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Abstract
We study the boundary behaviour of the of (E) —Awu — d2’z )u + g(u) =0, where 0 < K < % and
X
g is a continuous nonndecreasing function in a bounded convex domain of R™. We first construct the
Martin kernel associated to the the linear operator £, = —A — d%(w) and give a general condition for

solving equation (E) with any Radon measure ;. for boundary data. When g(u) = |u|9~'u we show the
existence of a critical exponent g. = g.(N, k) > 1: when 0 < ¢ < g. any measure is eligible for solving
(E) with p for boundary data; if ¢ > ¢., a necessary and sufficient condition is expressed in terms of
the absolute continuity of pwith respect to some Besov capacity. The same capacity characterizes the
removable compact boundary sets. At end any positive solution (F) —Awu — ﬁmu + |ul]9" u = 0 with
g > 1 admits a boundary trace which is a positive outer regular Borel measure. When 1 < ¢ < ¢. we
prove that to any positive outer regular Borel measure we can associate a positive solutions of (F') with
this boundary trace.
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1 Introduction

Let 2 be a bounded smooth domain in R™ and d(z) = dist (x,Q¢). In this article we study several
aspects of the nonlinear boundary value associated to the equation

—Au— %u FluPlu=0 i Q (1.1)
where p > 1. The study of the boundary trace of solutions of (1.1) is a natural framework for a general
study of several nonlinear problems where the nonlinearity, the geometric properties of the domain and
the coefficient x interact. On this point of view, the case x = 0 has been thoroughly treated by Marcus
and Véron [21], [22], [24], [23], for example and the synthesis presented in [25]. The associated linear
Schrodinger operator

K

ur Lou:=—Au — Wu (1.2)
plays an important role in functional analysis because of the particular singularity of is potential V' (x) :=
—2(7- The case k < 0 and more generally of nonnegative potential has been studied by Ancona [2] who
has shown the existence of a Martin kernel which allows a general representation formula of nonnegative
solutions of

Lou=0 in (1.3)

This representation turned out to be the key ingredient of the full classification of positive solutions
of
—Au+u?=0 in (1.4)
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which was obtained by Marcus [18]. In a more general setting, Véron and Yarur [30] constructed a
capacitary theory associated to the linear equation

Lyu:=—-Au+V(zx)u=0 in Q, (1.5)

where the potential V' is nonnegative and singular near 92. When V' (z) := —d%(m) with & > 0, V' is
called a Hardy potential. There is a critical value kK = i. If k > i, no positive solution of (1.3) exists.
When 0 < vk < %, there exist positive solutions and the geometry of the domain plays a fundamental
role in the study of the mere linear equation (1.3). We define the constant cq, by

/|Vv|2dx
= HH§ CAY (1.6)
v 2
€HL ()\{0} /deu(m)dx

It is known that cq, belongs to (0, i] If © is convex or if the distance function d is super harmonic in
the sense of distributions, then ¢ = %. Furthermore there holds co = % if and only if problem (1.6)
has no minimizer. (see [19]). When 0 < x < %, which is which is always assumed in the sequel and
—Ad > 0 in the sense of distributions, it is possible to define the first eigenvalue A, of the operator L.
If we define the two fundamental exponents a4 and o by

ay=14++vV1—-4rk and ao_=1-+V1-4k (L.7)

then the first eigenvalue is achieved by an eigenfunction ¢,; which satisfies ¢, (z) ~ d = (r) asd(z) —
0. Similarly, the Green kernel G, associated to £, inherits this type of boundary behaviour since there
holds

1 1 A7 (2)dF (y)
— min
Cr o — y[N=2 [ — y[Nras 2

} <G, (z,y) <Cx min{ L d= (z)d= (y) }

o= o[V =2 Jo = ¥

(1.8)
We show that £,; satisfies the maximum principle in the sense that if u € H} . N C(Q) is a subsolution
i.e. L,.u < 0 such that

(@) limsup-2EL < if0<r<l
@) Timsup——") o gl

vy /d(x)|Ind(z)] ~ 4

for all y € 012, then u < 0.
If £ € 90 and r > 0, we set A,.(§) = 9Q N B,.(£). We prove that a positive solution of L,u = 0
which vanishes on a part of the boundary in the sense that

D @) . ,
@  lim daﬁ(m)( _) 0 VyeA () if0<r<1i o
u(x .
.. 1. . \v O v AT. .f — l’
(ZZ) ml_)ﬂly \/ml In d($)| Yy e (g) kK 4
satisfies

P () P (y)
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for some C; = C1(Q, k) > 0.

For any h € C'(9)) we construct the unique solution v := vy, of the Dirichlet problem

L.v=0 in

v=~h on Of) (1.12)

Using this construction and estimates (1.9) we show the existence of the £,-measure, which is a Borel
measure w” with the property that for any h € C(052), the above function v, satisfies

(o) = | h)de(y) (1.13)
o0
Because of Harnack inequality, the measures w” and w? are mutually absolutely continuous for x, z € 2
and for any x € (2 we can define the Radon-Nikodym derivative

dw®

dw?ro

K(x,y) = (y) for w™-almost y € ON. (1.14)

There exists rg := 7¢(Q) such that for any z € € such that d(z) < ro, there exists a unique £ = &, € 9Q
such that d(z) = |z — &,|. If we denote by ;. the set of z € € such that 0 < d(x) < ro, the mapping

IT from ﬁ;o to [0,7] x O defined by II(x) = (d(x),&;) is a C! diffeomorphism. If £ € 9 and
0 <r <rp, wesetz,(§) =TI (r,&). Let W be defined in 2 by

W(a) { d—= (z) if k<

Vd(z)|Ind(x)] if k=

we prove that the £,.-harmonic measure can be equivalently defined by

(1.15)

)

N

W' (E)=inf S ¢ : ¢ € C (), L,;-superharmonic in 2 and s.t. lim inf V() >1 (1.16)

for any compact set ' C 0f) and then extended classically to Borel subsets of 0f2.

The L£-harmonic measure is connected to the Green kernel of L, by the following estimates

Theorem A There exists C3 := C5(2) > 0 such that for any r € (0, ro] and & € 0, there holds

SN2, (2,(€),2) < w(AN(E))

< 1.17
< Gy T 2Ge, (2(€),2) Vo € Q\ Burge i

if0<ff<i,and

_ 1 x
oV TR nd(2)|Gey (2 (€ 7)< wT(An(E))
< CyrN =3 Ind(2)|Gr, (2,(6),7) Yo € Q\ Burge).
4
(1.18)
As a consequence w” has the doubling property. The previous estimates allow to construct a kernel

function of L, in 2, prove its uniqueness up to an homothety. When normalized, the kernel function
denoted by K, is the Martin kernel, defined by

BT Gﬁn (l’,y)
Ke (x,8) = ;chlg}g Gr. (2.70) Ve € 0. (1.19)
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for some o € 2. An important property of the Martin kernel is that it allows to represent a positive
L .-harmonic function u by mean of a Poisson type formula which endows the form

u(z) = / Ko, (2,€)dp(€). (1.20)
onN

for some positive Radon measure i on 9€). The measure y is called the boundary trace of u. Furthermore
K, satisfies the following two-side estimates

Theorem B There exists C5 := C5(Q, k) > 0 such that for any (x,&) € Q x 0SQ there holds

1 d= d=
G < K¢ (2,6) < cg—lx —evre (1.21)

Thanks to these estimates we can adapt the approach developed in [13] to prove the existence of
weak solutions to the nonlinear boundary value problem

7AU72LU+9(U):V in Q
d*(z) (1.22)
U= f in 09,

where g is a continuous nondecreasing function such that g(0) > 0 and v and x are Radon measures on
Q and 99 respectively . We define the class X, (€2) of test functions by

Xo() = { ne L) st V(T o) € 12, () and 67 Lun € L¥(Q) | (1.23)
and we prove

Theorem C Assume g satisfies

woe

/00(9(5) +lg(=s))s V2 ds < oo (1.24)
1

Then for any Radon measures v on §) and such that fQ dwd|p] < 00 and p on ON) there exists a unique
u € LY (Q) such that g(u) € L}, () which satisfies

/ (ulwn + g(u)n) dx = / (ndv + K, [u]Lindz) ¥ € Xo(). (1.25)
Q Q
ap
When g(r) = |r|971r the critical value is ¢. = % and (1.24) is satisfied for 0 < g < ¢, (the
2

subcritical range). In this range of values of ¢, existence and uniqueness of a solution to

—Au — %u +ulf"tu=0 in Q
(1.26)
u=p in 09,

has been recently obtained by Marcus and Nguyen [20]. When ¢ > ¢. not all the Radon measures are
eligible for solving problem (1.26).
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. . . N-1 . .
We prove the following result in which statement C’f 21a, , denotes the Besov capacity associated
T/JI'

g oy -
to the Besov space B°~ 2o 7 (RN1),
Theorem D Assume q > q. and p is a positive Radon measure on 0X). Then problem (1.26) admits a
weak solution if and only if p vanishes on Borel sets E C 0X) such that C’fi\r;a Ly (E)=0.
2q/
Note that a special case of this result is proved in ([20]) when 1 = §, for a boundary point and

q > ¢.. In that case d,, does not vanish on {a} although CfN;a+ ({a}) =0.
— oy 4
This capacity plays a fundamental for characterizing the removable compact boundary sets which
exist only in the supercritical range q > q..

Theorem E Assume q > q. and K C 0) is compact. Then any function u € C(Q2\ K) which satisfies

—Ay — %u + |ulTtu =0 in Q
(1.27)
u=0 in 0N\ K,

is identically zero if and only ifC’fN;qu (K)=0.
- 2q7
We show that any positive solution « of (1.1) admits a boundary trace, and more precisely we prove
that the following dichotomy holds: et

Theorem F Let u be a positive solution of (1.1) in Q and a € 0N). Then
(i) either for any ¢ > (0

lim udw?? = oo, 1.28
=20 JysnB.(a) i ( )

where Q5 = {x € Q : d(x) > 6}, X5 = 0Q5 and w)) is the harmonic measure in €2,
8

(ii) or there exists €g > 0 and a positive Radon measure X on 9Q N Be, (a) such that for any Z € C(Q)
with support in Q U (02 N B, (a)), there holds

lim Zudwey) = / Zd. (1.29)
=0 Js5nB.(a) J 9QNB.(a)

The set of points a € 02 such that (i) (resp. (ii)) holds is closed (resp. relatively open) and genoted
by S, (resp R,). There exists a unique radon measure p,, on R, such that, for any Z € C(Q2) with
support in 2 U R,, there holds

: o __
lim ZéZudw%— / Zdju,. (1.30)

u

The couple (S, ) is called the boundary trace of v and denoted by Trsq(u). A notion of normalized
boundary trace of positive moderate solutions of (1.1), i.e. solutions such that u € L7(¢,), is developed
in [20]. They proved the existence of a boundary trace p = ({0}, pt,,) and corresponding representation
of u via the Martin and Green kernels.

If 1 < ¢ < g. we denote by uys, positive solution of (1.1) with y = ké, for some a € 0f) and
k > 0. There exists limy_, o0 Uks, = Uoso,q. We prove the following
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Theorem G Assume 1 < q < q. and a € 9. Then If u is a positive solution of (1.1) such that a € S,
then U 2> Usg q-

In order to go further in the study of boundary singularities, we construct separable solutions of (1.1)
inRY = {z = (¢/,zn) : a5y > 0} = {(r,0) € Ry x SY¥ '} which vanish on ORY \ {0} under the
form u(r, o) = r_q%lw(a), where r > 0, 0 € S¥ . They are solutions of

K . _
—Agn-1w — g yw — ——w + [w|[T w =0 in Sf !
en.o

1.31
w=0 in Sy ! (130

where Agn-1 is the Laplace-Beltrami operator, ey the unit vector pointing toward the North pole and
{4, N is a positive constant. We prove that if 1 < ¢ < ¢, problem (1.31) admits a unique positive solution
wy, while no such solution exists if ¢ > ¢.. To this phenomenon is associated a result of classification
of positive solutions of (1.1) in 2 which vanishes of 9Q \ {0} (here we assume that 0 € 0f2 and that
the tangent plane to 9 at 0 is {z : z.ey = 0}, there exists o > 0 such that B, (rpeny) C ,
By, (roen) C {z : w.ey > 0} and d(rgen) = |roen| = rq)

Theorem H Assume 1 < q < q. and let u € C(Q \ {a} be a solution of (1.1) in Q which vanishes of
O\ {a}. Then

(i) Either u = us o and
lim, LoraTu(r,.) = w, (1.32)

locally uniformly in Sf_l.
(ii) Or there exists k > 0 such that w = uys, and

u(z) = kK¢, (x,a)(1 + ol)) asx — 0 (1.33)

If 1 < g < ¢. we prove that to any couple (F,u) where F' is a closed subset of 992 and u a
positive Radon measure on R = 9 \ F we can associate a positive solution u of (1.1) in Q with

Troa(u) = (F, p).

2 The linear operator L, = —A — 5

Throughout this article ¢; (j=1,2,...) denote positive constants the value of which may change from one
occurrence to another. The notation « is reserved to the value of the coefficient of the Hardy potential

2.1 The eigenvalue problem

We recall some known results concerning the eigenvalue problem (see [9], [12]).

1- Since 2 is convex, cq =  and for any s € (0, }] there exists

/ (|Vu\2 - %uz) dx
A = inf Q2 .

weHL(Q) /uzd:v
Q
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2-1f 0 < & < § the minimizer ¢,, belongs H{ () and it satisfies

bn = d (2), 2.1)

where oy (as well as a_) are defined by (1.7).
3-If & = 7, there exists a non-negative function ¢1 € H}.,.(2) such that

~ d? (z) (2.2)
and solves

—Au—cllu-)\ku in €,

in the sense of distributions.
. 1
Furthermore, the function ¢1 = d~2¢1 belongs to HY(Q; d(x)dr).

4- Let H(Q, d*(z)dz) denote the closure of C§°(£2) functions under the norm

||u‘|§1’§(ﬂ,d“(x)dm) = /Q |Vu|2da(x)dx+/Q|u‘2d0¢(m)dx. (2.3)
If o > 1 there holds [12, Th. 2.11]

H(Q,d*(z)dx) = H (Q, d*(z)dx) Yo > 1. (2.4)

5-Let0 < r < %. Let H,(12) be the subset of functions of H}, () satisfying

/(IW\2 — )d:c<oo 2.5)

Then the mapping

¢ (/Q (Ivel* - 5¢?) dx)é 2.6)

is a norm on H,; (). The closure W, (2) of C§°(€?) into H,;(2) satisfies
1
W,.(Q) = H}Q) YO<k< 7 and Wi(Q) C Wyl() V1<g<2, 2.7)

see [6, Th B]. As a consequence W (§2) is compactly imbedded into L" () for any r € [1,2*).

6- Let a > 0 and 2 C RY be a bounded domain. There exists ¢* > 0 depending on diam(2), N and «
such that for any v € C§°(Q)

NAa—2

2(N+o) S NFe " 9
v +a-2 X C v Z. .
/\ 3 gog < /\V|dad 2.8)
Q

For a proof see [12, Th. 2.9].

The boundary behaviour of the first eigenfunction yield two-side similar estimates of the Green
kernel for Schrodinger operators with a general Hardy type potentials [12, Corollary 1.9].
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Proposition 2.1. Consider the operator E := —A — V, in Q where V.= V1 + Vo, with

1 N

< P —.

|V1|_4d2(1‘) and V, € L (Q),p> 5

We also assume that
/ (|Vuldz — Vu?) dz
0< A= mlf & ,
uwEHL(Q) /Ude
Q

and that to \1 is associated a positive eigenfunction ¢1. If, for some o > 1 and C1, Cy > 0, there holds
c1d? (z) < ¢1(x) < cpd?(z) Vo e,
then the Green kernel G associated to E in Q) satisfies

1 di@)di(y) ) |

G (z,y) ~ ¢z min ,
Blow) = camin (e e

(2.9)

We set
Qs ={ze: dx)<dé}, Q={reQ: dx)>dtand X5 ={z € Q: d(z) =45} (2.10)

Definition 2.2. Let G C Q and let H:(G) C H'(G) denote the subspace of functions with compact
support. A function h € Wﬁ)cl (@) is L-harmonic in G if

1

/ Vh.Vipdr — n/ ——hpdz =0 Vi € H}(G).
G o d*(x)

A function h € H} (G) N C(G) is L-subharmonic in G if

1 1
/GVQ.qudat—n/thz/)dxgo Vi € HY(G), ¢ > 0.

We say that h is a local L,.-subharmonic function if there exists § > 0 such that h € H, L(25)NC(Qs)
is L-subharmonic in Qg. Similarly, (local) L-superharmonics h are defined with” > 7 in the above
inequality.

Note that £-harmonic functions are C? in G by standard elliptic equations regularity theory. The
Phragmen-Lindelof principle yields the following alternative.
Proposition 2.3. Theorem 2.4 in [3]. Let k < i. If h is a local L,-subharmonic function, then the
following alternative holds:

(i) either for every local positive L,.-superharmonic function h

h(z)

limsup == > 0, (2.11)
d(@)—0 h(z)

(ii) or for every local positive L,.-superharmonic function h

h(z)

lim sup == < oo. (2.12)
d(@)—0 h(z)
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Definition 2.4. If a local L,-subharmonic function h satisfies (i) (resp. (ii)) it is called a large L,-
subharmonic ((resp. a small L -subharmonic).

The next statement is [3, Theorem 2.9].

Proposition 2.5. Let h be a small local L,.-subharmonic of L,;.
() Ifk < % then the following alternative holds:

either limsup >0 or limsup—-
z—0Q d= 00 d =2

< 0.

(ii) If k = % then the following alternative holds:

. . h . h
either limsup ——- >0 or limsup —+ < oo.
z—00Q d2 log(3) z—0Q d?

