(0,7) {0 ifr<p<on POTI=Ton

The exact solution, also used to infer the value of the forcing term f and boundary datum g, is
given by

1) O—-m? ifo<f<m,
u 9 = .
3r(0—m) ifm <6 <2m.

11
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Figure 2: [{U;, — up|g,n-norm vs. h for different mesh families (rows) and values of the diffusion
coefficient v (columns) in the test case of Section
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Figure 3: Configuration for the test case of Section (left) and numerical solution for k = 3
and h = 1.29x1072 (right). The jump discontinuity across i, g is clearly visible.
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Figure 4: Convergence results for the locally degenerate test case of Section m

In Figure [4] we show the convergence results for a refined family of triangular meshes. The left
panel displays the L2-error on the potential measured by the quantity {ZTGTh [Or — ur HzT}l/z with

G := I¥u, while the right panel contains the error in the |-|; -norm defined by ([24). In both cases
the relative error is displayed and we have taken ¢ = 1.

6 Proofs

This section is concerned with the proof of our two main results: Lemma [f] on stability and
Theorem [J on the error estimate. In what follows, we often abbreviate a < b the inequality
a < Cb with C' > 0 independent of h, v, 3, and u, but possibly depending on p, d, and k.

6.1 Stability analysis

This section is organized as follows. First, we examine separately the coercivity of the diffusive
and the advective-reactive bilinear forms. Combining these results readily yields the coercivity of
the bilinear form ay,, see in Lemma@ Then, we prove the inf-sup condition .

Lemma 11 (Stability of a, 5). Assume¢ > 1+ % Then, for all v, € UY, the following holds:

1
§H!h”12/,h < Gy (Vo Vy)-

Proof. We use the Cauchy—Schwarz and discrete trace inequalities, the definition of the
|||, -seminorm, and we recall () to obtain

1/2
k Y k
Z (VFVPT(F)MT(F)'TLTFNF)F < Z hFHVF/QVpT(F)MT(F)H%‘ Vi w00
FeFP FeFp
1/2
1
< CtrNa/z{ D lvr 31} V.00
TeTh

Hence,

1/2
E,T} IVa w00 + <|¥h\3,m~ (34)

an(Vp,vy) = Z HMTH?/,T - CtrNa/2{ Z v

TeTh TeTh

13



For a real number A > 0, assuming B > A?, the following inequality holds for all positive real
2 2 B=A%( 2 2 ; ; : 2 Y2
numbers x,y: =% — 2Axy + By* > (z* + y*#). Using this result with « = {ZTGTh Ivrl2 237,

1+B
y = |vplv.o0, 24 = CtrNal/Q, and B = ¢ in the right-hand side of yields the assertion since
B—AZ 1
5B 22 =

Lemma 12 (Stability of ag , n). Assume (A1)-(A3). The following holds for all v, € Uk

77H¥h|?3,#,h < ag Vi, Vi),
with 1 := minpe;, (1, Tret, T H0)-
Proof. Step 1. Let us first prove that, for all wy,,v;, € Qﬁ, the following holds:

Z {(GE,TwT,VT)T + (WT,GE,T!T)T} =
TeTh

- Z Z ((Bnrrp)(wp —wr), Ve —vr)p + Z ((Bnp)wp,ve)p. (35)

TeTn, FEF FE]:};

For all T € Ty, we use (12b)) with v;» = wy and w = vy and (12a)) with w = wp to infer that

Z (G oW, V1)1
TeT;,

Z {(,B'VWT,VT)T+ Z ((ﬂ'nTF)(WF—WT),VT)F}

TeTh FeFr
= {_(WT’GE,TVT)T + > (Bnrp)wr,ve)r + Y (Bnre)(we — WT)NT)F} :
TeTh FeFr FeFr
(36)
Formula follows adding to the right-hand side of the quantity
0= > ((Bnp)wp,ve)r— >, >, (Bnrp)we,ve)r. (37)

FeFp TeT;, FeFr

To prove ([37)), we observe that, rearranging the sums,

Z Z ((Bnrrp)Wp,ve)F = Z Z ((Bnrp)Wp,vr)r + Z ((Bnp)wp,vp)p.

