Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials

Résumé

We study the boundary behaviour of the of (E) $-\Gd u-\myfrac{\xk }{d^2(x)}u+g(u)=0$, where $0<\xk <\frac{1}{4}$ and $g$ is a continuous nonndecreasing function in a bounded convex domain of $\BBR^N$. We first construct the Martin kernel associated to the the linear operator $\CL_{\xk }=-\Gd-\frac{\xk }{d^2(x)}$ and give a general condition for solving equation (E) with any Radon measure $\gm$ for boundary data. When $g(u)=|u|^{q-1}u$ we show the existence of a critical exponent $q_c=q_c(N,\xk )>1$: when $0
Fichier principal
Vignette du fichier
Synthes-25.pdf (679.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01071467 , version 1 (08-10-2014)
hal-01071467 , version 2 (27-10-2014)
hal-01071467 , version 3 (12-02-2015)
hal-01071467 , version 4 (26-02-2015)

Identifiants

  • HAL Id : hal-01071467 , version 3

Citer

Konstantinos Gkikas, Laurent Véron. Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials. 2015. ⟨hal-01071467v3⟩
176 Consultations
217 Téléchargements

Partager

More