Definition 2.6. Let fo € L2, (Q). We say that a function uw € H\ () is a solution of

Lou=fo inQ (2.13)
if there holds
1 o0
/QVu.Vi/Jd:z:n/de(x)uz/}dz = /Qfm,/}dz Y € C5°(Q). (2.14)

2.2 Preliminaries

In this part we study some regularity properties of solutions of linear equations involving L,;.
Lemma 2.7. (i) Ifa > 1 and d~3u € H*(Q,d"(z)dx), then u € H}(Q).
(ii) If « = 1 and d~2u € HY(Q, d(x)dx), then u € W) P(Q), Vp < 2.
Proof. There exists 3y > 0 such that d € C?(Qp,) and set u = d=v. In the two cases (i)-(ii), our
assumptions imply
we L3(Q) and Vu— %ud_IVd € L2(9). (2.15)

(i) Since v € H(Q,d*(x)dx), by (2.4) there exists a sequence v,, € C§°(2) such that v, — v in
HY(Q,d%(z)dx). Set u,, = d%v,,.Let 0 < 3 < % and v be a cut of function such that ¢5 = 0 in Qj
and ¢ = 1in Q. Then u,, = d*% (v, + (1 —5)vy,). Thus it is enough to prove that @, = d= v,

2
remains bounded in H'(Q) independently of n. Set w,, = 1gv,, then

/|Vﬁn|2da:=/ |Vw, [2dz < ¢4 dO‘|an|2dx—|—/ d*wdr | .
Q Qs Q2 Qs

Note that &« — 2 > —1. Now

1 1
/ do2wide = / w2div(d* 'Vd)de — —— [ (d*" ' (Ad)wida.
Qﬁ a—1 Qp a—1 Qp

Now since |Ad(z)| < ¢5, V& € Qg,, we have

1

a—1

a—1
/ d* Y (Ad)yw?dz| < S0 / wdz.
Qp a—1 Qp
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Also

=2

/ w2div(d*~'Vd)dz
Qp

/ wpd? d? " 'Vd.Vw,dz
Qg

§06/ d*|Vwy, |*dz + 6 d* w2 dz.
Qp Qp

where cg = ¢(d) > 0, and the result follows in this case, if we choose ¢ small enough and then we send
n at infinity.

(ii) By the same calculations we have
%
/ d= 5 |, [Pdx < 07/ d% | Vw,|Pdz < ¢ </ d(z)d:c) d|Vw,|*dz.
Q Qp Q Qp

U

(ph", :
Proposition 2.8. Let fo € L*(2). Then there exists a unique u € H}. . (Q) such that ¢;;'u € H*(Q, d*+(z)dx),

satisfying (2.13). Furthermore, if fo € L(Q, ¢2dx), q > N';(“, then there exists 0 < 3 < 1 such that

In the following statement we prove regularity up to the boundary for the function

u(x) — uly)

-8B
sup rT—y — < csllfo Q.42 dz)- (2.16)
T,y€Q, £y | | ¢K(I) ¢K(y) ‘ || ||LQ( Prda)
Proof. If there exists a solution u, then ¢ = d:—; satisfies
—¢ 2 div(¢aVY) + Ath = 6 fo. (2.17)

and we recall that ¢ (z) ~ d= (x). We endow the space H' (2, $2dx) with the inner product
{a,b) = / (Va.Vb+ \.ab) ¢2dx.
Q
By a solution ¢ of (2.17) we mean that ) € H} (€, ¢2 dx) satisfies

(V0.90) = [ VoNCodn+ A [ vcotin = [ ficoude Ve e HY@uGE).  @18)

By Riesz’s representation theorem we derive the existence and uniqueness of the solution in this space.
Since H'(Q2, ¢2dx) = Hi(Q, ¢2dz) by [12, Th 2.11], any weak solution u of (2.13) such that ¢ 'u €
H(Q, ¢2dx) is obtained by the above method.

Finally if fo € LY(Q, ¢2dx), where ¢ > NB”‘* , thanks to (2.8) we can prove the estimate

[l Lo ) < csllfollLa(o,¢2 ) (2.19)

where cg = ¢5(2, k, ¢). Then we can apply the Moser iteration (see subsection 6.3) to derive the Holder
regularity up to the boundary. O

In the next results we make more precise the rate of convergence of a solution of (2.13) to its boundary
value.
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Proposition 2.9. Assume r < §. If fo € L*() and h € H'(RQ) there exists a unique weak solution
w of (2.13) in € H} _(Q) and such that d_aTJr(u - d%h) € HY(Q, d*+(z)dz). Furthermore, if

loc

fo € LY(Q, ¢2dx), q > ”JFTO‘ and h € C%(Q), then there exists 0 < 3 < 1 such that

im M ) weon,
TEQN, —yEIN (d(x))T

uniformly with respect to y,

u
d—=

< (||h||c2(§) + ||fo||m(sz,¢zdx)) ;
L>(Q)

and

w(x) uly)

a

(@)= (dy) =T

with cg and ¢y depending on ), N, g, and K.

sup |z —y| ™7
2.y€Q, vy

< 1o (Ibllca@ + 1 follzaozan ) - (2:20)

Remark. By Lemma 2.7 we already know that u — dThe H}(Q).

Proof. Let B < By and n € C2() be a function such that 5 = d5 (z) in Qp and n(z) > ¢ > 0, if
T € Q’ﬁ We set u = ¢ v + nh. Then v is a weak solution of

dlv(QS2 V)

g = o (f0+(An+n )h+2V77Vh+77Ah> 2.21)

in the sense that
/ V.V p2dx + )\,{/ v pRde = / (fo +(An+ ndQ )h+ 2V Vh) b ud
Q Q
- / VhY (o ép)de Wb € CP(Q).  (2.22)
Q
Let ¢ € C§°(Qg). By an argument similar to the one in the proof of Lemma 2.7 we have
/ vz = [ yde = / div(dVd)|2de — / dAd|2dz,
Q Qp Qp Qp
which implies

Yir <y | dPIVY|Pdr < epy / do+ | V|2 de. (2.23)
Q/j Q/g Q[g

< 612/ Yda,
< ci3 (/ \Vthx+// d“+|V¢|2dx+// Mx>.
Qp Qs Qp

Now

/Q ((Anm )h + 2V, Vh)quﬁ,gdx
B

and

Vh.V () ¢r) da

Qg

12
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By (2.23) we can take ¢ € H'(Q, d*+ (z)dz) for test function. Thus we can easily obtain that there
exists a weak solution v € H* (2, d*+ (z)dx) of (2.22).
To prove (2.20) we first obtain that if ¢» € C§°(Q.)

/ pdz = — / AVd.Vids — / dAdipdz,
(9] Q Q.

€

and since

/ ((An + m%)h 2V Vh + nAh) b rda
Q

< cullhll e g /Q | da
1
S 5/ da+|V1/)|2d;E+Cl5(Q,Ii)||h||C2(§).
Q.
Using again (2.8) and Moser’s iterative scheeme as in Proposition 2.8, we obtain

V]l Lo (@) < o (||h||c2(ﬁ) + Hfol\m(n@@@) :

where ¢g = ¢9(£2, ¢, k) > 0, from which it follows again that v is Holder continuous up to the boundary
and the uniform convergence holds. O

Proposition 2.10. Assume r = L. If fo € L*(Q) and h € H(Q), there exists a unique function w in
H} (Q) weak solution of
ﬁiu = f()

verifying d=2 (u — dz|logd|h) € H'(Q, d(x)dz). Furthermore, if fo € LI(), q > 24l and h €
C?(Q), then there exists 0 < 3 < 1 such that

u

Tz€Q, x—yed d2 | log d‘ ( ) (y) y

uniformly with respect to y,

< ci6 <||h||c2(g) + ||f0||Lq(Q,¢21dx))
4

u
d
||\/&10gDO| L=(9)

where Dy = 2sup,cq, d(x). Finally there holds

u(x) B u(y)
V(@) log D\ /d(y)|log 4|

sup [ —y[ ™’
z,yeQ, x#y

<t (Il + ollzso s a0 )
4
(2.24)

Proof. Using again Lemma 2.7, we know that u — d2 |logd|h € V[fol’p(Q)7 Vp < 2. The proof is very

similar to the proof of Proposition 2.9. The only differences are we impose 1 = dz |log d| in 25 and we
use the fact that | log d| € LP(2),Vp > 1.

In the next result we prove that the boundary Harnack inequality holds, provided the vanishing prop-
erty of a solution is understood in a an appropriate way.
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Proposition 2.11. Let § > 0 be small enough, { € 0Q and v € H, .(Bs(€) N Q) N C(Bs(€) N Q) be a

positive L1 -harmonic function in Bs (&) N Q vanishing on OQ N B;(&) in the sense that
u(z)
~ lim ——— =0 VK C 00N Bs(§), K compact. (2.25)
dist (z,K)—0 d2 (z)| log d(z)]

Then there exists a constant c1g = c15(N,Q, k) > 0 such that

u(y)
b1 (y)

1
1

< cig Vm,yGQﬁB%(g).

¢1(x)

Proof. We already know that u € C*(€2). Let § < min(f3, 5) such that B5(£) N Q C Q5 C Qg,.
By [3, Lemma 2.8] there exists a positive supersolution ¢ € C?(£25) of (1.3) in {5 with the following

behaviour y
((z) =~ d2(x) logﬁ (1 + (IOgd(lx)) ) ,

for some 3 € (0,1) and c19 = c19(2) > 0. Set v = ¢~ lu, then it satisfies

1
1

N

—(¢72div(¢*Vv) <0 in Bs(¢) N Q. (2.26)

Letn € C§°(Bs(§)) such that 0 < np < landn = 11in B%(f). We set vs = 1*(v — s); Since by
assumption vs has compact support in Bs(£) N §2, we can use it as a test function in (2.26) and we get

/ C2Vo.Vugdr = / V(v —s);.Vuedz <0, (2.27)
Bs(£)NQ Bs ()N
which yields
[ Neesperisa [ P92

B;(§)NQ B;s ()N

Letting s — 0 we derive
/ |Vo2¢?n?de < 4/ |Vn|2v2(?d.
Bs(£)NQ Bs ()N

Since
V(v —s)y 20?1 [Vu*¢*n? ass — 0,

and convergence of V(v — s) to Vo holds a.e. in €, it follows by the monotone convergence theorem

lim V(v — (v—5))|*¢*n*de =0, (2.28)
s—0 Bg(g)ﬂﬂ

and finally (v, — n?Cv in H(B;s(&) N Q), which yields in particular n?u = n?Cv € H}(Bs(£) N Q).
Step 2. By [3, Lemma 2.8] there exists a positive subsolution h € C?(Qs) of (1.3) in Qs with the

f()ll() W lng beha\/ our
h( ) ~ ( ) : g : g ?

14
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where 3 € (0,1) and cap = c20(2) > 0. Set w = h~w and w, = n?(w — s)4. Then wy — n*w in
HY(Bs(€) N Q) by Step 1. Put us, = haws, thus, for 0 < s, s’, we have

1 s — UWg’ 2
/ IV (us — uy)|2da — 7/ ‘“27“|dx = / 2|V (ws — wy)|2d (2.29)
Bs()n 4 Jsiey () Bs(©)ne
2 2 2 1 h2|ws — Wy |2
+ IVh|*|lws — wg|“dx + hVh.V(us — ug)“de — — ———dz
Bs ()N Bs(©)nQ 4 Jpsene ()
< / P2V (ws — wy)[2da,
Bs(§)NQ

where, in the last inequality, we have performed by parts integration and then used the fact that h is a
subsolution. Thus we have by (2.28) that

. 2 1 ‘us - Us’|2
lim IV (s — ug)|2dz — ~ () (2.30)
5,520 By (6) 4/Bsie)  d*(x)

Let W(2) denote the closure of C§°(€2) in the space of functions ¢ satisfying

L jep
2 = |2 —f/ .
Iolfy = [ [VaPar— 1 [ e <o

Thus n*u € W (L), which implies

Z—i‘ € HY(Q, d(z)d).

1
4
Next we set & = ¢ 'u; then & € H'(Bas (€), d(z)dzx) and it satisfies
4

NI

— 67 2div(¢3 VI) + A1 = 0.
1 4

By the same approach based on Moser’ iterative scheeme applied to degenerate elliptic operators as
the in [12, Theorem 1.5], we see that v satisfies a Harnack inequality up to the boundary of 2. More
precisely there exists a constant ¢1g = ¢15(€2) > 0 such that

o(@) Sewvly) Yoy € By(o).

And the result follows. O

In the case k < i, the boundary Harnack inequality is the following,

Proposition 2.12. Let § > 0 be small enough & € Q, k < t andw € H} (B5(£) N Q) NC(Bs(€) NQ)
be a nonnegative L,-harmonic in Bs (&) vanishing on 00 N B;(&) in the sense that

_ME o vk coan Bs(€), K compact. 2.31)

1m
dist (z,K)—0 (d(x)) =

Then there exists ca1 = c21(€), k) > 0 such that

au@) = oy RO

15
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Proof. The only difference with the preceding proof is that we take as subsolution and supersolution
(see [3, Lemma 2.8]) C?((2) the functions h and ( respectively with the boundary behaviour

hed-(1—d°) ¢~d*(1+d°),

where 8 € (0,1 — 4k ). O
Proposition 2.13. Leru € H} (Q)NC(Q) bea L 1-subharmonic function such that
lim sup — u(z) <0

ey 0 d3 (2) log ()|
Then u < 0.

Proof. We set v = max(u, 0) and we proceed as in Step 1 of the proof of Proposition 2.11 with = 1.
The result follows by letting s — 0. O

Similarly we have
Proposition 2.14. Letu € H} (Q) N C(Y) be a L,;-subharmonic function such that
lim sup % <0
d(z)—0 (d(x)) =
then u < 0.

The two next statements shows that comparison holds provided comparable boundary data are achieved
in way which takes into account the specific form of the £,-harmonic functions

Proposition 2.15. Assume k < % and h; € H* () (i=1.2). Let u; € H} (Q) be two L,.-harmonic
functions such that 43 (u7 —d hz) € HY(Q, d°+(z)dz). Then

If hy < hs a.e. in (), there holds
up () < ug(x) Vo € Q.

Ifhy — ha € H(Q), there holds
ur(z) = uz(x) Vo € €.
Proof. Setw = ¢ (u; — us), thenw € HY(Q, ¢2dx) and
—div(¢2Vw) + Aed?w = 0
Since HY(Q, p2dx) = H}(Q, ¢2dz) by (2.4) we derive that w and w belongs to H}(Q, ¢p2dx) and,
integrating by part, we derive w4 = 0. The proof of the second statement is similar. O

In the same way we have in the case kK = i.

Proposition 2.16. Assume k = %. Let h; € H*(Q) (i=1,2) and let u; € H}, () be two L 1 -harmonic
functions such that d== (u; — dz|log d|h;) € HY(, d(x)dz).
(i) If h1 < ho a.e. in §Q, then

up(x) < wug(x) Vo € Q.

(ii) If hi — ho € Hé(Q), then
up(x) = uz(x) Vo € Q.
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We end with existence and uniqueness results for solving the Dirichlet problem associated to L.
Proposition 2.17. Assume k = i. For any h € C(0) there exists a unique Ei-harmonic function u

belonging to H}. .(Q) satisfying
u(z)

- =h uniformly for y € 0S.
2€Q, 2—y€0Q d2 ()| log d(z)| ) formly for y

Furthermore there exists a constant c16 = c16(Q) > 0> 0
u

< caql|h]lc (a0,
L)

dz|log Di0|
where Dy = 2sup,.cq d(x).

Proof. Uniqueness is a consequence of Proposition 2.13. For existence let m € N and h,, be smooth
functions such that h,,, — h in L>(992). Then we can find a function H,, € C?(Q) with trace h,, on
09, and [[Hp| o2y < cl|hml|Le< (a0), where ¢ depends on 2. By Lemma 2.10 there exists a unique
weak solution u,,, of £ U= 0 satisfying

Um,

lim ——(x) =hp uniformly for y € 99).
e g d§|logd|( ) () y fory

By Proposition 2.10 we have

#;Dil < exgllhm — halleon).
ol Lee ()
Thus there exists u such that
Do 1l Lo ()
and wu is a solution of L%u =0.
Letz € Q, with d(z) < % and y € 09
u u U, Um
d¥|log d| () - h(y)‘ : ‘d% |log d| S |log d| (x)’ - ‘d% |log d| () = hm(0)
+ [A(y) = han(y)]-
The result follows by letting successively x — y and m — oo. O

Similarly we have

Proposition 2.18. Assume k < i. Then for any h € C(0RQ) there exists a unique L,.-harmonic function
u € H} (Q) satisfying

u

. légyeag = (x) = h(y) uniformly for y € ON).

Furthermore there exists a constant cg = cg(2, &) > 0 such that

u

— < cyl|h .
ey = olMllciom

17
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A useful consequence of [3, Lemma 2.8] and Propositions 2.9 and 2.10 is the following local exis-
tence result.

Proposition 2.19. There exists a positive L,.-harmonic function Z,, € C(Qg,) N C?(Qp,) satisfying

lim Zi—(fc) =0 (2.32)
d(2)—0 /d(x)|In d(x)| '
ifk = i, and
im _Zx®) (2.33)

if0<r<3i

2.3 L,-harmonic measure

Letzg € Q, h € C(0N) and denote L, ,,(h) := vp,(x¢) where vy, is the solution of the Dirichlet problem
(see Propositions 2.17 and 2.18)
L.v=0 in
v="h  in 0Q (2.34)
where v take the boundary data in the sense of Lemmas 2.17 and 2.18. By Lemma’s 2.14 and 2.13,

the mapping h +— L, ,,(h) is a linear positive functional on C(952). Thus there exists a unique Borel
measure on 05, called L -harmonic measure in ), denoted by w*°, such that

vp(z0) = /8Q h(y)dw™ (y).

Because of Harnack inequality the measures w” and w”°, zy, = € 2 are mutually absolutely continuous.
For every fixed = we denote the Radon-Nikodyn derivative by
dw®

Kﬁn (.’I}, y) = dw®o

(y) for w*°- almost all y € 0N).

It is wellknown that the following formula is an equivalent definition of the £,.-harmonic measure:
for any closed set E C 952

w™(F) = inf {1/} ;Y € CL(Q), Ly-superhamornic in  s.t. liminf ;f/(x) > 1} ,

where o
d= (z) if K < §,
W(z) = {
dz (z)|log d(z)] if K = 1.

The extension to open sets is standard. Let £ € 9. We set A,.(§) = 0Q N B,(€) and z, = 2,.(§) € Q,
such that d(z,) = |z, — §| = r. Also x,.(§) = £ — rng¢ where ng is the unit outward normal vector to
O at €. We recall that By = Bo(€2) > 0 has been defined in Lemma 2.7.