TeT, FeFr FeFi TeTr FeFp

Using, for all F' e f}L such that F' < 011 n 01y, the fact that B-nmrp = —B-nn,r = B-np, we infer
that the first addend in the right-hand side is zero.

Step 2. Owing to (see also if vp = 0) and since A*(s) — A~ (s) = s, we observe that, for
all T € Tp, and all F € Fr,

HEAT (Perp) — 72 A (Perr) = Bnrr. (38)
Owing to , we infer that, for all wy,v;, € QZ,

agu.h (W, V)

= D A=W, G rvr)r + (wwr,vr) 1} + 55, (W v,) + Y, (F2AT (Pep)wp,ve)r  (39a)

TeTh FeFp
= 2 {Ghrwr, vr)r + (pwr,ve) T} + sh (W, v,) + Y, (FEAT(Pep)wr,ve)p,  (39b)
TeTh FeFp

14



where the global stabilization bilinear forms s%) 5 On Qﬁ X QZ are assembled element-wise by setting

Sé,h(wh,yh) = ZTeTh S,JB_F,T(WTvyT)'
Step 3. Let v, € Qz. Using with w;,, = v, and , we infer that

YE AV (Perp)—+E A™ (Perr)
- Z (GE,TMTva)T = Z Z (hp - 2hF o (VP —Vvr),VF _VT>

TeTh TeTy, FEFT

Z (Z?AJr(PeF)—Z?A(Pep)V y )
- P) FyVF .
FeFp F

F
(40)

Taking w;, = v;, in (39a) and using to substitute the first term in the right-hand side, we
obtain

+E AT (Perp)+2E A™ (Perr)
agun(Vh V) = Y. { > (iF s = (vF — V1),V —VT> +M0|VT|2T}
TeTh FeFr F
+1 2 <;§ A+(PeF)J2rZ1;A_(PeF)VF’VF> 7
FeFp F
and the conclusion follows recalling and since |4|(s) = At (s) + A~ (s). O
Proof of . Sum the results of Lemmas 11| and O

Proof of the inf-sup condition . The proof hinges on the use of the locally scaled advective
derivative as a test function, an idea which can be found, e.g., in the work of Johnson and
Pitkéranta [22]. We denote by $ the supremum in the right-hand side of (27). Let w), € U¥ and
define v;, € U} such that,

vr = hoBof (Gl owy) YT €Th,  ve=0 VYFeF, (41)

The following result is proved in Lemma

Ivnllgn < |wplgn- (42)
Using in and recalling (39b)), it is inferred that

Z hTB;;%,THGg,TwTH% = ap(wy,vy) — au,h(ﬂh»Mh) - Z (uwr,vr)T
TeTn TeTh

_ (43)
— 5 (W vp) — D ($EA™(Pep)wr, vp) .
FeFp
Denote by %1,...,%5 the addends in the right-hand side of . Using , we have
%1l < 8llvplan < Slw,lgn- (44)

Since vp = 0 for any face F, using the Cauchy-Schwarz inequality on the positive semi-definite
bilinear form a, 1 and recalling the definition of |-|l,.n, it is inferred, thanks to , that

.- (45)

|Tal < lwy|

v,h vy, vh Hﬂh”b,hHWh

The estimate on %3 is trivial:

#,h (46)

Let us now turn to T4. Using Remark [2] (if vp > 0) and (A3) (otherwise) we see that

T3l < whllgwnlvnloun < [whlo,nlwyl

1% v
FEA* Pere)] < 75+ {5 Al(Pery).
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Using the fact that vp < vy and by < hp owing to whenever F' € Fr, the norm equivalence
, the Cauchy—Schwarz inequality, and the definition of the advective seminorm |-|
we therefore find

B.u,ho

|T4 Z Z l/FA+ PeTF)||WF—WT|,|VF—VT|)F
TeTy, FeFr

S ) > E(we —wrlve —vrl)r

TeTn FeEFr

+ 30 Y (#2|A|(Perp) wp — wrl, [ve — vr|)F
TETh FG]'—T
< |w

Proceeding similarly, it is inferred for Ts:

~

(47)

