Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials
Résumé
We study the boundary behaviour of the of (E) $-\Gd u-\myfrac{\xk }{d^2(x)}u+g(u)=0$, where $0<\xk <\frac{1}{4}$ and $g$ is a continuous nonndecreasing function in a bounded convex domain of $\BBR^N$. We first construct the Martin kernel associated to the the linear operator $\CL_{\xk }=-\Gd-\frac{\xk }{d^2(x)}$ and give a general condition for solving equation (E) with any Radon measure $\gm$ for boundary data. When $g(u)=|u|^{q-1}u$ we show the existence of a critical exponent $q_c=q_c(N,\xk )>1$: when $0
Origine | Fichiers produits par l'(les) auteur(s) |
---|