Lemma 2.20. There exists a constant co5 > 0 which depends only on Q) and a such that if 0 < r < [y
and & € 0N), there holds
w” (Ar(8))

18
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Proof. Let h € C(99) be a function with compact supportin A,.(£),0 < h < land h =1on Ase (€).
And let vy, v1 the corresponding £,-harmonic functions with & and 1 as boundary data respectively (in
the sense of Lemmas 2.17 and 2.18). Then vy (z) > vp(z) > 0 and

vy () — vp(x)

- Q B T .
zeQ, x—xo W(l’) 0 vxo < n %(6)

By Lemmas 2.12 and 2.11, and ¢,; = da%7 there exists cog = c26(€2) > 0 such that

v(e) —vn(e) _ | 0aly) = o)

4 (x) © AT ()

, Va,y € QN Bz (§).

We consider first the case k = i. By Proposition 2.10, we have

(y)
(v)

vi(y) —vnly) _ v
dz(y) ~ d
Thus, combining all above we have that

vy () |log d(y)

. c
d* (2)| logd(z)| " |logd(x)
Now by Lemma 2.10, there exists a €9 > 0 such that

0

IN

< caqllogd(y)l.

ol | =

vp(x) .
2 (x)|log d())|

|§
| = d

1
u@ 1 yeq,
13 (2)] logd(z)| ~ 2
Thus if we choose y such that d(y) = %, there exists a constant co7 = c27(€2) > 0 such that
|log d(y)| |log §| [log | _ 1
= . Ve e Q.
ogd(e)] ~ “ogd@)] = g ;] =1 T
thus )
@ Sl e na. (2.36)
dz (z)|logd(z)| ~ 4 ’ o
In particular
on(Tarr(8)) (2.37)

Va*r|log(a*r)| — 4

where a* = (max{2, Do})~L. If Dy < 2 we obtain the claim. If not, set k* = E[22]+1 (recall that E[z]

denotes the largest integer less or equal to x). If z € Fg(f )N Q’DL there exists a chain of at most 4k*
0

points {z; gz{)" such that z; € Bz () NQ, d(z;) > a*r, 20 = Ta-r(€), 2j, = v and |z — zj41| < 4"
By Harnack inequality (applied jo-times)

V(2o (§)) < cosvn(z). (2.38)
Since .
W(za-r(£)) = (a¥)> W(z),
we obtain finally
1w ©(A,(9) 1\ 7w (A())
1 § m‘ log(a*r)l S C28 (a*> Ve e QN B% (f) (239)

In the case k < i, the proof is simpler since no log term appears and we omit it. O
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The next result is a Carleson type estimate valid for positive £,-harmonic functions.

Lemma 2.21. There exists a constant cag which depends only on §) such that for any £ € 090 and
0<r<s<p.,
GA) _ (A, (6)
> C29
W (z) W (zs(£))

Proof. Let h € C(99) with compact support in A,.(§)) and 0 < h < 1. We denote by v, w1, the
solutions of (2.34) with boundary data h and 1 respectively. By Propositions 2.17 and 2.18 there exists a
constant czg > 0 such that for 0 < r < [,

Va € Q\ B,(€). (2.40)

By Propositions 2.17 and 2.18, there holds

. vi(z)
1
a0 W (z)

=1, (2.42)

vn(z)

) is Holder continuous in 2 and satisfies

thus we can replace W by vy in (2.40). Since wy, =

—div(viVwy) =0 inQ\ Bs(§)
0<w,<1 inQ\ B, (&) (2.43)
wp =0 in 00 \ B (€)

the maximum of wy, is achieved on Q2 N OB;(&), therefore it is sufficient to prove the Carleson estimate
wp(x) < cagwp (z5()) Ve € QN IBs(§). (2.44)

If = such that |z — &| = s is "far" from 0f, wp(z) is "controled" by wy(x5(€)) thanks to Harnack
inequality, while if it is close to 052, wy,(x) is "controled by the fact that it vanishes on 9 N 9B, (§).

We also note that (2.35) can be written under the form
wp(x) > o5 Vo € QN Br(§). (2.45)

Step 1. : r < s < 4r. By Lemma 2.20, (2.41) and the above inequality we have that

wp(z=(€) > Bup(z) Vo e Q.
C30

Applying Harnack inequality to wy, in the balls B z4j)r ( @15)r (§)) for j = 0, ..., jo < 14 we obtain

4 4

wh (2 @epr (§)) 2 ywn(rz(€)  forj=1,..,jo.

This implies
wp(75(£)) > cazwn () Vo € Q. (2.46)

Step 2: By > s > 4r. We apply Propositions 2.11, 2.12 to wy, in B (£1) N2 where & € 9 is such that
|€ — &1| = s and we get

wp(z) < crgwn (s (§1)) Vo € Bs(&1) N Q2 (2.47)
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Then we apply six times Harnack inequality to wy, between z 2 (£1) and z(§) and obtain

wp (75 (&1)) < cazwn(ws(61))- (2.48)

Combining (2.47) and (2.48) we derive (2.44).

Step 3. For € > 0, set 2, = wy, — c33wp(w5(€)) — €. Then z; has compact support in 2\ B;(£) and
thus belongs to Hg (2 \ Bs(€)). Integration by parts in (2.43) leads to

/ V|V *dz = 0. (2.49)
O\B, (€)

Then z;[ = 0 by letting ¢ — 0. Combining with (2.46) and h 1 x A,.(¢) implies (2.40). ]

Theorem 2.22. There exists a constant csq4 which depends only on ) such that, for any 0 < r < [y and
& € 0N, there holds

]. 1 1
aTN*kf\log rGe, (20(€), @) < w(Ar(&)) < eaar™ 72 log |G, (@n(€),2) Yo € Q\Bun(€).
(2.50)
Proof. Letn € C5°(Bar(§)) suchthat 0 < np < 1landn=1in B,(§). We set
u=n(—Ind)Vd:=mp,

(we assume that 4r < 1), in order to have

. u(x
xlggo 1/JE$)) = nlaa(zo) = {(x0) Yo € 05,
uniformly with respect to xg. Since
1 2+Ind 2+4+1Ind
—Ayp — — = Ad=—-(N-1)——K
L ?(x)  2Vd ( ) 2V/d

where K is the mean curvature of 9€2. Also we have

1 1

1 _
V| < coxanB,,.e)— and  |An(z)| < COXONBa(6) 53 S CoXQmBW(s);d Y(x),

-
then u satisfies

1 u 2+1Ind

_Au—zdz(m) = —YpAn+ i

(2Vd.Vn— (N —1)Kn) = f in Q

u=_ on 0f).

Then |f] < <2 (f%) XQnB., (¢) Since 1) vanishes outside By,.(£). We have by the representation for-
mula [12]

0=uw) = [ Geywnrdy+ [ hudtl)  Vee\Bu©.  @sD
By Lemma 2.1, we have that for any x € Q\ By,-(§) and y € B, (§)
G[, (:c,y) < C3GGL% (xaxr(g))a

1
4
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thus
W (A(6)) < / G, (0, 9)|F()ldy
QﬂB%‘(f) 4
< G, (@,2,(9)) / L2y, (252)
o Ta QNBa.(6) Vd(y)
< e3sGr, (2, (€))rN 172 | In,
since

Ind > | Int|dt
/ Mdy < 6397"N_1/ L < 20397“N_%|1n7"|-
QN B2, (£) d(y) 0 vt

This implies the right-hand side part of (2.50). For the opposite inequality we observe that if z €
0By, (&) N Q, there holds by (2.35)

i1 i1 . 1 Vd(x)y/d(z.(£))
P2 log r| Gy (20(8), @) < caor™ QIIOngln{x—xr(f)lNz’ x(—mmr(f()TN<1) }
< cqr/d(z)|log |

§ C42W(£L’)

< 220759, (9)).

We end the proof by Harnack inequality between w”% (5)(AT(£ )) and w®r (€ (A,.(€)) and by Harnack
inequality between w”(A,.(£)) and wr (&) (A,.(€)) on OBy, (€) and an argument like in the step 3 in
Lemma (2.21). O

Replacing, in the last proof, the function ) = v/d(— In d) by = d%, we obtain similarly.y

Theorem 2.23. Assume k < %. There exists a constant c4o which depends only on ) and & such that,
Sforany 0 < r < g and & € 0N, there holds

1 y_ope= z oy =

@T‘N 2 Gr (20(6), 1) S W (AR(E)) < caorN 2T G (2,(6), T) Vo € Q\ Bar ().

As a consequence of Theorems 2.22 and 2.23 and the Harnack inequality, the harmonic measure for
L, possesses the doubling property.

Theorem 2.24. Let 0 < k < %. There exists a constant c4o which depends only on ), k such that for
any 0 < r < By, there holds

w(A2:(8)) < caaw™(Ar(§)) Vo € Q\ By (§).

Lemma 2.25. Let 0 < r < By and u be a positive L-harmonic function such that

(i)u e C(Q\ B(€)),
(ii)

- u(z)
RS W ()

=0  Vao € Q\B(6),

uniformy with respect to x.
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Then

—1 U(l’r(f))

. . (e, (€)) e
2T (2,(6))

w(Ar(€) Ve e Q\ By (),

with c4o depends only on k and ).

Proof. By Propositions 2.11, 2.12 we have that there exists C' such that
1 ufeal€)  _ule) . ulza(€)
Cwr2r@(AL(€)) ~ wr(Ar()) —  wrO(A(€))

by Harnack inequality between we have that

1 ue(©) o ul) ue©)
Cur9(a,(©) = w(a @ - Cwroa @) e

Yz € QN 9B, (£).

Also by Harnack inequality we have that

W O (A (€)) > Cuw” D (AL(€)) > CoW (2,(£)),

where in the last inequality above we have used Lemma 2.20.
Combining all above we have that

O ey () < ule) < O u™ (Ar(€)), Va € 2N OB (6).

The result follows by an argument like in step 3 in Lemma 2.21. O

2.4 The Poisson kernel of L,
In this section we state some properties of the Poisson kernel associated to L,;.

Definition 2.26. Fix £ € 9. A function K defined in Q is called a kernel function at & with pole at
zg € Q) if

(i) K(-, &) is Ly-harmonic in €,

(i) K(-,€) € C(Q\ {&}) and for any n € 09\ {¢}

- K(z,§)
e )

:07

(iii) K (z,&) > 0 for each x € Q and K (z,&) = 1.
Proposition 2.27. There exists one and only one kernel function for L, at £ with pole at x.

Proof. The proof is the same as the one of Theorem 3.1 in [7].

Set
W (Ag-n(§))
w0 (Ag-n ()

un(z) =

Since
Uup > 0,
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L, = 0in Q and u,(xg) = 1 the sequence {u,} is locally bounded in 2. Hence we can find a
subsequence, again denoted by {u,, }, which converges to a function u, locally uniformly in 2.
It is clear that w > 0 in 2 and £,;u = 0 in Q. Since u(zp) = 1, u is strictly positive in 2. Now fix

P € 0Qand P # . Let ng € Nbe such that P € 2\ Bgnt1(§), Vn > ng. By Lemma 2.25 if we take
ny sufficiently large, we have

Un(x) < can Un(‘rQ_"o (g))

S () (P20 VT €D By (),

which implies

w(@3-n0 (£))

me(Az—no €) Vo € Q\ By not1(§).

u(z) < cao

and so ()
u(z
I
oo b W (z)
We now turn to the question of uniqueness of the kernel function. To this end we let f(x) and g(z)
be any two kernel functions for £,; in 2 at £. By Lemma 2.25 and the properties of f, g we have that

1 fE©) Cf@) o FE©) o\ B
Z 9@ @) = glo) = glag) SN

In particular we can obtain if we set z = z

F©)
o(zr(©) = 2

and we easily conclude that for any two kernel function for £, at &

f(x)

<, =, YreQ.
glz) =

=0.

We must have ¢ > 1. If ¢ = 1 we are done. If ¢ > 1 then f + A(f — g) is also a Kernel function for
L, at ¢ when A = —L-. From the above inequality

g <c(f+Af—-9),

and therefore
f+A(f —9)+ A+ A(f = 9)),

is a kernel function at £. Proceeding in the above manner and by induction we conclude that for each
positive integer k there exists nonnegative numbers aig, ..., aij such that

k
f+ (kA—i—Zaik:) (f—9)

i=1
is a kernel function at £. Hence
k
f+ (kA +y m) (f—9) <f.
i=1

The last inequality can only hold for all £ when f(x) = g(x) for all z € Q. O
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We recall here that we denote by

KEK (l‘, 6) = dw”

= Jweo () for w®°- almost all £ € 092,

the kernel function in 2. Also in view of the proof of Proposition 2.27 and by uniqueness we can write

_ iy WO(A(E)) 20
KLN(J),&) = }11)1%) m for w*°- almost allf € 00.

Proposition 2.28. The kernel function K, (x,§), is continuous in & on the boundary of ).

Proof. The proof is the same as the one of Corollary 3.2 in [7]. Suppose that ,, — £ as n — oo. Then
the sequence, K (-,&,), of positive solutions of £,u = 0 has a subsequence which converges locally
uniformly in €2 to a function which must be a positive solution of £,u = 0 in . Outside any fixed
neighborhood, B, of ¢, % converges to zero uniformly in n as x — P € 902\ B. Hence the limit
function of the subsequence is the kernel function for £, at £. By uniqueness of the kernel function we
easily conclude that the entire sequence

K[)ﬂ(l’,fn) — I([:m (fE,f)
O

We can now identify the Martin boundary and topology with their classical analogues. We begin by
recalling the definitions of the Martin boundary and related concepts.
Forz, y € Q let

L Gﬁn(x7y)
Kul@,y) = Ge, (x0,y)

Consider the family of sequences {yy } x>1 of points of 2 without accumulation points in €2 for which
K. (x,yi) converges in 2 to a harmonic function, denoted /C,. (z, {yx }). Two such sequences y, and y;,
are called equivalent if Ky (z, {yx}) = Kx(z,{y,}) and each equivalence class is called an element
of the Martin boundary T. If Y is such an equivalence class (i.e., Y € T') then K,;(z,Y") will denote
the corresponding harmonic limit function. Thus each Y € ©Q U I is associated with a unique function
K« (x,Y). The Martin topology on 2 U I" is given by the metric

(K2, Y) = Ky, Y]

Y.V = V.Y eQuUT
PV /Al+|/c,<<x,Y>—ch<x,Yf>|d”” X C UL

where A is a small enough neighborhood of . K« (z,Y) is a p — continuous function of Y € QUT
for zin(2 fixed, Q U I is compact and complete with respect to p, 2 U I is the p-closure of €2 and the
p-topology is equivalent to the Euclidean topology in €2. We have the following results.

Proposition 2.29. There is a one-to-one correspondence between the Martin boundary of Q) and the
Euclidean boundary OQ. If Y € T corresponds to & € O) then K,.(x,Y) = K, (x,€). The Martin
topology on Q U T is equivalent to the Euclidean topology on 2 U 9f).

Proof. The proof is same as the one of Theorem 4.2 in [17]. By uniqueness of kernel function we have
that

Ki(2,{ur}) = K, (2,6),
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where {yy } is a sequence in € such that y;, — & € 9. It follows that each point of I" may be associated
with a point of 9. Lemma 2.25 clearly shows that K, (-,&) # K, (-,&) if € # &'. Hence, the func-
tions K\ (x, yx) cannot converge if the sequence yj, has more than one accumulation point on 92 and
different points of 92 must be associated with different points of I'. This gives a one-to-one correspon-
dence between 02 and I" with K\, (z,Y) = K, _(z,€) when Y € T corresponds to £ € Q. If y, — &
in the Euclidean topology then K, (z,Y)) — K. (z,Y) and, therefore, Y, — Y in the p-topology by
Lebesgue’s dominated convergence theorem. On the other hand suppose Y, — Y in the p-topology. If
§x does not converge to & in the Euclidean topology there is a subsequence {; such that §; — & # &
in the Euclidean topology. Then Y, — Y and Y3, — Y in the p — topology with Y # Y”, which
is impossible. Therefore, the Martin p-topology on Q U I is equivalent to the Euclidean topology on
QN on. O

By Proposition 2.29 and Proposition 2.1 we have the following result,

Theorem 2.30. Assume 0 < k < i. There exists a positive constant c43 such that

a

() 47 (y)
@W < Kg, (y,6) < 043‘5_y|m« (2.53)

Let us give a Lemma that we will use to prove the representation formula.

Lemma 2.31. Let £ € 092, r > 0 be small enough and u be a positive L-harmonic function in Q2. There
exists a super L -harmonic function V' such that

v(x in Q\ B,
V(x):{ @ B
u(x) in QN B.(§)

where v satisfies L.,v = 0, in Q\ B.(§), limy—y v(z) = u(y) Vy € 0B, (&) N Q and lim,_,, % =
0, Vy € 00\ B,.(€).

Proof. Since u is L,-harmonic function we have that u € C?(Q2). Let & € B,.(£) N Q, and rq be such
that B, (§o) C €. We consider the problem

Law=0, € Q\B.)
lim w(z) =n(y)wly) vy € 05,(5) NQ

lim w(z)

lim {7y = 0 ¥ € 00\ Bl

where 1 € C’go(B% (£0)), 0 < m < 1. In view of the proof of Propositions 2.9 and 2.10 we can find a
positive solution of the above problem w. Also we note here that w < u, and by Harnack inequalities
2.11 and 2.12, we have that for any ¢ € 0f)

w(z) w(y)

on () < C(k,N,Q) oY) v,y € B,((),
where p < 1dist(¢, 0B, (€)). Thus we have

w(z) u(y)

m < C(k,N,Q) oY) Va,y € B,(().

The rest of the proof is standard and we omit it. O
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We consider a increasing sequence of bounded smooth domains {€2,} such that Q,, C Q,1,
Un, = Qand HV-1(Q,,) — HN~1(Q). Such a sequence is a smooth exhaustion of 2. For each
n the operator £ defined by

Q. K

is uniformly elliptic and coercive in H}(€2,,) and its first eigenvalue A" is larger than \.. If h €
C(09,,) the following problem

LSy =0 in Q,
v=~h on 09, (2.55)
admits a unique solution which allows to define the £} -harmonic measure on 952,, by
v(zo) = | h(y)dw (y)- (2.56)
o,
Thus the Poisson kernel of £ is
dwd
K o, (2,y) = p 7o (y) Yy € 0Qy,. (2.57)
" wa,,
Proposition 2.32. Assume 0 < k < i and let o € Q. Then for every Z € C(Q),
im [ Z()W(2)dul (x) = / Z(z)dw™ (). (2.58)
n=% /a0, " o0
Proof. We recall that d € C?(Q.) forany 0 < € < 3y and let ng € N be such that
. Bo
dist(09,,,00Q) < > Vn > ng.
For n > ng let w,, be the solution of
[,S"wn =0 in Q,
w, =W on 0, (2.59)

It is straightforward to see that the proof of Propositions 2.17 and 2.18 it is inferred that there exists a
positive constant cq4 = c44(€2, k) such that

lwnllLe(q,) < caa, Vn > ng.