5] < w (48)

Hence, using f to bound the right-hand side of , we obtain

Z h‘TBrcf THG,B TWTHT
TeTh

(49)

Adding |w, |2, to both sides of inequality , and observing that, as a consequence of ,

1 an(Wp,, wy,)
HwhHu,h

(50)

lw, th <(

we infer the existence of C' depending on g, d, and k, but independent of h, v, 8, and p, such that

_ 1
< 'Sy flgn + 50 Wn ;

and the result follows using again for the second term in the right-hand side. O

Lemma 13. Under the assumptions of Lemma@ let wy, € U and v, € UF be defined as in [@1).
Then, holds.

Proof. Using (12b]), we observe that, for all z;. € Q?,
V VTHG]E-},TZT |l = sup vV VT(G,ICC:},TZTv w)r

wePh (7)), w]r=1
(51)

1/2
< {VTH,@'VZT%JF > Zﬁ|ﬁ'nTF|(ZFZT)|2} <

FeFr

The first inequality results from multiple applications of the Cauchy—Schwarz inequality together
with the discrete trace inequality and the bound on Ny, while the second is an immediate
consequence of the definition of Brer,r and of the equivalence .

(i) Diffusive contribution. Recalling , using the discrete inverse @ and trace inequal-
ities followed by to write hr/hr < 0~2 and the bound on N, for the boundary term, it is
inferred that

H¥h||12/,h < Z {VTh 5ref T”VGB TWTHT + Z VThT/Bref THG,B TWT”F}

TeTh FeFr

< Z vr Bt

TeTh

(52)

where, for all T € T}, we have used with z; = wy to conclude.
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(ii) Advective and reactive contributions. If vp > 0 then, since |A] is Lipschitz-continuous and
vanishes at 0,

iE|Al(Perp) < 1E[Perp| = [Bnrp| < Bret,r.

Owing to (A3), this inequality is also valid in the case vp = 0. Hence, recalling the definition
of v;, and using the discrete trace inequality , it is inferred, for all T' € T;, and all F' € Frp,

v P v 1/ 1 —1
I[£2|Al(Perr)] " (vi — vo)lr = [ 22141(Perr)] *vrllr < hi Bl |Gl pwpllz.  (53)

Using together with the uniform bound on Ny and the definition of v;,, we deduce
that

- k - - k
HMhH%,p,h < Z {hTﬁreg,THGﬁ,TwTH% + hQTTrefl,T re?,T”Gﬁ,TwTH%}
TeTh

-1
S Z hTﬂreﬁT

TeTh

‘Gg,TﬂTHQTa (54)

where the conclusion follows by noticing that (26) yields hTBr_e;TTr;fl,T < 1. Moreover, recalling
(12a) and using the Cauchy—Schwarz and inverse (6)) inequalities together with the definition
of Bret, 1 to infer |(vr, 3-Vw)r| < HVT‘|T5ref7TCinvh;l”’u)HT, one has, for all T € Ty,

|G ryrlr = sup  —(vr, B-Vw)r < Brer,rhy Ivrlr = |Gh rwr|r, (55)
weP (), |w|r=1

where we have used the definition of v to conclude. Hence, using and , we estimate
the advective and reactive contributions to |v;, |4, as follows:

HMhH,QG,M,h“' Z hTﬁr;%,THGg,TMTH?F < Z hTBr;%,THG,g,TwTH%' (56)
TeTh TeTh

The conclusion then follows from recalling and .

O
6.2 Error analysis
We prove here Theorem @ Owing to , we infer that
~ _ Enly
B~ ulen < (60 sup 00 67)

v, eUk\{0} Ivpllg,n

where
En(vy) = an(Uy, — up,vp,) = an(Up, vp,) — (V) = @ n Uy, V) + agun (U, vy,) — (V)

is the consistency error. We derive a bound for this quantity for a generic v,, € Qz proceeding in
the same spirit as |11, Theorem 8|. Recalling that f = V-(—vVu+ Bu) + pu a.e. in Q, we perform
an element-by-element integration by parts on the first term in the definition of Ip(vy,). We
then use the conservation property