Furthermore
wp (o) = W(z)dw (z) < ca5. (2.60)
o0, '

We extend w(y’ as a Borel measure on €2 by setting wg;’ (2 \ ©,,) = 0, and keep the notation w¢y’ for

the extension. Because of (2.60) the sequence {Ww¢ } is bounded in the space M, () of bounded

Borel measures in ). Thus there exists a subsequence (still denoted by {W(z)wg’ } which converges
narrowly to some positive measure, say & which is clearly supported by 02 and satisfies [|w||an, < ca5
as in (2.60). For every Z € C() there holds

lim Z(z)Wdwe? :/ Zdw.
n=% Joq, " 9]
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Let ¢ := Z| 90 and

z(w) == [ K, (z,y)¢(y)dw™ (y).
lo)
Then ()
z(x .
d(ggo W) =( and z(xg) = -~ Cdw™.

By Propositions 2.17 and 2.18, % € C(€). Since % | sq, converges uniformly to ¢, there holds

z(xo) =/ z| o0, dwsy = WZL&Q" dwsy — (d& as n — oo.
o, m Joq, w " o0
It follows
Cdo= | Cdw™, V¢ e Co9).
o0 a0

Consequently w = dw®. Because the limit does not depend on the subsequence it follows that the whole
sequence W (z)dwy converges weakly to w. This implies (2.58). O

Theorem 2.33. Let u be a positive L-harmonic in the domain Q). Then u € Léﬁ (Q) and there exists a
unique Radon measure i on OS2 such that

u(@) = | K, (z,8)du(§).
o9

Proof. The proof is similar as the one of Theorem 4.3 in [17].
Let B be a relatively closed subset of 2. We define

RB(z) := inf{4(x) : 1 is nonnegative supersolution in  with ¢» > u on B}.
For a closed subset F of 9€2, we define
[ (F) :=inf{R?"C(z): F C G, Gopenin RN},

The set function p* (F') defines a regular Borel measure on 052 for each fixed = € Q. Since p*(F) is
a positive £, —harmonic function in ) the measures p* are absolutely continuous with respect to u*° (F')
by Harnack’s inequality. Hence,

W (F) = /F d* (F)(y) = /F m(mm(y).

We assert that (ijﬂ((FF)) = K¢ (z,y) for a.e. p*°(y) in 0€). By Besicovitch’s theorem,

dp*(F) _ . 1 (Ar(y)
dpo (F) o (Ar(y))”
for a.e. ™ (y) in 0.
du” (F)

By Lemma 2.31 and in view of the proof of Proposition 2.27 we have that 30 ()
function, and by uniqueness of Kernel functions the proof of assertion follows. Hence

is a kernel

§(A) = /A Ke(z,y)dp™ (y),
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for all Borel A C 02 and in particular
u(x) = p*(00) = » Ke(x,y)du™ (y).

Suppose now

u(z) = [ Ke(z,y)dv(y),
o9

for a Borel measure v on 0f2. For a closed set F' C 0f2 we will show that v(F') = p® (F).
Choose a sequence of open set {G,} in RY such that N2, G), = F and

p*(F) = lim RC*(x).

k—o0

Since
RB(2) < RA(x), if BCA

we can choose G, such that Gy C Gy, Vk > 1 and Q\ Gy to be a C? domain for all £ > 1. We
consider a increasing sequence of bounded smooth domains {2} such that Q;; C Qp41, UQ, = Q,
QNG =0, HN 1) — HV~1(Q) and

’HN_l(ﬁk ﬁék) — HN_I(F).

Let wé‘i (y) be the L,-harmonic measure in 9, (see (2.54)-(2.57)).
Then

RS*(z)= | RS (y)dwi (y)
O

- / RO (y)duw () + / RO (y)du? ()
QL NOG K an\aGk

> / R+ (y)dw (y)
QL NOG

Now, by Lemma 2.31

/ RO (y)dw? (y) = / u(y)dwE (v)
ONLNOG 90 NOG

[29]
= /8 . /a oo, W Sdwg, ()dv(E) 2 /F ) /8 oo, e O ()v (€).

where F,, C F, UF,, = F and dist (F,,,0Q\ F) >
If ¢ € F,, we have

/ K (y, €)dv(€)dwd (1)
N LNOG

1
n

K (20,€) = / Ke(y, €)dws (y) + / Ko (y,€)dwd (y)
90, NOG K 8\Gr

But
C a4
2

K(y,6) < —yrar=d7 (y), Yy € 00\ Gi,
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thus by Proposition 2.32 we have that

lim Ke(y, §)dwy (y) = 0.
k— o0 8Qk\Gk

Combining all above and by Lebesgue’s dominated convergence theorem we obtain

§(F) = lim RO(a / /8  Kela dn(e) = v(F)

k—o0

which implies
15O (F) = u(F).

For the opposite inequality, let m < k — 1, k > 2 then

RS*(x)= [  RG*(y)dws (y)
O )

- / RO (y)dw? (y) + / RO (y)dw (y).
Q1L NOG 1, aﬂk\BG’m

In view of the proof of Lemma 2.31, we have that
RCr(2) < CdF (z), Yz €Q\ G

Thus by Proposition 2.32 we have

lim RE* (y)dwk® (y) = 0.

k=00 J 50, \0G 2
/ RO (y)du () < / u(y)dw (y) = / K (y, €)dv(€)duwis (y)
0L NOG 1, QL NOG 1, ONNOG,, JOQ

SN cly, O (1)av(€)
a0 J 9Q,N0G,
If ¢ € 9Q\ G,, we have again by Proposition 2.32 that

lim K (y, §)dwg) (y) = 0.
k=00 J90,noG

If € € 9Q N G Then

/ Ko (y, ©)dws (y) < Ko, (w0,€)
0QLNOG 1,

Combining all above we have that

u*(F) = lim RG’“( ) < / Kr(x,8)dv(€) = v(00NG,y),
k—o0 le)ate]
which implies
p* (F) < v(F),

and the proof of Theorem follows.
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Actually the measure p is the boundary trace of . This boundary trace can be achieved in a dynamic
way as in [24, Sect 2].
In the same way we have

Proposition 2.34. Ler xy € Q0 and p € M(ON). Put

vi= | K, (z,y)du(y),
29
then for every Z € C(Q),
lim Z(z)vdws) = / Z(x)dp. (2.61)
o0 Jaq, " o0
Proof. The proof is same as the proof of Lemma 2.2 in [24] and we omit it. O

The next result is an analogous of Green formula for positive £,.-harmonic functions.

Proposition 2.35. Let v be a positive L ;-harmonic function in () with boundary trace . Let Z € C?(2)
and G € C(Q2) which coincides with G (o, .) in Q25 for some 0 < § < [y and some xy ¢ Qa,. Assume

IVG.VZ| < 5. (2.62)
Then, if we set { = Z C;’ there holds

/vﬁ,.i(dx:/ Zdu. (2.63)
Q o

Proof. Let {§2;} be a smooth exhaustion of Q with Green kernel Gg] and Poisson kernel ng =
—6nGgi . We assume that j > jo where ﬁ; C Q. Set {; = ZG;, where the functions G are
C* in Q;, coincide with Ggi (20,.) in Q; N Qs and satisfy G; — G in C?(Q)-loc and such that
IVG;.VZ| < djs.
¢ 9G; .
/ vl (idr = —/ vﬁds = —/ vZ—21dS = vZP?'7 (z9,.)dS = vZdwey .
Q; o0, On o9, on oQ., " 09, ’
By (2.61)
/ vZdws — Z(x)dp as j — oo.
29 ’ ble)
Next ~ ~ ~
LiC=2L.G;+G;AZ+2VG;.VZ.
Since v € L}, (), the proof follows . O
Similarly we can prove

Proposition 2.36. Let v be a positive L-harmonic function in ) with boundary trace . Let 0 < Z €
C%(Q) satisfy 3

V6.V Z| < disbe.
Then, if we set ( = Z ¢, there holds

/ vL(dx > co/ Zdu,
Q Fle)

where the constant cy > 0 depends on ), N and k.
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3 The nonlinear problem with measures data

3.1 The linear boundary value problem with L' data

In the sequel we denote by w = w™ the L,-harmonic measure in §2, for some fixed zo € () and by
M. (£2) be the space of Radon measures v in € such that ¢.d|v| is a bounded measure. We also denote
by M(012) the space of Radon measures on 92 with respective norms |[v||ax,, (o) and ||[lon(aq)- Their
respective positive cones are denoted by imj)m (Q) and 9T (99). By Fubini’s theorem and (2.9), for any
v € My, () we can define

Ge, [W)(x) = /S Ge (a)dr(y)

and we have
1Ge. Wy (o) < casllvllom,, @) (3.1
If 1 € M(ON), we set
Ke, [W(z) = ” Ke, (z,y)du(y),
K, plllzy (@) < carllpllonon)- (3.2)

In the above inequalities c46 and c47 are positive constants depending on €2 and .
For 0 < k < 1, we define the space of test functions X (£2) by

X(Q) = {n € HY,o(Q) : i € H(Q.d*dr), (6) 7 Lun € LOO(Q)} . (3.3)

The next statement follows immediately from Propositions (2.9) and (2.10).

Lemma 3.1. Letr0 < k < i. If m € L*>(Q), the solution n,, of

LiNm = My in Q
Nm =0 on 0N 34
obtained by Propositions (2.9) and (2.10) with fo = m and h = 0 belongs to X(XY). Furthermore
A Ak
In the next Proposition we give some key estimates for the weak solutions of
Lou=f in Q
w=h  on 0 (36)
Proposition 3.2. For any (f,h) € L} (Q) x L*(09,dw) there exists a unique u := uy € L} ()
such that
/ ul ndr = / fndx + /Kgn [hw] L ndx Vn € X(9Q). 3.7
Q Q Q
There holds
u = Ggﬂ [f] +Kg, [hw] 3.8)
and

lullzy (@) < casllflizy (o) + carllbllro0,am)- (3.9)
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Furthermore, for any n € X(2), n > 0, we have

/\u|£,{ndx§ /fnsgn(u)dx—i—/K,;J|h|w]£,€ndx, (3.10)
Q Q Q

and
/u+£,mdac < /fnsgn+(u)dx+/Kgn[thw]L',de, 3.11)
Q Q Q

Proof. Step 1: proof of estimate (3.9). Assume u satisfies (3.7). If = 1ggn (1), We have

/Q ful b = /Q wlndz = /Q fnda + /Q K. [hulsgn(u)deds.

By 3.1), (3.2)
1
[ oo < - [ (flonds,
Q K JQ

/Kgm[hw]sgn(u)q’)ndx < 047/ [h|dw,
Q a0

which implies (3.9) and uniqueness.

Step 2: proof of existence. If f and h are bounded, existence follows from Propositions 2.9, 2.10. In
the general case let {(f,, h,)} be a sequence of bounded measurable functions in €2 and 99 which
converges to {(f, h)} in L} (Q) x L'(9Q, dw). Let {un} = {uy, n, } be the sequence weak solutions
of (3.6). By estimate (3.9) it is a Cauchy sequence in Lé,n (©2) which converges to u. Letting n — oo in
identity

/unﬁﬂndx:/fnnda:—&—/KgK[hnw].Cnndx (3.12)
Q Q Q

where n € X () implies that u = wuy p.
Step 3: proof of estimates (3.10), (3.11). We first assume that f is bounded and h is C%(Q). Set
Q, = ., Let u,, be the unique solution of

£Kun = f in Qn
v, = Wh on 0%, (.13)
Then u,, can be written in the form
Un = GZK [f1(x) + wy,
where
G, [1)w) = | G2 (e f)ds
7. is the Green Kernel of L, in Q,, and w,, satisfies
L.v=0 in Q,
v=Wh on 99,. G3.14)
Now note that G (z,y) < G, (z,y) := GZ ,andforany z,y € Q,z #y
1 4 a
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Also in view of the proof of Proposition 2.32 there exists co > 0 which depends on Q, N, &, [|hl[c2 g,
such that

sup |wp| < ¢g, ¥Yn €N,
€N,

and w,, — K, [hw]. Thus by the properties of Green kernel that we described above, we have that
there exists a constant co1 €2, N, &, |[h]|c2(q) || f|| Lo (), such that

sup |un| < co, Vn €N,
€N,

and
up, = u =G, [f]+Kg, [hw].

Let n € X(£2) be nonnegative function and let 7),, be the solution of the problem
Lov= Ly, v =0 on 0£,.
Then there exists co = co(||An|| L= (q), &, N, Q) such that |n,| < cp¢, and

Linn — Ly, N —> 1

Let z,, be the solution of
L0 =sgn(n,) Ly, v =20 on J9,.

Then z,, > max(n,,0) since

[’Nlnn| < sgn(nn)ﬁmnn = Sgn(nn)ﬁmna

and |Zn| < codr,
Lipzn — Lc077> Zn —> 1.

Now note that z,, > 0 and z,, € C! (ﬁn) Also, the following inequality holds (see eg. [28]),

o
/ |thn | Lo 2ndx < / fansgn(uy) — ﬁ|h|de
Q Q o0 Ov

= / fznsgn(uy,) +/ Wp Ly 2nde, (3.16)

Q Q

where w,, is the solution of

L.v=0 in Q,

v=WIh| on 0%Q,. 317

In view of the proof of Proposition 2.32 there exists co2 > 0 which depends on 2, N, &, [|h[¢2 g, such
that

sup |wy| < ¢p, Vn €N,

TEQ,
and w,, — K., _[|h|w]. Thus combining all above and taking the limit in (3.16) we have the proof of
(3.10) in the case that f is bounded and h € C?(f2). We note here that for any h € C?(9Q) there
exists H,, € C*(Q), such that [[Hp||o2q) < cos||hl|z=(aq). for some constant co3 which depends
only on , and H,, — h in L°°(0€). Thus it is not hard to prove that (2.32) is valid if f is bounded
and h € C?(99). In the general case we consider a sequence (f,,,h,) C L>(Q) x C?(9Q) which
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converges to (f,h) in L'(Q) x L' (9, dw). Since uy, 5, converges to uy, in L, () we obtain (3.10)
from the inequality verified by any n € X(Q)

/|ufmhn|£,€ndx§ /fnnsgn(u)dx—i—/Kcm[|hn|w]£,{ndx.
Q Q Q

The proof of (3.11) is follows by adding (3.7) and (3.10).

3.2 General nonlinearities

Throughout this section €2 is a smooth bounded domain and & a real number in (0, %] Letg: R— Rbe
a nondecreasing continuous function, vanishing at 0 for simplicity. The problem under consideration is
the following
—Au—%u—i—g(u):l/ in Q2
d (3.18)
U= in 09

where v and p are Radon measures respectively in {2 and 0f).

Definition. Let v € My, () and g € M(ON). We say that u is a solution of (3.18) if u € L}bK(Q),
g(u) € L, () and for any 1) € X(2) there holds

[ wn+ gtwm) da = [ (nav + Ke, [n).n) da (3.19)
Q Q

Our main existence result for subcritical nonlinearities is the following.
Theorem 3.3. Assume g satisfies

Nt

/oo (9(s) — g(—5))s N2+ ds < oc. (3.20)
1

Then for any (v, ) € My, (Q)x € M(0Q) problem (3.18) admits a unique solution w = u,, ,,. Fur-
thermore the mapping (v, () — u,,,, is increasing and stable in the sense that if {(vy,, j1n) } converge to
(v, p) in the weak sense of measures, {,, ,., } converges to u,,,, in L ().

The proof is based upon estimates of M, and K., into Marcinkiewicz spaces.

Lemma 3.4. Letv € 93?;&((2) w € MH(0N) and for s > 0, Es(v) = {x € Q: Gg, [v](z) > s} and
Fo(u) ={z € Q: K, [u](z) > s}. If we denote

ES(V):/E( )(;SdeU and ]-"S(u)z/ Prdx,

Fy(p)

there holds
NSk

v[lon,, @) + ||N|9ﬁ(asz)) N-2+5F (3.21)
S

am+awsW<
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Proof. Step 1: estimate of Fs(v). By estimate (2.53), for any £ € 912,

- daTJr(a:) s
Fs(ég) C Fs(ég) = {J} eN: W Z 043} - B(%T‘i)e(g),

: _ 1
with 0 = ' From (2.1), (22)

ne

fﬁ(ag)g/ ¢Hd$§04g/ |xf£‘a7+dxzc5osiN72+aT+.
Besa o © Besis ©

Therefore, for any s¢o > 0 and any Borel set G C 2

/Kgﬁ(at,«f)&@dx < so/ ¢de+/ Kr (x,8)¢.dx
G G Fay (6¢)
< so/ ¢ﬁdx—/ sdFs(d¢)
G S0

oo
< 50/ ordr + 050/ s N-25 (g
G S0

T N—2t
< 80/ Prdr + c515
G

Next we choose s so that the two terms in the right part of the last inequality are equal and we get

/Kﬁﬁ(z,f)ﬁbndx < cxo (/ ¢de> N (3.22)
G e

Henceforth, for any p € 9t(9€2), there holds by Fubini’s theorem,

/&ﬂﬁmm://Kg@@m@MMM@s%ﬂmwm(/mm)“?.<M$
G QJG G

If we take in particular G = F(|u|), we derive

2
T

sFs(|ul) < esallullmon) (Fallu) ™=,

which yields to (3.21) with v = 0.
Step 2: estimate of E;(v). By estimate (2.9), for any y € €,

Es(5y)CEs(5y):{xEQ'd;(y)d;(x)Zs}ﬂ{IGQ:123}7

. ‘J} - y|N+a+—2 Cs € — y|N_2 Cg

A simple geometric verification shows that there exists an open domain © C O C € such thaty € O,
dist (y, O°) > Md(y), O C B, q(y)(y) for some 0 < A; < Ay < 1 independent of y with the following

properties
A= (y)d = () 1
€0 = >
’ o=y T2 = oy
oy ot
o TEWT @) 1

|z —y|Nres=2 7 o —y[N 2
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Notice that if @ = RY then O = B 5 () where d(j) = 2d(y). Set
2

- 1 S
ELX6,) = 0:——— >0
and

3 A7 (yd (@) _ s
2 _ .
E%(8,) = {x CNO S 2

We can easily prove

£,(5,) = / budr < / bnda
E;(dy) E(dy)
N lE

R LTSGR )
< / Prdr Jr/ Opdr < c53s NPT (d(y)) IN-dFa;
EL(8y)

BZ(8y)

As in step 1, for any Borel subset © C (2, we write

/Ggm(x,y)céﬁdx < 50/ ¢de+/ G, (x,y)dpdx
o o Evy (6,)

< so/ Ordx —/ sd€s(dy)
(S] S0

e
SSO/ dwd + ca3(d(y)) 2N_4+”*/ s N2 ds
e so

o 2
ay (N+—5) oF

< s0 [ et ena(aly) Ty
e

/ Gr (@, y)dude < css(d(y) 5 ( / ¢de) " < sebny) ( / ¢>de> Y (6o
e G G

Thus, for any v € My, (), we have

[ Gevlbuds = [ [ Geo.p)onrtdvlt) < eslilon,, o) ( / Mx) @2
[C] QJO e

Thus (3.21) holds. O]

Proof of Theorem 3.3. Step 1: existence and uniqueness. Let {(vy, pn)} C C(2) x C*(9S2) which
converges to (v, i) in the weak sense of measures in M, () x M(ON). Set v, = Kz, [unw], then v, €

L>() and it is £,-harmonic. Set §(t, ) = g(t + vn(x)) — g(vn(z)) and f(z) = vy (z) — g(vn(x)).
Let J,; be the functional defined in L?(£2) by the expression

1

To(w) = 5/Q (|Vw|2 - d%wQ n 2J(w)) dz — /waqﬁ,.idz (3.26)

where J(w) = [, g(t)dt with domain

D(J,) = {w € H.(Q) : J(w) € L}(Q)},
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(see definition in 2.1-5). By (2.7), J, is a convex lower semicontinuous and coercive functional over
L*(Q). Let w,, = w,, ,,, be its minimum, then u,, = u,,, ,, = Wy, + v, is the solution of

Lty + g(un) = vy in Q

Uy = ln in 0L, (3.27)
and for any € X(£2), there holds
/ (unLyxn + glun)n) de = / (vnn + Kz, [unw]Len) dx. (3.28)
Q Q
By Proposition 3.2 (3.10), there holds, with n = ¢,,
[ Ol lgtwn)) e < [ (ol + K, o)
< caollvallom,, (@) + carllpnlloncon) (3.29)
< ¢57.
Moreover
G, [vp] = Ke, [ w] < un < Gg, [+ Ke, [pufw]. (3.30)

By using the local L' regularity theory for elliptic equations we obtain that the sequence {u,,} is rela-
tively compact in the L!-local topology in 2 and that there exist a subsequence still denoted by {u,, }
and a function u € L} (€2) such that u,, — u a.e. in Q. By (3.30)

l9(un)| < g(Ge, ]+ Ke, [ihw]) — g (=Ge, [v, ] — Ke, [, w]) - (3.31)

We prove the convergence of {g(u,)} to g(u) in Léﬁ (€2) by the uniform integrability in the following
way: let G C 2 be a Borel subset. Then for any so > 0

/ 9t dde < / (9 (G vt]) + 9 (Ko, [utew]) — g (~Ge, vz]) — g (Ko, [pzw])) duda
< 0 / buda + /E 9 Ce D e+ / g (K, [1]) dnde

Fs(pt)

9(=Ge, [v,]) drdz — 9 (—Ke, [p1y]) ¢rda
Bs(w™) Fo(n)

<30/¢de—/ G()(dE,(v;H) + dF, (1) /g vr) + dF (i),

f/ g(s)dEs(vh) = g(s0)E / Es(
% N+QT+ N+

< 9(50)Euo () + car (Vi lan,, ) 7 / s N dg(s)
S0

i % o O

o0
2N+ o 2
< on—ararcar (1w lom, (o)) Y22 / s N2 g(s)ds.
S0

But,




Konstantinos T. Gkikas, Laurent Véron

All the other terms yields similar estimates which finally yields to

/ 9(un)lbedz < 50 / buda
G G
N+ LY;_

+C5s(IIVnIIsm%(m+Hun||9n<am)N’”T+/ s N (g(s) — g(—s))ds
S0

(3.32)

2N71+QT+

Since [|vn|lan,, (@) + [[Hnllon(aq) is bounded independently of n, we obtain easily, using (3.20) and
fixing s first, that for any € > 0, there exists § > 0 such that

/ bl < 6 — / lg(un) i < e. (3.33)
G G

Since
un| < Ge, [Ivnl] + Ke, [[pn]w],

we have by (3.23), (3.25)

2
N LY7+
/G\un|¢,§dx < (052HNn”9’ﬁ(6Q) + C55HV71||§);R¢H(Q)) (/C:gbﬂdx) T (3.34)

This implies the uniform integrability of the sequence {u,}. Letting n — oo in identity (3.28), we
conclude that (3.19) holds. Uniqueness, as well as the monotonicity of the mapping (v, 1) — u, ., is an
immediate consequence of (3.10), (3.11) and the monotonicity of g.

Step 2: stability. The stability is a direct consequence of inequalities (3.32) and (3.34) which show the
uniform integrability of the sequence (u,,, g(uy)) in Lén (Q) x Ly (). O

The proof of the following result is similar as the one of [26, Lemma 3.2, Def. 3.3].

Proposition 3.5. Let (v, 1) € My, () x € M(ON) such that problem (3.18) admits a solution u,, ,,.
Then
waw = =G, [g(up)] + Ke, [u]. (3.35)

Conversely, if u € L;bm (Q) such that g(u) € L}m (Q) satisfies (3.35), it coincides with the solution u,, ,,
of problem (3.18).

3.3 The power case

In this section we study in particular the following boundary value problem with p € 9(99)

Lou+ |u|9tu =0 in Q
U= [ in 0%2 (3.36)
A Radon measure for which this problem has a solution (always unique) is called a good measure. The
solution, whenever it exists, is unique and denoted by u,,. For such a nonlinearity, the condition (3.20)
is fulfilled if and only if

N+ 5

V@<t =yoya

(3.37)

On the contrary, in the supercritical case i.e. if ¢ > q., a continuity condition with respect to some
Besov capacity is needed in order a measure be good. We recall some notations concerning Besov
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space. For 0 > 0, 1 < p < oo, we denote by WP (R?) the Sobolev space over R%. If ¢ is not an
integer the Besov space B°P(R?) coincides with WP (R%). When ¢ is an integer we denote A, , f =

flea+y)+ f(x —y) —2f(x) and

BYP(RY) = {f € LP(RY) : Bayl o LP(R? x Rd)}

'
with norm .
— P |A13yf|pd d v
v = (151 + [ [ el aedy)”.
Then
B™P(RY) = {f e W '2(R?): DI f € BY?(R?) Voo € N* |a| =m0 — 1}
with norm

1

|Dg Agy fIP
f Bm.p — f p m— + // - dﬂ?dy
11 st 30 [ foue b

These spaces are fundamental because they are stable under the real interpolation method as it was
developed by Lions and Petree. For o € R we defined the Bessel kernel of order « by G,(§) =
FL(1 + [.|?)~2 F(¢), where F is the Fourier transform of moderate distributions in R¢. The Bessel
space L, ,(RY) is defined by

Lap(RY) ={f =Gaxg:g€ LP(RY)},

with norm
[fllea, = gl = |G-a * fllLe-

It is known thatif 1 < p < oo and o > 0, L, ,(R?) = W*P(R?) if « € N and L, ,(R?) = B*P(R?)
if a ¢ N, always with equivalent norms. The Bessel capacity is defined for compact subset X C R? by

= inf{||f|}, . €S8R, f>xx}

It is extended to open set and then any set by the fact that it is an outer measure. Our main result is the
following

Theorem 3.6. Assume 0 < k < . Then yn € M (8(2) is a good measure if and only if it is absolutely
-1

where ¢’ = that is

continuous with respect to the Bessel capacity 02 2+a 2oy - -,

q/
VE C 09, E Borel C’ 2+(,+ ’ (E)=0= p(E)=0. (3.38)

The striking aspect of the proof is that it is based upon potential estimates which have been developed
by Marcus and Véron in the study of the supercritical boundary trace problem in polyhedral domains
[26]. Before proving this result we need a key potential estimate.

Theorem 3.7. Assume 0 < k < i and q > q.. There exists a constant csg9 > 1 dependning on (), q, and
K such that for any pn € 9T (ONY) there holds

— [l 24y S/(Kﬁn[ﬂ])q¢nd$§059”ﬂ”q 24ay (3.39)
B T2a Q B T 2a

—24 5
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Proof. Step 1: local estimates. Denote by £ = (&,&’) the coordinates in RY, & > 0, ¢ € RV~!
The ball of radius R > 0 and center a in RV ! is denoted by B/ (a) (by By if a = 0). Let R > 0,
v € M (RY ) with support in B’ and

2

_ av(¢)
e /B (& +1e — )

N—2+a (3.40)
2

Then, by [26, Th 3.1],

q
R @ /
+1) 35 dv(¢
el s §/ / R / ( )Mm de'de,
st o S R

< o (14+ REOFDT ) ] _
B

(3.41)

24« .
24 gt

There exists R > 0 such that for any yo € 92, there exists a C? diffeomorphism © := 0, from Bg(yo)
into RY such that O(yo) = 0, ©,,(Br(yo)) = Br and

O(2N Br(y)) = By := BrNRY, (02N Bz (y0)) = Bz , ©(92N Br(yo)) = Bj.

Moreover, © has bounded distortion, in the sense that since

du(z) B _ d(po® 1) ()
%(x)/antR(yg)W“ =¢,00 1(5)/;% 0-1(¢) — O 1(()|N-2Far’

B
there holds
oy
512/ d(po©71)(¢)
N—2+ta
Cor Sy (G +1¢ - ¢P)TT

d(po 6~ H)(Q)
[©71(&) — O~V 2Har

ay 0cO-1
S661512/3/( a0 ©7H)(Q)

<oco0@ [

N—2+ta,

G+ —CP) =

24«
Since p > po®~1isa C? diffeomorphism between 9T (9QN Br(yo))N B ¥t (092N Bz (yo))
24a
and M+ (B',) N B~27 277 (B, we derive, using (2.53) and (3.41)
2 2

L] < K a < a
W ey <[ el S cll? e, G

Clearly the left-hand side inequality (3.39) follows. Combining Harnack inequality and boundary Har-
nack inequality we obtain

/ (Ke, (1)) 6nde < co3 / (Ko, (1)) dndz (3.43)
Q QNBr(yo)
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which implies the left-hand side inequality (3.39) when p has it support in a ball B R (yo) NOQL.

Step 2: global estimates. We write © = Z;"Zl t; where the 11 are positive measures on €2 with support
in some ball B (y;) with y; € 0€2 and such that

1
@””“B‘“iﬁ” < HNJ'HB_H%,Q < cﬁ4llu||B_2+2+Tj¢,q

Then

Jo 1 Jo 1
IKe, [ulllzg < Z;HKﬁMH% < cggzgnujuz,wa | Sdocoachyllell Lz,
J= J=

2q7

On the opposite side
K, (Wl = maxicj<o [Ke, [mlllLg

—+ maxi << |14

> o
= B,2+2:71+,q
C59 q
1 Jjo
e oD Dt 71| ST
. J 24 a7 4
JoCs9 B N
1
> ||| _ap et o
6546539 B 2q
which ends the proof. ]

Proof of Theorem 3.6: The condition is sufficient. Let u be a boundary measure such that |K_ [u]|? €
Ly, (). For k > 0set gy, (u) = sgn(u) min{[u|?, k7} and let uy, be the solution of

Liu + gr(up) =0 in

Up = in 092, (3.44)

which exists a is unique by Theorem 3.3. Furthermore k — wy is decreasing,
0 <up <Kg, [p]

and
0 < gr(ur) < gu(Ke, [1]) < (Ke, (1),

and the first terms on the right of the two previous inequalities are integrable for the measure ¢, dz by
Theorem 3.7. Finally for any n € X (2), there holds

/ (urLwn + gr(uk)n) dz = / Ke, [W]Lxndz.
Q Q
Since uy, and gy (uy) converge respectively to u and g(u) a.e. and in L}i)K (Q); we conclude that

/ (ulyn +uin)de = /Kgﬁ[u]ﬁnndm
Q Q

. .. . . . N-1 .
If 1 is a positive measure which vanishes on Borel sets £ C 02 with C;R 2, -Capacity zero, there
Ty sq

2+a+
. . . L. . B, Wit .
exists an increasing sequence of positive measures in B T 7(09Q) {n } which converges to i (see
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[8], [11]). Let u,,, be the solution of (3.36) with boundary data p,,. The sequence {uun} is increasing
with limit u. Since, by taking ¢, as test function, we obtain

/ ()\Hu/.LT,, + g(uun)) (bndx = AK/K,CK, [,Ltn](ﬁ,@d:r,
Q Q

it follows that u, g(u) € Ly, (). Thus

/ (ulwn + g(u)n) dr = /Kcﬁ[ulﬁwdm vn € X, (Q),
Q Q

and therefore u = w,.

Definition A smooth lifting is a continuous linear operator R[.] from CZ(99) to CZ () satisfying

(1)) 0<n<1=0<R[ <1, Rnllsa=n

(3.45)
(i) [Vou- VR[] < cos s

where cg5 depends on the C'*-norm of 1.
Our proof are based upon modification of an argument developed by Marcus and Véron in [21].

Lemma 3.8. Assume there exists a solution u,, of (3.36) with i > 0. Forn € C?(Q), 0 < n < 1 set
¢ = ¢(R[n])Y where R is a smooth lifting. Then

()" <o ot (e (o)

where

1
7

" aq (/Q(L[an’da:) ) (3.46)

Lln) = (Rn)* (2¢;q V. VR[] + ¢;3/|AR[77]|> (3.47)
and cg7 depends on 2, A\, q, K, N.

Proof. There holds

L = MR 6 —2¢ (R[0)? "' V. VR[] — ¢ (R[n) "2, (RINJAR[] — (¢ — 1)|VR[]).

Then ¢ € X, () because of (3.45)-(ii) and by Proposition 2.36

coo [l d < [ (wlu+ i) o
o0 Q
Since

ul( <u ()\N(R[U])q/% + 2q/(R[an/_l|v¢mVR[77]| + CI/(R[U])QI_1¢H|AR[77]|)

/ULKCdJJ < </uq§d3:)q << (;Sﬁdx)
Q Q Q

where L[n] is defined by (3.47).

we obtain )
ol

e /Q(L[n])q/dx);) |
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2+
Lemma 3.9. There exist a smooth lifting R such that 1) — L[n)] is continuous from B>~ (39)
into LY (Q)). Furthermore,
-1
1L oy < chslnlimtomyllnll , 2or (3.48)
BT 20 " (60)

Proof. The construction of the lifting is originated into [24, Sect 1]. For 0 < § < Sy, we set X5 = {z €
Q2 : d(xz) = ¢} and we identify 0Q with ¥ := . The set {5 }o<s<g, is a smooth foliation of 9. For
each & € (0, fp] there exists a unique o(x) € X5 such that d(z) = ¢ and |z — o(x)| = J. The set of
couples (d, o) defines a system of coordinates in €23, called the flow coordinates. The Laplacian obtain
the following expression in this system

0? 0

A= b +A 3.49

o2 "0 T (349)
where Ay, is a linear second-order elliptic operator on ¥ with C'! coefficients. Furthermore by — K
and Ay — Ay, where K is the mean curvature of > and Ay, the Laplace-Beltrami operator on X. If

24«
ne B_2+T’+’q(89), we denote by H := H 5] the solution of

H
—8 +AyH =0 in (0,00) x &
Os (3.50)
H(0,.)=n in¥

Leth € C®°(Ry)suchthat0 < h < 1,h <0,h=1on|0, %0], h = 0 on [By, o0]. The lifting we
consider is expressed by

n|(82, o (x ifre
R[n]($> :{ OH[]](5 ) ( ))h(é) iixig/ﬁ; (3.51)

with z =~ (4, 0) := (d(z), o(x). Mutatis mutandis, we perform the same computation as the one in [21,
Lemma 1.2], using local coordinates {c;} on X and obtain

0H

VRln] = 26h(8) 5 (

N-1
/ 2
o)V + ; h(s aoj 6%,0)Va; + W (8)H(6%,0)V6
In Q g, there holds

0H

(52 8H
00

VR[n].Vé,. = 26h(8)==(6%,0)V .. V8 + Z h(8)=—(8,0)V0;. Vb, + W' (8)H (5, 0)VE.V,
]

3.52)
Moreover ¢,.(z) < co(d(z)) 2 = 62 and [V, (z)| < cy(d(x)) =~ = ¢4 2 ~L. Similarly as in
[21, (1.13)]

thus o
|V¢N.Vaj| S 068677
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N-1
-1 o4 8H h (6
b [V R V] < coob ™ ‘ ‘+ ‘ O) 52,0y ) .
= 60] 1
Thus /
- ’ @ (9H 1
/qﬁn “IVR[n].Vou|? de < 070/ 5= —(6%,0)| dx
Q Q, 06
q/
+ ¢70 Z/ 62,0)| dx
5,
+C70/ 5THQ (5 ,o)dz
Q5,\02
Then /
a’ , @ q
/¢57|VR[17].V¢H\‘1 dr < cqy 7 7(52,0) dSds
Q 0 = | 90
B (e 0 "
< en / / ca |28 ) dt (3.53)
0 b3} 5t Lq,(E) t
<cralnllt e,
BT 20 Yy
by using the classical real interpolation identity
9 ’ ’ 272+a
W2 ©),L7 (@) s, =BT ET(). (3.54)
- 4q” 7q
Similarly (see [21, (1.17),(1.19)])
N-1 . 19H ¢ - )
Z/ 672 | =—(8%0) d:r+/ 572 HY (6% 0)dx < cra|nl|”  aia, . - (3.55)
=1 /s 7j 5, \Q w2 T (x)

Next we consider the second term. Adapting in a straightforward manner the computation in [21, p.
886-887 ] we obtain the following instead of [21, (1.21)]

o 2
/ bl AR[)|Y dz < er2 / / 52+ 532 ;5[27” (5 ,0)dods
) y (3.56)
0 @ 6H ’ ’
+c72/ /5T+ <‘8§77]‘ + [H|? +|AA—Az|q> (6%, 0)dx
0 b
Then
L | OHD ] 2(- ) gy ae
0 52 o)dodd = BT 0?
o/ (3.57)

’
§C73Hn”q272+a+ ,
BT 2 T (x)