(=vVu + Bu) i, -nr rp + (—vVu + Bu) i, nr,r =0

valid for any interface F' < 011 n 015 to introduce vg in the resulting sums. We also notice

that, for any face F € Fp, =A™ (Pep)g = $2 A7 (Pep)u on F, which results from the boundary

condition if vp > 0 and from the definition if vp = 0. Letting i := p?ﬁT and using the
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definitions and for a, p,, and (39a]) and (12D)) for ag . ,, we then find
Enlvy) =

Z {(VTV@T —u, Vvr)r + 2 (vrV(ir —wr)nre,ve —vr)r + SV,T(Ghth)}

TeTh FeFr

58
+ ) {(u —Ur, B-Vvr + pvr)r + Y, ((B1re)(ur —Gr),ve — VT)F+55,T(Gh,Vh)} %)
TETh FE]:T
+ Z {(VF(V(U — ’ZL/T)"I’LTF,VF)F + %(AJF(PQF)(GF — ’U,),VF)F} .

FeFp

We have used the fact that ZFG}-}}: SE(UF—g,vr)r = 0. Indeed, for all F' e FP, either vp = 0 and

the corresponding addend vanishes, or vp > 0 so that F < I', g (cf. (la)) and hence Up = mhg
owing to and (UF — g,vr)r = (7hg — g,vr)r = 0 since vp € P%_ (F).

Denote by %1, %5, T3 the lines composing the right-hand side of and corresponding,
respectively, to diffusive terms, advective terms, and weakly enforced boundary conditions.
(i) Diffusive terms. Proceeding as in the proof of [11, Theorem 8] yields

1/2

2(k+1

T < { > vrhg™* wzmm} v
TeTh

V- (59)

Observe that, to obtain , a crucial point is the choice to interpolate Ur from the diffusive
side whenever F' 7, 5 since this guarantees that %7 enjoys the approximation properties @
whenever v # 0.

(ii) Advective-reactive terms. Denote by T2 1, Ta 2, and Tg 3 the three addends that compose Ts.
For the first term, observing that (7%.8)- Vv € P51 (T') < P(T) and recalling that, owing to (28),
Up = mpu, we infer that To1 = Yoy (u — 7hu, (8 — 79.8)-Vvp)p. Hence,

Toal s D) {18 — 738l =(ryellu — mhulr [ Vvrlr + |l ey v — 7hulz|ve| 7}
TeT

1/2

—1 ;2(k+1

S { Z Trefl,ThT( )|u|%(k+1(T)} (e
TeTh

(60)

where the second inequality is obtained using the fact that 3 is Lipschitz continuous to infer
1B —=79B8 1 (1ys < Lg,rhr followed by the inverse inequality (6) together with the definition
of Tref, T+

To treat T 2 and Ty 3, we proceed differently according to the value of the local Péclet number.
We write Too = T4, + T3, and T3 = TG 5 + T3 5, where the superscript “a” corresponds to
integrals where |Perp| < 1, while the superscript “d” corresponds to integrals where |Perp| > 1
(which conventionally include all faces where vr = 0). We denote by 1pe, .|<1 and 1jpe, . |>1 the
two characteristic functions of these regions. The idea is that we use the diffusive norm of v, if
|Perr| < 1, whereas we use the advective norm if |Perr| > 1. Before proceeding, we observe that,

for all T € Tj, and all F € Fy, the following holds:

lip —trlr = |75 (wr, ) — 00)lF < |yz, ) — OrlF, (61)

where we have used that Up = w7, (r) (see (28)) Urr € P5_, (F), and that 7}, is a projector.
For T4 ,, it is also useful to notice that, since A~(0) =0,

£2A” (Perp)| < £ |Pers| = |Bnrr| < fret.r (62)
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whenever vp > 0 (which is always the case if 1jpe,,.|<1 # 0). Hence, observing that vp > 0
indicates that the exact solution u does not jump across F, so that we can simply write up in
place of w7, (F),

|‘I§72| + ‘(3:(21,3|
< >0 DL (BnreLper i<t lur — Tzl Ve — Ve |)p
TeTy, FeEFr
+Lip(A7) X Y £ (IPerp[lpes i<t [Ur — Orl, [ve —vr|)r
TeTy, FEFT
12 1/2