Konstantinos T. Gkikas, Laurent Véron

by using the real interpolation identity

’ ’ 2ta ’
(WA (), 17 (9)| sy, e, =B 0 (3). (3.58)
g 7
The other term in the right-hand side of (3.56) yields to the same inequality as in (3.55). O

Proof of Theorem 3.6: The condition is necessary. Let K C 0 be a compact set and € C2(92) such
that 0 <7 < 1andn = 1on K. Then, by (3.46)

(W(E))T < ear / ud (Rln))? i+

Q

A . (3.59)
/ q q
(/ uq(R[n])qundx) (( ¢de) b Il aees )
Q Q B2 T (90)

From this inequality, we obtain classically the result since if 02 2ta, ,(K) = 0 there exists a sequence
2 4

{nn} in CZ () with the following properties:

0<n, <1, n, =1 inaneighborhood of K and 1, — 0 in B>~ el (09) asn — oo.  (3.60)

This implies that u¢(R[,])? — 0 in Ly, (). Therefore the right-hand side of (3.59) tends to 0 if we
substitute 7,, to 7 and thus p(K) =0 for any K compact with zero capacity and this relation holds for
any Borel subset. O

Definition. We say that a compact set K C 92 is removable if any positive solution u € C(Q2\ K) of
Lou+|u/lu=0 inQ (3.61)
such that
/Q(uﬂ,m + ||t tun)dz =0 ¥n € XX(Q) (3.62)
where XX (Q) = {n € X,.(Q) : n = 0 in a neighborhood of K}, is identically zero.
Theorem 3.10. Assume 0 < x < i and q > 1. A compact set K C 0 is removable if and only if

1
RN -1 _
02_2+:+ q(K) =0.

Proof. The condition is clearly necessary since, if a compact boundary set K has positive capacity, there
24«

exists a capacitary measure ju, € I, (0Q) N BT 2 “1(9Q) with support in K (see e.g. [1]). For

such a measure there exists a solution u,, . of (3.36) with ;1 = px by Theorem 3.6. Next we assume that

CRNHIQ - (K) = 0. Then there exists a sequence {n,, } in C3 () satisfying (3.60). In particular, there

q
exists a decreasing sequence {O,,} of relatively open subsets of €2, containing K such that 7, = 1 on

O,, and thus 7, = 1 on K,, := O,,. We set 7j,, = 1 — 1, and (,, = ¢ (R[i7])2¢ where R is defined by
(3.51). Then0 <7, <1 and 7, = 0 on K,,. Therefore

Enl@) < b min{17074(d(x))1—Ne—(4d(x))*2(dist (z,Kﬁ))z} (3.63)
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Furthermore
(Z) |VR[ﬁn]| < cr5 min {1’ (d(m))727N€7(4d(z))*2(dist(:c,K;))z }
' (3.64)
(“) |AR[ﬁn]| < cr5 min {1’ (d($>)747N67(4d(z))72(dISt(I’Kﬁ,))2}
Step 1. We claim that
/ (uﬁﬁfn n ufJ&n) dz = 0. (3.65)
Q
By Proposition 6.3 there exists c74 > 0 such that
(i) w(z) < ergld(x)) = (dist (z, K)) 71~ 2
o 2 ey (3.66)
(@) V()| < erold(e)) F ~ (dist (¢, K)) 7T F
for all z € . As in the proof of Lemma 3.8,
[uLCnl < er7(R71n])*® 2t (¢ R2[7]0] + Rl71n][ VsV R[] (3.67)

+ ¢ (Rliin] |AR[7]| + [V R[] |?)) -

Let O be a relatively open neighborhood of K such that O C O,,. We set Go g, = {z € Qg, :
o(z) € O} and Goe g, = Qp, \ Go. If x € Go, dist (z, K) > 7 > 0. Then, by (3.66)-(i) and (3.63),
ui¢, € LYGo). Since u(x) = o(W(x)) in Gp- it follows that u?(, € L'(Qg,) and thus ui(, is

integrable in ) . Similarly, using (N22-1)-(i) and (ii), uﬁ,ign € L'(Q). Since ¢,, does not vanish in a
neighborhood of K, we introduce a cut-off function 6, € CQ(Q) for0 < e < %, with the following
properties,

0<6.<1,0(x)=0Vz € Go,, O(r) =1V € Q s.t. dist(x,Go.) > ¢
V0| < e8¢ 'XGo. \Go.. and |D?0| < cr8e *XGo, N\Go.os
where we have taken e small enough so that
Go.e ={xeQ:dist(x,Go,.) <€} C Gk, 20 ={x € Qe : 0(x) € K, }.
Clearly 6.¢,, € XX(0), thus
/Q (uzﬁ(eeén) n uqeef,,) da = 0.

Next

/Q (uﬁ,{(ﬁeén) + uqﬁefn) dr = /Q\G (uﬁ,{({n) + uqfn) dz + /G (uﬁn(Gefn) + uqeein) dx

Oe¢ e

= I +1I.

Clearly
) B ~ o
21_>m0 I. = /Q (uLiN(n +u Cn> dx
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and
lim uqeeéndx =0.

e—0 Go
e

Finally, since EK(HE@,) = 0.LCn + (O, + 2V0,..VC,, 0. is constant outside Go.. \ Go, and
dist (Go, e \ Go.e, FS) > 7 > 0, independent of e there holds, by (3.63)

|£I~C (eegn” < 07957N+4€7€% .

Using (3.66)-(i) we derive
lim ULl (0 )da = 0,

e—0 Go. .
which yields to (3.65).
Step 2. We claim that

/uqd)ﬁd:v < 00. (3.68)
Q

Using the expression of £,(, in (3.65) where replace 7, by 7,,, we derive
Jutiuds = [ (AR 00+ 40/ (R V6, VRl +
Q Q

2¢'(R[iin))* ~2¢ (R[iin] AR[] +(2¢' — 1)|VR[iin]|?)) udz (3 69)

1
7

<en (] uqéndx)é ([ Emias)”.

where we have set

Ll) = (1)1 V-V Rln] + (#0) 7 |AR[] | + (60) 7 [VR7a] (3.70)
By Lemma 3.9 we know that

/(¢K)*%|V¢,€.VR[77”]|‘1’ + G| AR[71n]|7 d < (c72 + c73)\|nn\|‘1/2 oy - (3.71)
Q B~ 2d 7T(6Q)

The last term is estimated in the following way

’ 5(2) ’ @
/ 6|V RI7in] 7 di < cx / / s+
Q 0 >

5(2) ot t2 ’ ’ ds
b [ [ (VsHInP + (Himl ) a5
0 z S

OH[,] >

ds
0s dS?

(3.72)

where V5 denotes the covariant gradient on X. Since the following interpolation identity holds

’ ’ 170‘+T2,2/
(w22 (), L (D)] . =BT M)
1- Sq' ,2(1
we obtain ) ,
Bo o ayt2 |0H ] [? ds :
[ s ] ol e
0 » S S B1*T1/72q (E)
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By the Gagliardo-Nirenberg inequality

B i T (m) B~ 2d

(=) BT 2 (x)

2 ! ’ !
nllP e <esalnall” e, Il =eslml?, ae - @)

By the same inequality

/2 (|VZH[nn]|2ql + (H[%])ZQ,) ds < CSZHH[nn]”(goo(g)/Z (|A2H[77n]|q/ + (H[nn])q'> ds.

(3.74)
Using the estimates on L[n] in Lemma 3.9 and the fact that 0 < H|[n,,] < 1, we conclude that
ﬁ(z) oy +2 2q/ 2q/ ds q’
s (IVsH P + (H))™ ) dS< < esgllnll?, oo
0o Jx s B* " 2a 7 (%)
It follows from (3.69)
/ u?(R[ijn])? ¢rda < 084/ (Lnn)? dz < cgs || it (3.75)
P 2, B (x)

Letting n — oo and using the fact that n,, — 0, we obtain by Fatou’s lemma that

/ ulp.dr = 0.
Q

Bo
2

Combined with the fact that u is bounded in Q’% we obtain (3.68). Notice that ||ul| L () is bounded
independently of u.
Step 3. End of the proof. Since u? € L}ﬁﬂ (), by Proposition 3.2 there exists a unique weak solution
v e Ly () of

L.v=1ul in

3.76
v=20 in 99, ( )

and v > 0. Then w = u + v is L,-harmonic in €2, and by Theorem 2.33 there exists a unique positive
Radon measure 7 on 9f2 such that w = K, [7]. Since v and v vanish respectively on on 02 and 02\ K,
it follows from Propositions 2.34 and 2. 35 that the support of 7 is included in K. By Theorem 3.6, 7

vanishes on Borel subsets with zero C abay -capacity. Since C sy (K) = 0,7 = 0. This
247 ,q’ 247 ,q’

implies that u is a weak solution of

Liu+u?l=0 in

3.77
u=20 in 09, ( )

and therefore u = 0. O

Remark. Using the fact that u™ and u_ are subsolutions of (3.61), it is easy to check that Theorem 3.10
remains valid for any signed solution of (3.61).

Remark. If 1 < g < ¢, (see (3.37)) it follows from Sobolev imbedding theorem that only the empty set

has zero 02 N2+a . ~capacity. only the empty set As a consequence of the previous result, if ¢ > ¢, any
2 7 £
isolated boundary singularity of a solution of (3.61) is removable.
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4 Isolated boundary singularities

We denote by {e, , ..., e, } the canonical basis in RN = {z = (2/,xx) € R¥~! x R} and by (r, o) the
spherical coordinates therein. Then RY = {= (z/,zy) :,2’ € R¥~1, 2y > 0} . We although denote
by SN~! and S the unit sphere and the upper hemisphere of RY, i.e. S¥~! : NRY. In this section
we study the behavior near 0 of solutions of

R _

—Au — Ut lu|? =0 (4.1)
in a bounded convex domain © of RV with a smooth boundary containing 0 where d is the distance
function to the boundary,  a constant in (0, %] and ¢ > 1. Although it is not bounded, the model case is
Q=RY = {= (2/,2n) :,2’ € RN~} 2x > 0} which is represented by (r,0), 7 > 0,0 € SY ' in
spherical coordinates. Then

N -1 1
Uy — 7A3N71u —
r

Lol = —Upy — Su+ |u|9 . 4.2)

K
r2(en.o)

We also denote by V' the covariant gradient on SV ~! in the metric of SV ~! obtained by the imbedding
into RV,

r

4.1 The spherical £,-harmonic problem

It is straightforward to check that the Poisson kernel K, of £, in Rﬂ\_f has the following expression

oy
T 2
K, (z,8) = CN,NM%- 4.3)
In spherical coordinates
K¢, (2,0) = CN,KTQ_N_%MU) r>0,0¢€ Sf‘l
on | op
where ¢, (o) = %\I’LS%V*: (ey.0)2 solves
+
K . aN-1
~Agnorthy — et — — =0 in S
(ey-0)? (4.4)
Ve =0 inoSY
and o o
e = (N+ 5 =2 (4.5)

Notice that equation (4.4) admits a unique positive solution with supremum 1. We could have defined
the first eigenvalue p,, of the operator

, K
QS = ,CK,’ZU = 7A5N—1w — Ww
by
Jon—1 (|Vw]? — k(ey.0)"2w?) dS
Mninf{ + oo w2ds cw € HY(SY ™, w#0p. (4.6)
syt
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By [?] the infimum exists since p(0) = xn|gv-1= e,.0 is the first eigenfunction of —Agny-1 in
+

H}(SY ™). The minimizer 1, belongs to Hg(SY ") only if 1 < k < 4. Furthermore
Ve € Y(SYT) = {p € HL(SVY) : p T g e HY(SY L, poh)). 4.7)
We can also define py, by

Jov1 [V (p= 2 w)|2p™+ dS
)
fsif—l deS

fe = inf tweY(SY )\ {0} ;. (4.8)

We can use the symmetry of the operator to obtain the second eigenvalue and eigenfunction of £/,
on Sf_l. We first notice that for j = 1, ..., N — 1, the function
=
IN Zj

T — W (49)

is L,-harmonic in Rffl, positive (resp. negative) on {z = (x1,...,any : z; > 0,zx > 0} (resp.
{z =(21,....,zn5 : ¢; < 0,2x > 0}) and vanishes on {z = (x1,...,zn5 : x; = 0,zy = 0}.

Proposition 4.1. Forany j = 1,.., N — 1 the function

oY i(0) = (en.0)2 ej.0

satisfies

Litbrg = (e + N =1+ oy)p (4.10)

in SV 1. It is positive (resp. negative) on ST ' N {x = (z1,...,an5) = x; > 0} (resp. S} ' N{z =
(x1,...,xn) = x; < 0}) and it vanishes on 355_1 N{z = (z1,...,xn) = x; = 0}. The real number

« o
,U/m2ZMK+N—1+Q+:(7++1)(N+7+_1)

is the second eigenvalue of L in Y(Sivfl).
Proof. There holds

*C;wka,j = ej.aﬁnw,{ + ’(/J,{AsN—lej.O' + ZV/w,i.V’ej.a
(s + N = 1))y, j — a+(eN.U)T+_1V’(ej.o).V'(eN.a).

Now 1 1 )
Tiy_ Ty Ty DBy Syr(Piy = te, - T
V) = ()24 v () = ()= e - U,
thus 1 )
Tiysg(ENy - TN L o Tiy v (PN — (e /
V( " ).V ( . ) " TQV(T ).-V( . ) TZV(eJ.U).V (en.0)
which implies
V'(e;.0).V'(en.c) = —xjrsz = —(ej.0)(en.0)

and finally
Lithj = (e + N =14 ay)the ;. 4.11)
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Since SY ! = {(0’sinf,cosf) : o’ € SN2,0 € [0,Z]}, ex.0 = cosb, ej.0 = e;.0’sinf and
dS = (sin #)N~2dS’'df where dS and dS’ are the volume element of SV —1 and SV 2 respectively, we
derive from the fact that ¢’ — e;.¢’ is an odd function on S N-2

/ %,j%ds = (eN.U)a+ej,UdS
Si\’*l gN-1

+
us
2

:/ (/ ej-a’ds') (cos 0)+ (sin 6)N~1dp
0 SN-2

=0.

Hence v, ; is an eigenvalue of £/, in Y(Siv ~1) with two nodal domains and the space the Yy,; Span is
(N-1)-dimensional and any linear combination of the 1),; ; has exactely two nodal domains since

N-1 N—-1
047_*_
Z ajw,w- = (eN.a) 2 (Z ajej).a.
j=1 j=1
This implies that 1, o is the second eigenvalue. O

4.2 The nonlinear eigenvalue problem

If we look for separable solutions under the form

u(z) = u(r,o) = rw(o)

then necessarily o = —qf—l and w is a solution of
7ASN71w7€q7Nw7 %w+ \w|q*1w:0 in Sf_l
(ey-0) (4.12)
w=0 inasy !,
2 2
byy=——|—+2-N 4.13
o q—l(q—l+ ) 1
and (4.6) is transformed accordingly. We denote by
En={weY(SY HnLH (ST s t. (4.12) holds} (4.14)
2N
and by ET the set of the nonnegative ones. We also recall that ¢, := A and we define a
2N — 4 + OL+
.- 2N + 2+ a4
d critical value ¢, := —————.
second critical value ¢ N —2+a,

The following result holds

Theorem 4.2. Assume 0 < k < % and q > 1, then

() Ifq > qe Ex = {0}.
(i) If1 < q < qe E,j is contains exactly two elements: 0 and w,. Furthermore w,, depends only on the
azimuthal angle 0.

(iii) If ¢. < q < qe, Ex contains three elements: 0, w, and —wy,.
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Proof. We recall that ¢ > g. <= {; v < .. Then non-existence follows by multiplying by w and
integrating on Siv ~1. For existence, we consider the functional

/ 2 -
Je(w) = /SN_1 (|v (W)? + (b — Lg,n)w* + mqu 1|w|q+1> P2dS, (4.15)
+

defined in H*(SY !, ¢2dS) N LI+ (SY 1, 4a+1dsS). Since i, — £y, N < 0, there exists a nontrivial
minimum wk > 0, which satisfies

—div(Y2V'w,) + (p — Ly N )20, + YT 0 = 0 (4.16)
If we set w, = Y. w, then w,, satisfies
Llws — g nwe +wl =0 inSY L (4.17)

By monotonicity we derive that w,, € LP(S f 1) forany 1 < p < oo and finally, that w, satisfies the
regularity estimates of Lemma 2.9 and Lemma 2.10. Moreover w,, > 0 by the maximum principle.

In the case ¢ > ¢, or equivalently u,, — £, v > 0, nonexistence of nontrivial solution is clear from
(4.16).
Uniqueness. By Proposition 2.8 w,,(z) < ng(;(p(x))c%r and by standard scaling techniques |Vw, ()| <
cs7(p()) 5 —L, Assume now two different positive solutions of (4.12) w,; and w’, exist. Since max{w,;, w’. }
and w,; +w/, are respectively a subsolution and a supersolution and they are ordered, we can assume that

Wl < wy < cwl, for some ¢ > 1. Lete > 0 and € = ¢ ¢, then ew!, > €'w,. Set

(wy +€)? = (we +€)*) 9, = (Wt )’ — (W + %)+

Ve = / /
Wy + € w, +¢€

?

and S o = {0 € Sffl :wl, + € > w, + €}. The assume that S, o # 0 for any € > 0. Then

/ <Vw;.V19€f = Vw,. Ve — (bgn + p%)(w;.ﬁe/ —wiVe) + w9 — wgﬁe) dsS =0
Seer
The first integrand on the Lh. side is equal to

/ / 2
/ QVW; _ Ut Cyq,, ) s >0
S, Wy + €

Since ew!, < €'w,; and (w!, + €')? > (w,. + €)?,the second integrand on the Lh. side is equal to

2
Wy + €
/ !
kT €

/
Vw,,

+ ‘Vwﬁ—

K wl, Wy
[ a5 (55 - S ) (et ¢ - (et 9Pas 20

€,€

At end, the last integrand is

/s < = = >((w;+e’)2(wﬁ+e)2)ds

/ ;T
w, te€ wg t+€

€,€

If we let € — 0, we derive

/ (w,’f_l — w,‘i_l) (wW? —w?),dS <0
syt
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This yields a contradiction. Therefore uniqueness holds.

Case g. < q < g.. Assume w,, is a solution. Using the representation of .S’ frv ~1 already introduced in the
proof of Proposition 4.1, with o = (¢’, 6) and

1 0 1
ASN—le = N-2 WK>

0 .
W% ((Slne) 80 + 7A5N—2WH

sin? @
where Agn -2 is the Laplace-Beltrami operator on SV =2, we set

1

O 5 fo

wi(a’,0)dS (a").

Then &, is independent of o/ € SV ~2 and furthermore

/Siv_l(wn 7wﬂ)¢ﬁds — AE <LN2(WK (I)K)ds/) (sin@)NﬁQ(COSQ)%dG — 07

thus w,, is the projection of w, onto the first eigenspace of £, and

/ (Wi — @) Ly (Wi — @,dS > umg/ (W — w,)2dS.
syt syt

At end, noting that
/ (Jq ©Wr — gq © @x) (W — @,)dS" =0
SN—2

3
with g, o u = |u|7 u,
g
/ (gq o Wy, —gqowﬁ)(wl{é _@n)dS: / / (gqow,i —gqow,{)(w,{ —w,{)dS/(sine)N—zdg
syt o Jsi=2
Bl
:/ / (Gq © Wn) — o © @) (wn — @,)dS' (sin )N -2d6
0o Js¥-2
3
> 21*(1/ lwe — @, |?TLdS,
syt
we derive that w = w,, — W,,, satisfies

/ <(MH,2 - ng)(wn - @5)2 + 21_q|wn - a)n|q+1) d57 S 0
syt

which implies w,, = W, and it satisfies

1 d dw K
2 ((gng)N-2%n (g 7) - . = 0. 4.18
(sin@)N-2do ((sm ) do ) Ffant Cogzg ) Wn T da 0w (“4-18)
Since p1 < €y < pik,2, by [4, Th. 4, Corol. 1] this equation admits three solutions, w,,, —w, and
0. O]

Remark. For € > 0 small enough the function €, is a subsolution for problem (4.12). This implies

we(0) > e(0)  VYoe SN (4.19)
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4.3 Isolated boundary singularities
Throughout this section we assume that 2 C RY, 0 € 99 the tangent plane to 92 at 0 is 8]1%_]1\: and that
1<g<qe.

Lemma 4.3. There holds
Ge, [(Kez, (-,0)9)(z)
K[% (1‘, 0)

=0 (4.20)

im0

Proof. We recall the following estimates (1.8), (2.53)

1 (@) (dy) = }

(4) Ge,(z,9) §c3min{x_y|N2’ |z — y|NFto+—2

(i) cglm < Kg,(2,0) < CBM-
Then
Go K2 ON@) _ 4oz wray -2 / (d(y) = dy
K, (z,0) - oz — y|Vtes—2|y|aWV+ar-2)
= Cg+2|x\N+aT+_Q(N+QT+_2)/RN |ex - 7)N+a+dzn|q(N+a+2)

where e, = |z|~1z. This last integral is finite and independent of z. Since q < g, (4.20) follows. [

Corollary 4.4. Let uys, be the unique solution of

Lou+ |lulTlu=0 in
u = kb in 9. (4.21)
Then
im 0 4.22)
x—=0 K (.’L‘) ’
Proof. This is a consequence of (4.20) and the inequality
kK, [60](z) — KIG[(K., [00])")(x) < uns, (x) < kK, [00](2). (4.23)
O
Proposition 4.5. There exists Uoo 0 = limy_,o0 Uks, and there holds
. 2
L Hm [l e o(@) = wilo), 4.24)

zlz|”! > o

uniformly on compact subsets of Sf_l.
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Proof. The correspondence k — uys, is increasing and by the Keller-Osserman estimate, it converges,
when k£ — oo to some smooth function u., ¢ defined in 2 where it satisfies (1.1). By Proposition 6.1, for
any 0 < R < Ry, ugs,, and therefore 1 o, vanishes on any compact subset of 9\ {0} and furthermore

Ckqe(dist(z, K))Y Vye(5,%) if0<k<i
Uoo,0(2) < ;
exc\/dist (@, Ky [In (§2m0) it =1

for all compact set K C 992 \ {0}. Combining this estimate with Propositions 6.3 we obtain

Uco,0(7) < coo(d(x) Tz TT 2 WreqQ, (4.25)

and
Vitooo(@)| < coold(z))Z M| 712  VYzeq. (4.26)

Let ¢y > 0 be small enough such that e € Q forany 0 < ¢ < ¢y, where e = (0, ..., 0,1). Then by (1.8),
(2.53) and (4.23) we can easily prove that there exist positive constants cy; and cgs such that

2 2 N_% _ o4 _oyy 2

0T ug 0 (le) > cor ka1 N=% 42 _ oo ka 0?1+ 2)+4*1, vk > 0.

-1
¥

Mo N2 e

Now we set k = , then we have that

Co1  Co2
(T usolte) > 7 = g
Thus if we choose M big enough, we can easily show that there exists cp3 > 0 which depends on
K, €2, q, N such that

(T T ugeo(le) > co3 >0, V0 < £ < f. (4.27)

For ¢ > 0, we put Ty[v](z) = (T To(lx), Q = 6719, dy(y) = dist (y, 9). If v satisfies (4.1) in ©
and vanishes on 92 \ {0}, T;[v] vanishes on 09, \ {0} and satisfies

K,
—AT[v] — PRt Tyv] + | T[] T  Tyv] =0 € Q. (4.28)
; ioui — 292 ) — 9 — 0
In order to avoid ambiguity, we set ugs, = Ups > Vksy = Vkgy» Uoo,0 = Unoo aNd Voo = Vg g-

Since inequalities (4.25) and (4.26) are invariant under the scaling transformation, the standard elliptic
equations regularity theory yields the following estimates

o 2 _ o+
uSo(y) < con(de(y) = Iy "TTTE Wy ey, (4.29)
and
Q St gy -2 2t
Vs o(y)l < coalde(y)) = y["o17 2 Yy ey, (4.30)
valid for any 0 < ¢ < 1. If we let k — oo, we obtain Tj[uf}, o0l = uQ (o and because of the group
property of the transformation Ty, Ty [u?j)o] = uQ‘ 5 for any € ¢ > 0. Estimates (4.29) and (4.30)

imply that {u& 0} is relatively compact for the topology of convergence on compact subsets of RN

Therefore there exists a sequence {¢,,} tending to 0 and a function U such that {u ‘o) converges to U
uniformly on any compact subset of Rf . By (4.27) this function is identically equal to zero. Therefore
U is a weak solution of .
—AU—y—QU—kU‘?:O in RY 431)
N
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Furthermore N

RY Se 2 og
Ut o(y) < coayy lyl"TT = Wy eRY. (4.32)

. Qg o QZ/Zn
Since T [us ] = Uy g

U(ﬁ) If we set o = ﬁ then there holds

we derive Ty [U] = U for any ¢’ > 0, thus U is self similar. Set w(l%l) =

w(o) < ecoathi(0) Vo € Siv_l. (4.33)

Therefore w satisfies (4.12) and it coincides with the unique positive element w,, of £, since by (4.27)
U(e) > cp3 > 0. Thus u&{o converges to U on compact subsets of Rf . In particular (4.24) holds on

compact subsets of .S j_v -1 O

S The boundary trace of positive solutions

As before we assume that 0 < k < i, q > 1 and  is a bounded smooth domain, convex if Kk = L

1
Although the construction of the boundary trace can be made in a more general framework, we restrict
ourselves to the class U, (§2) of positive smooth functions u satisfying

Lou+ [ulTtu=0 (5.1
in Q.

Lemma 5.1. Let f € L}m (Q). If u is a nonnegative solution of
Lou=f in ) (5.2)
there exists i € M (ON) such that v admits p for boundary trace and
w=Ge, [f] +Ke,. 1] (53)
Proof. Letv = G, [f], then u — v is £,,-harmonic and positive thus the result follows. O

Definition Let G C Q be a domain. A function v € L

1be(G) is a supersolution (resp. subsolution) of
(5.1 if

Lou+ |[u/Ttu>0 (resp. Lou+|ul?tu<0) (5.4)
in the sense of distributions in G.
The following comparison principle holds [3, Lemma 3.2]
Proposition 5.2. Let G C 2 be a smooth domain and u,u a pair of nonnegative supersolution and

subsolution respectively in G.

(i) If there holds
limsup (a(z) —u(z)) <0,

dist (z,06)—0 (5.5)

thenu < @ in G.
(ii) Assume G C § and i and u belong to H*(G) N C(G). If u <  in OG, then u < u in G.
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5.1 Construction of the boundary trace
We use the notations of [23]

Proposition 5.3. Let v be a non-negative function in C(SQ).

(i) If v is a subsolution of (5.1), there exists a minimal solution u, dominating v, i.e. v < uy, < U for
any solution U > v.

(ii) If v is a supersolution of (5.1), there exists a maximal solution u* dominated by v, i.e. U < u* < v
for any solution U < v.

Proof. (i) Let {Q,, } be a smooth exhaustion €2 and for each n € N, w,, the positive solution of

Lo+ |ulftu =0 inQ,
U =v in 0€,,. (5.6)

By the comparison principle u, > v, which implies u,41(x) > u,(x) Vo € Q,. Since {u,} is
uniformly bounded on compact subsets of 2 and thus in C? by standard regularity arguments that u,, 1
uy, Which is a positive solution of (5.1). Furthermore, if U is any solution of (5.1) dominating v, it
dominates u,, in £2,, and thus u, < U.

The proof of (ii) is similar: we construct a decreasing sequence {u/, } of nonnegative solutions of (5.1) in
Q,, coinciding with v on 0f2,, and dominated by v. It converges to some u* which satisfies U < u* < v

for any solution U dominated by v. O

Proposition 5.4. Let 0 < u,v € C(Q).

(i) If uw and v are subsolutions (resp. supersolutions) then max(u, v) is a subsolution (resp. min(u,v) is
a supersolution).

(ii) If u and v are supersolutions then u + v is a supersolution.

(iii) If u is a subsolution and v is a supersolution then (u — v) 4 is a subsolution.

Proof. The first two statements follow Kato’s inequality. The last statement is verified using that

—signy (u—v)(u? —v9) + ff(z;&);r

—(u— ”)i + 5(22—(1;))3

—A(u—v)y < signy (u—v)(=A(u—v))

<
<

Notation 5.5. Let u, v be nonnegative continuous functions in Q.
(a) If wis a subsolution, [u]; denotes the smallest solution dominating u.
(b) If u is a supersolution, [u] denotes the largest solution dominated by .

(c) If u, v are subsolutions then uw V v := [max(u, v)]+.
(d) If u, v are supersolutions then u A\ v := [inf(u,v)]" and u ® v = [u + v] .
(e) If u is a subsolution and v is a supersolution then u S v = [(u — v) 1 ];.

The next result based upon local uniform estimates is due to Dynkin [10].

Proposition 5.6. (i) Let {ur} C C(Q2) be a sequence of positive subsolutions (resp. supersolutions) of
(5.1). Then U := sup uy, (resp. U := inf uy) is a subsolution (resp. supersolution).

(ii) Let T C C(Q) be a family of positive solutions of (5.1). Suppose that, for every pair uy,us € T
there exists v € T such that

max(ug, uz) <v resp. min(uy, ug) > v.
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Then there exists a monotone sequence {u,} C T such that
Uy Tsup T resp. Uy, | inf 7.

Furthermore sup T (resp. inf T) is a solution.

Definition 5.7. Let F' C OS2 be a closed set. We set

o G
Up = sup {u €U lim Wy =0 V€ 8Q\F}, (5.7)
and ()
. ow(z)
[u] p :sup{v eUL(Q): v<u, 31:1515 W) =0, Ve aQ\F} (5.8)

Notice that F' — Up and F' — [u]p are increasing with respect to the inclusion order relation in 9€2,
[u]F = u A Up. As a consequence of Proposition 6.3, Ur satisfies

lim Ur(z)

=0, VE € 00\ K. (5.9)

Proposition 5.8. Let E, F' C OS2 be closed sets. Then
(i) Ug NUp = Ugnrp.
(ii) If F,, C 0N is a decreasing sequence of closed sets there holds

lim Up, = Ur where F =NF,.

n—roo

Proof. (i) Ug A Up is the largest solution dominated by inf(Ug, Ur) and therefore, by definition, it is
the largest solution which vanishes outside £/ N F.
() IV :=1limUg, then Up < V. Butsupp (V) C F, for each n € N and consequently V < Up. O

For 8 > 0, we recall that {25, X5 and the mapping = — (d(z), o(x)) have been defined in the proof
of Lemma 3.9. We also set Q3 = Q\ Q5 and, if Q C 99, X4(Q) = {z € Q5 : o(z) € Q}.

Proposition 5.9. Ler u € U(Q).
(i) If A, B C 0% are closed sets. Then

[[u]a]lz = [[u]B]a = [u]anB. (5.10)

(ii) If { F,, } is a decreasing sequence of closed subsets of 9Q) and F = NF,, then
[ulr, I [u]F.
(iii) If A, B C 0N are closed sets. Then
[U]A < [U}AOB + [U]m (511)
Proof. (i) It follows directly from definition that,

[[w]alp < inf(u,Ua,Up).
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The largest solution dominated by « and vanishing on A° U B€ is [u] anp. Thus

[[ulale < [u]ans.

On the other hand
[ulanp = [[u]anB]s < [[u]a]B,

this proves (5.10).
(i) If F, | F, it follows by Proposition 5.8-(ii) that Ur, — Up, thus

[ulp < lim [u]lp, = lim uAUp, < lim inf(u,Ug,) <inf(u,Up).
n—oo n— oo n—o0

Since [u]F is the largest solution dominated by inf(u, Ur), [u]F, is the largest solution dominated by

inf(u,Up,) and Ug, | U by Proposition 5.8, the function v = lim,_,o[u]F, is a solution of (5.1)

dominated by inf(u, Ur), thus v < [u]r and the proof of (ii) is complete.

(iii) Without loss of generality we assume that AN B # (). Let O, 0" C 99 be a relatively open set such

that AN B C O and AN B¢ C O’ Set v = [u] 4 and let v}, be the solution of

Low + |w|Ttw =0 in
W= X5, (0)? on Xg.

Also we denote by v[% and vg the solutions of the above problem with respective boundary data Xz 01V
and xs(0cnore)v. Then vé < vL% < vé + v% + vg, i =1,2,3. Let now {3;} be a decreasing sequence
converging to 0 and such that

véj — vt <o <o+ 02403 i =1,2,3 locally uniformly in .

By definition of v* and Proposition 6.1, we have that v* < [v]5, v? < [v]gr and v* < [v]penore. But by
(i) we have
[Vloenore = [[u]a]ocnore = [u]anocnore = 0.
Thus
v < g+ [lor
We can consider decreasing sequences {O,,} and {O’,} such that NO,, = AN B and NO!, = AN Be.
By (ii) we obtain
v < [[u]a]ans + [[u]alampe < [Wlans + [ulzage

which is (iii). O

Remark. Since any u € U () is dominated by uaq, it follows from (iii) that for any set A C 92, there
holds

u = [u)on < [ulg + [u]m < [ulz + [ulgera (5.12)

Proposition 5.10. Let u be a positive solution of (5.1). If u € L‘dlm (Q) it possesses a boundary trace
w € M(ON), i.e., uis the solution of the boundary value problem (3.36) with this measure .

Proof. Ifv:= G, [u?] thenv € L}% (©) and u + v is a positive L,;-harmonic function. Hence u + v €

Léﬁ (€2) and there exists a non-negative measure p € () such that u +v = K,_[1]. By Proposition
3.5 this implies the result. O
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Proposition 5.11. Let u be a positive solution of (5.1) and p € IMM(ON). If for an exhaustion {Q,} of
Q, we have

lim Z(z)udwg :/ Z(x)dp, VZ e C(9Q),
o0

n—oo [0,

where wéi is the L-harmonic measure of ), relative to a point xo € 4, then u and |u|P belong to

Lém (Q). Furthermore u possesses the boundary trace . € MM(IN), i.e., u is the solution of the boundary
value problem (3.36) with this measure [i.

Proof. Let G} be the green function of £, in {2,,, then
Gt (z,y) <G (z,y), Va,ye,

and
G’Zn 1 Ge,.

Since

/ udwgy = u(zo) +/ Gy, (z,z0)|u()| dz,
ol

n

we derive, as n — oo,
w(082) = u(mo) —|—/ Ge, (x, o) |u(z)|?dz.
Qn
By Proposition 2.1 this implies |u|? € Lém (€2), and the result follows by Proposition 5.10. O

Proposition 5.12. If ' C 0N is a closed set and u a positive solution of (5.1) with boundary trace
€ M(ON), then [u]p has boundary trace j1xF .

Proof. The function [u]r belongs to U, (£2) and is dominated by w which satisfies (5.1), thus [u]F €
L, () and [u] p admits a boundary trace pr < p by Proposition 5.10. Let v be the solution of (3.36)
with boundary data px . Let O C 02 relatively open such that I C O. By 5.12 we have

v < [vlg + [vlge

Let A be an open set such that F ¢ A C A C O, and for exhaustion we take €2,, = €2, which is smooth
for n large enough, and 0€2,, = X 1. Then '

| et = [ ploedett + [ (olgedety,
(21979 b (A) 3Q7L\EL(A)

But

/ [v]gedwy’ S/ vdws? — 0
$1(A) REROIREY !

1
n

and

/ [V geduly < / Ugedw — 0,
99,\2 1 (A) " Joe\B 1 (4) "

as n — 00, thus [v]5z = 0 by Proposition 5.11 and therefore v < [v]5 < [u]5. Since O be an arbitrary
open set, take a sequence of open set {O,,} such that F C O,, C O,, C O,_; and NO,, = F. Using
Proposition 5.9 we derive

v < [u]p,
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and thus pxr < up. Conversely, let Z € C(Q), Z > 0,

/ Zlu] pdes = / Zlu]pdwl + / Zlu] pdes
o, " 90,NT 1 (A) " o0, \Z 1 (A) "

g/ Zudwd +/ ZUpdw
002,N% 1 (A) " Joau\x 1 (4) "

< I, +1I,.

Because of (5.9), I1,, — 0 as n — oo, thus

/ Zdpp < / Zxrdp = pr < pxo,
o0 o0

and the result follow by regularity since O is arbitrary. O

The next result shows that the boundary trace has a local character.

Proposition 5.13. Ler u € U, () and & € O9). We assume that there exists p > 0 such that

/ (u(x))1py(z)dr < co.
B, ()N

(i) Then
[ult € L}, () VF C QN B,(€), F closed.