< { > Zf;|P€TF1PeTF|<1|%w(F)|U|T—GT|%} x { DD #Elve —VT|2F}

TeTn FEFT TeTy, FeEFr

v,hs

12
< { Z Z Bref,T min(LPeT)Hu\T - IJ\T|2F} ”Mh

TeTn FEFT
(63)
where we have used and to bound the second addend in the first line and the norm
equivalence to conclude. To estimate T3 5, it suffices to observe that

1/2
EEPIRS { D 1B pLperp sl Le(r) lur —GT||2F}

TeT, FeFr

1/2
X{Z > Iﬂ~nTF1|peTF|>1Vzm—m&} (64)

TeTn FeFr

B.u,ho

12
< { > 2 ﬂref,Tmin(LPeT)luTﬁTl%} vl

TeT, FeFr

where the introduction of the advective norm in the last inequality is justified since, owing to
(see also if vp = 0) and Assumption (A2),

1B nrr|Lperp>1 < 75 |Al(Perr). (65)

To estimate T3 5, recalling (61), we observe that

D54l < D0 Y (¥ A (Perr) Lperp>1 T (uyr, (7)) — G7)], VE — va|) £
TeTy, FEFT

For given T € T, and F € Fr, we have the following mutually exclusive cases: (i) vp > 0 or
(vP =0and F c I;rﬁ), in which case w7, (p) = up since u does not have a jump at I (see if
Fc I:rﬁ); (ii) vp = 0 and F' < Z,, 4, in which case, recalling (14, =A™ (Perp) = (Bnrp)” =0.
Hence, in any case, |Z—I;A_(PeTp)H7r§(u[TU(F) —up)| = \%A‘(PGTF)HW?(LL‘T — Uyp)|. Using this
fact, and observing that, for all T' € 7T;, and all F' € Fr, |Z—§A*(PeTF)| < Bnre| < Bret,r, We
infer the estimate

1/
RERIRS { > > ﬁref,Tmin(l,PeT)le—GTI%} Ivhllg pun- (66)

TeTy, FEFT

To conclude the estimate on T35, we collect the bounds , , and , and invoke to
write |ujr — U < Capphle” [t riss (1), s0 that

1/
|Ta2] +[Fas] < { > Beetr min(LPeT)h?rk“|U|§pe+1(T)} Ivalg.n- (67)
TeTh
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(iii) Weakly enforced boundary conditions. Let us now estimate T3. Denoting by T3 1 and T3 o the
two addends in T3, the estimate of T3, is a straightforward consequence of the Cauchy-Schwarz
inequality, the definition |llu,n, and the approximation property (9 of %y = pk.u:

1/2 1/2

~ 2(k+2
[Tsal <2 D) wehp|[Vu—dr@)lE o Ivalon <3 D) vehyo 2 uldme ey ¢ lva
FeFp FeFp

|-

(68)

To estimate T3 2, we apply similar ideas to those employed to bound T3 5. We first observe that,
for all F' € .7:}; ,

[u=Brlr < byt lul e . (69)

Since |2 A* (Perp)| < |B-nrr| (proved as for A~ above) and |[A*(Perr)| < [Perr| whenever
vr > 0, invoking the definitions and of the diffusive and advective norms and reasoning

as in the estimates of ng and T3 ,, estimate (65) and the approximation property yield

Tsol € Y £2(Per(lpey i<t [ir — ul, [ve)r + ) (IBnrrlpe =1 [0F — ul, [ve|)r

FeFP FeFp
1/2
< Z /Bref,THPeF]-|PeF|<1HLOO(F)hg"k+1”u||?{k+1(T) Ivplv,n
FeFpP
v (70)
k
+ 2 |B-nrrpey =1l Lo () 7 +1HUH§{’€+1(T) Ivn [l 8.2
FeFp
1/2
< Z Bref,TmiH(LPeT)hQTkHHUH?qu(T) IV l4.-
FeFp,FcoT

The proof is completed by plugging estimates , , 67), 7 and into , and using
the resulting bound to estimate the right-hand side of (57)).
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