Thus [u) F possesses a boundary trace pr € M(ON), and supp (ur) C F.
(ii) There exists a nonnegative Radon measure i, on B, (&) such that for any closed set F' C B, (&) N0

HFE = HpXF,
and for any exhaustion {2, } of Q and any Z € C () such that supp(Z) N 9L C 9N B,(€)

lim u(z)Z(r)dwg = /ag u(x)Z(x)dp,. (5.13)

n=0 Jaq,
Proof. (i) Let F be a closed set and 0 < p’ < p be such that
FcoanBy(§).
Since [u]r < inf(u,Up) and Up € C(Q\ F), we have

/ )% () dar < / ([P () da + / U p [P (@)da < oo.
Q B,(£)NQ B, (8)

(i) Let 0 < p1 < p2 < p, then
[ulB,,©noe < v < [UB,,¢noe + Usaig, @

The function [u]§p2 (6)nas Which belongs L, () admits a boundary trace v € 2(IN2) and

3 o __
nh_)rgo o UaQ\§p2 (g)Z(a:)den =0,

for any Z € C(Q) such that supp(Z) N 9Q C 9Q N B,, (€). Combined with Proposition 5.12 it follows
identity (5.13) and finally statement (ii). O]
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Definition 5.14. The set R, of boundary points a such that there exists v > 0 such that (5.13) holds is
relatively open. Using a partition of unity there exists a positive Radon measure L., on R, such that

lim u(z)Z(z)dwd :/ u(z) Zdp, (5.14)
n=o0 Jaq, " a0

forany Z € C(Q) such that supp(Z)NOQ C Ry. The set S,, := ON\ R, is closed. The couple (S, jt.)
is the boundary trace of u, denoted by Traq(u). The measure [, is the regular part of Traq(u), the set
(Su) is its singular part.

Proposition 5.15. Let u be a positive solution in §) and let {Q,} be an exhaustion of Q. If y € S,, then
for every nonnegative Z € C()) such that Z(y) # 0 we have

lim / Zudwey = 0.
[2197%

n—0oo

Proof. Let Z € C(Q), Z > 0, such that Z(y) # 0 and

lim inf Zudwsy < oo.
n—o0o n
(21979

There exists a subsequence n; such that

lim Zudw) =M < .
=0 Jaq,, . i
‘J

Let r be such that Z(z) > @, Vz € B,(y) N, then for any r’ < r we have that

lim sup/ [u]mdwé‘; < Q.
Jj—oo 3S2nj "

In view of the proposition of 5.11 the last fact implies that \[u]WP € Ly, (92), which implies that
|ul! € Ly, (Byr(y)) Vr'" <o’
Which is clearly a contradiction, by Proposition 5.13. O

Proposition 5.16. Ler u be a positive solution of (5.1) in Q with boundary trace (Sy, fi.,). Then

/ (WL + u9C)dz = / Ko, [iuxs)Lxda,
Q Q

forany ¢ € X () such that supp({) N 02 C F.

Proof. Consider the function ¢ € X(€2) such that supp({) N 9Q C F. Set K = supp((),
O. = {z e RY : dist(z, K) < ¢}

and g9 > 0 small enough such that

0.NON C Ry, V0 <e<ep.



Konstantinos T. Gkikas, Laurent Véron

Let ¢ < = and 7 be a cut off function such that n € C§°(0.), 0 < n < landn = 1 on O:. For

0 < B < By, let vg be the solution of

NG

Low + w|Tlw =0 in
w=nu on ¥g.

Then there exists a sequence {/3;} decreasing to 0 such that vg, — v locally uniformly, and
v < [ulpono:-
Thus v has boundary trace iy such that
Ho S MuXana'

Let vé and v% be the solutions of
Low + |w|Ttw =0 in
w = 77[“]890525 on Xg.
and

Low+ |w|Ttw =0 in Q)
w = nUsa\0,. on Xg,

respectively. Notice that u < [u]55,. + Usa\0,. We have that
vg < vé + U% < [ulpons,. + vg.
Since [u]qmmag € L} (). By (6.20) we have that
n(x)Usa\0,. () < Cgoda%(x) vz € Q.
where cgg > 0 depends on N, g, s and dist (supp()), 92 \ O). Thus v3(x) < cood 3 (z) and

vg < [u]aﬂm525 + CgodaTJr (CC), Vx € Q% (5.15)
Let wg be the solution of
Low+ |w|tw =0 in Q)
w = Xzﬁ(iaﬂ\og)[u]F on Xg.

Then
[u]p < g + wg in Q/ﬂ
We have that wg, — 0 locally uniformly in €2 which implies that
[ulp <w.
Thus we have
HuXF < Ho < fuXoono:- (5.16)
Set Z = n(z where (g is the solution of

Low = L,C in Q%
w=20 on Xg.
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Since ¢ € X(2), there exists a constant cg; such that (3 < cg1 ¢, in Q’ﬁ Thus there exists a decreasing
sequence {/3;} converging to 0 such that (5, — ¢ locally uniformly. Now,

J

uE,{de—i—/ wiZdr = — a—ZudS

on
B 2 a0y

:/ UQEHCﬁdCC+/ vgg;dz
Q) Q

B B
k

We note here that in view of the proof of (6.22), we have

v/gﬁ,i(dx—k/ﬂ, vggﬁdx, 5.17)

’
B B

IVCs| < copd @Y, Va € Q)

where the constant cg; > 0 does not depend on /3. Also by remark ?? and our assumptions we have

ok
/ [u]652063€d 2 T dx < oco.
Qﬂ 2e

By (6.20)
/ UaQ\OBEd%_ld.’E < 0.
QNO2e

The last two inequalities above implies that

o4 o4 o4
/ ud? “ldz < / Usen\0,.d 72 1dx—|—/ (U] 50n5,.d 2 Lz < oo.
QN0 QNOo. QNO2.

Combining all above we can choose a decreasing subsequence {3, } to the origin such that if we take the
limit in (5.17) to obtain

/uEKCdJ;—F/qudx:/vﬁmgdx—i—/vqux: Kz, [to]LxCdx
Q Q Q Q Q

Be (5.16) we have the desired result if we send € to zero. O]

5.2 Subcritical case

We recall that N oo
_ 2
N+ 5 —
is the critical exponent for the equation. If 1 < ¢ < g., we have seen in section 4 that for any a € 0f2 and
k > 0 there exists uys, and limy_, o Ugs, = Uco,q- Furthermore, by Proposition 5.15, Traq(tec,qa) =

({a},0).

Theorem 5.17. Assume 1 < q < q. and a € S,. Then

dc

u(z) > Uoo,q(x), Vrel (5.18)
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For proof of the above uses some ideas of the proof of Theorem 7.1 in [22] and needs several inter-
mediate lemmas.

Lemma 5.18. Assume 1 < q < q.. Let {£™} be a sequence of points in Q2 converging to a € 9 and let
1 € (0,1). We define the sets

Qn = Queny = {z € Q2 d(2) > d(€")} and %, := Q. (5.19)
Let zy € Q) and denote by w,, := wg‘; the L,.-harmonic measure in S, relative to xq. Put
Vi =By, (§") N0, 1 = d(&n)-
Let h,, € L™®(X,) n = 1,2, ..., and suppose that there exist numbers c and k such that

N-Zt 42

supp (hy) CVy and 0 < hy, <cry, 2 (5.20)
and
lim hnddwl® = ké(a), V¢ € C(Q).
n—o00 " "
Let w,, be the solution of the problem
Lo wy + w7 w, =0 in Q,
Wy, = hy on 0%,.
Then
Wy, — Ug,q locally uniformly in Q.
Proof. Letn™ € 0N be such that d(¢™) = €™ — n™|. By Corollary 2.30 we have
1 _ny-ox 1
Ke (@n") > —rp" 7 2> —hy(a), Vze, (5.21)
€43 €43
by the maximum principle,
1
Ke, (z,n") > —wy(x), VYreQ,. (5.22)
€43

Moreover

| KL @)dF @) < 0., VI<q<a
where c(qg, 2) is a constant independent of y. Since ¢ is subcritical, it follows that the sequences {K7. (-,7")}
and {K,(-,n"™} are uniformly integrable in Lin (Q). Let w,, denotes the extension of w,, to ) defined
by W, = 0in Q\ Q,. In view of (5.21) we conclude that the sequences {w? } and {w, } are uniformly
integrable in L}m (), and locally uniformly bounded in 2 By regularity results for elliptic equations
there exists a subsequence of {w, }, say again {w, } that converges locally uniformly in 2 to a solution
w of (5.1). This fact and the uniform integrability mentioned above imply that

wy, —w in LY (Q)N Ly, ().

Since w € L () by Proposition 5.10 there exists 1 € 90(2) such that

/wﬁ,mdx—i—/ \w|q_1wndx:/K[;N[u]£Hndx Vn € X(9).
Q Q Q

66



Konstantinos T. Gkikas, Laurent Véron 67

Furthermore, using (5.21) we prove below that measure p is concentrated at a. Let ¢, ,, be the first
eigenfunction of £, in 2,, normalized by ¢, »(zo) = 1 for some ¢ € Q4. Letn € X(2) be nonnegative
function and let 7,, be the solution of the problem

Ly = %ﬁ,{n in 2,

M =0 in 99,,.
Then 7,, € C?(Q,,) and since ¢, ., — ¢,
LNn — Lyn and 1, — 1 as n — oo.

Then we have
/ wnﬁnnndac—&—/ |wn|q_1wndac:/vn£,{nndm, (5.23)
Q'Il Q Q

where v,, solves

L.v, =0 in Q,
U = hp on 0%,.

By the same arguments as above there exists a subsequence of {v,, xq, }, for simplicity {v,xq, }, con-
verging in L}m () to a a nonnegative L,;-harmonic function v. By (5.21) we have

ceasKr, (xz,a) > v(z), Vel (5.24)
Thus there exists a measure v € 2(IN), concentrated at a such that v solves

L.v=0 in Q

v=v on 0f).
But
i 3 To __ 3 — —
k= nli)ngo /zn hndwg = nh_)n;o vp (o) = v(wg) = . dv,
the results follows if we sent n to oo in (5.23). O

Lemma 5.19. For everyl € (0, 1) there exists a constant ¢; = ¢(N, &, q,1) such that, for every positive
solution u of (5.1) in Q and every xy € Q,

u(z) < qu(y), Yo,y € Biy(xo), 1o = d(x0). (5.25)
Proof. Putry = Ylr. Then u satisfies
Liou+u?=0, in B, ().

Denote by €2, the domain
Qr, ={y eR" : oy € Q}.

g

Setv(y) = u(roy), and yo = “2, then v(y) satisfies

Ao 18"t =0, in Bug(wo)

v
Y
dist? (y, 09, ) 2
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Now note that 1

dise(y, %)

and by Keller Osserman condition

<

4
a—pnz WEBs)

1
o)l = rifuron)l*! < O m N s

<C(Q,k,N)B: .
Toy) —C( s Ry ) #(yO)

Thus by Harnack inequality there exists a constant ¢; > 0 such that

v(z) < aouly), Y2,y € Bi(yo),
and the results follows. O

For the proof of the next lemma we need some notations. Let 3 > 0 and § € X = 0. We set
AL(€) =35 NBr(§) and, for 0 < r < B < 2r, xf = x(£) € Qp, suchthatd(af) = |af — ¢ =1
Also we denote by wg% the £,;-harmonic measure in 2 := 2\ Qg relative to x

Lemma 5.20. Let ro = ro(§2) > 0 be small enough and 0 < r < %U. Then there exists a constant cgs
which depends only on Q), N such that

W (Ar(€) > cos Vo € QN By (). (5.26)

Proof. Since x +— wg, is a positive £,-harmonic in 3, it is a positive superharmonic function (relative
B
to the Laplacian) in 2. Thus
wabZUgb, VCCGQI,

where U?zg is the standard harmonic measure in QZB relative to x € Q'ﬁ The result follows by Lemma 2.1
in [7]. O]

Lemma 5.21. Let k = 1, € (0,1) and zo € Q4. Let {£™} be a sequence of points in §) converging to
a € 0. Then there exist ng = no(e, ) € N and cog = co6(2, N, €) such that

we’ (Bggeny(€") N 0Yy) > cosd(€MNTT2(—logd(€M)'™° Y > ny. (5.27)

Proof. We recall that for any n € N €, is defined by (5.19), G%f < Gg, = G%l , and for a fixed
4 4 a

point yo € £y
G%l xa, (x) T Gz, (z,y0), locally uniformly in €\ yq. (5.28)
by 4

Set z(¢") = 227 (&), with r,, = 470 By (2.9) we have
3 2
TTIZI_QGZ

(x,2(€")) < co7, VYx€N,NIB, (&),

INE

and by Lemma 5.20 there exists 79 = r¢(€2) > 0 such that for any r,, < 72

G (x,2(€7)) < sy, (02N By, (€7)),  Va € Q, N OB, ().

4

Since if | — y| > & > 0 there holds

G%;’ (x,y) = cog(e, Qp)dist(x, 00y, )dist(y, 0Qy,).
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Thus we have by maximum principle and properties of Green function

ri 2GR (2, 2(€7)) < croowd, (00 N By, (€M), Vo € )\ By, (§7). (5.29)
i
By [3, Lemma 2.8] there exists Sy = So(2, &) > 0 such that the function
hi(2) = ¥ (@)(~ log d(x)) (1 + (~ log d(x)) ).
is a supersolution in (25, and the function

ha(w) = d3 (2)(~ log () (1 - (~ logd(x)) ™)) ,

is a subsolution in 23, . Set
1— (* log d(fn))_s
1+ (—logd(&,)) ™

€101 =

and
H(l’) = hQ(ZE) - ClOlhl(ZL’).

Let ng € N such that r, < %, Vn > ng. then the function H(z) is a nonnegative subsolution in
Q. \ ,» and H(x) =0, Vz € 0Q,. By (5.28) we can choose n; € N such that
1
G%; (xo,x) > c(Q,N,r)BE, Vae 89/’30.

Thus we can find a constant c192 = ¢102(80) > 0 such that

cro2H(z) < G (w0,2), Vo € 09,
1

Since H vanishes on 052, it follows by the by maximum principle that

cro2H (z) < Gﬁi (z0,2), Vae,\Q. (5.30)
But .
H(x(£™)) > c103(Bo) > c10a(, N)ri (—logr,) ¢
and the result follows by the above inequality and inequalities (5.30) and (5.29). O

Lemma 5.22. Let k < 1,¢ € (0,v/1—4k) and zy € Qy. Let {£"} be a sequence of points in )
converging to a € OS). Then there exists ng = no(e, Q) € N such that

W (Bagen) (€7) N OK,) > e105(Q, N, 5, €)d(€)NTT 572, ¥ > g,
where S, is defined by (5.19)

Proof. The proof is same as in Lemma 5.21. The only difference is that we use d*~ (1 — d°) and the
supersolution d*- (1 + d*) as a subsolution. O
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Proof of Theorem 5.17. Step I if

lim sup (d(x))NJra%_Qu(x) < 00, (5.31)

z€Q, z—a

then a € R,,. Thus we have to prove that there exists 7o > 0 such that u € L{ (2N By, (a)). By (5.31)
there exists r; > 0 such that

sup dN+aT+72(z)u(x) =M < 0.
z€QNBy, (a)

Let U be a smooth open domain such that
QN Br(a) CU C QN By, (a),

and -
UNnoQ con B, (a).

For 3 > 0, set
dy(z) =dist(z,0U) Ve U, Ug={xeU: dy(z)>p}, Vz=U\Us.

Let 3y > 0 be small enough such that diy € C?(Usg,). Let 0 < 3 < fBp and {(z) = dy(z) — 3. Then u
satisfies 5

/ udS = (uLrC + ulC)da — / U eds.
Vs Vs\ Vs Vs, on

ou
—(dS
/avﬁo 8n<

Now

< c106(Bo — B),

where c1g depends on g, k, €2, B,

/ ul,(dr < f/ uwAldx < 0107/ udzx.
Vs\ V3, Vs\ Vs Vs\ Vs,

and by (5.31)
utH(x) < cros(d(x)"@TINTTD) < o5 (dy(2))"CVEHF D v e U

Combining the above inequalities, we derive

Bo o
/ udS < c109 / (01_(‘1_1)(1\”%_2) + 1)/ u(x)dSdo +1] .
aVs B oV,

Multiplying the above inequality by Ba% we get

oy Bo o
/ udU2 ds S C109 / (Gli(qil)(NJrTim + 1)
Vg B

d7 (¢)u(x)dSdo + 1) .
oV,

Set .
U(o) = /av di? (z)u(z)ds,
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Then we have

Bo o
U(B) < 110 (/ (o @D+ =2) 4 N ()do + 1) : (5.32)
B

Set 5
0 o
W(B) = / (o@D L 1)U (o) do + 1,
B
then )
W(B) = —(8'~ =DV 4 U(B) = —h(B)U(5).
Thus inequality (5.32) becomes

~W'(B) < cr1oh(B)W (B) <= (H(B)W(B))" = 0,

where 5
H(B) = o 15" b

Thus we have

W(pB) < MW(60)7 V0 < B < fo-

But .
1 — €110 f;o h(s)ds _ £C110 fgo ol @D+ =2) 40

H(p)

< 0

if and only if
2—(q—1)(N+a7+—2)>0<:>q<qc.

Thus we have proved that

/ uq(dU(x))a%dx < 00,
U

which implies the existence of a 2 > 0 such that
C%i
/ ul(d(z)) 2 dz < oo,
QNB,, (a)

i.e. a € R,, which is the claim.
Step 2. Since a € S, the previous statement implies that there exists a sequence {{"} C € such that

€ > a and limsup(d(€™))N+H T 2u(e") = . (5.33)

n— oo

By Lemma 5.19, there exists a constant ¢; such that
u(z) < culy), Yo,y € Brp (€"), 1y =d(E"). (5.34)

Put Vi, := Bra (§7) N 0CY, , and, for k > 0, by, := Euxy,.
Case . k = i. By (5.34) and Lemma 5.21 there exists a constant c111; > 0 such that

b, = / udS > ClllAn'f'r];”rEiz(*lOg rn)1767 A, = sup U(I)
Vo, w€Bra (£7)
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Then
k o_2+_N
[ hasdS =k hoa < ST vz (5.35)
o, €2
By (5.33),
b, — o0, 1, — 0. (5.36)
Hence, for every k > 0 there exists ny such that
U > Iy g on 9, Vn > ng. (5.37)

Let w,, 1, be defined as in Lemma 5.18 with h,, replaced by h,, ;.. By (5.35) and (5.36), the sequence
{hn ik 152 satisfies (5.20) for every fixed k£ > 0. Therefore by Lemma 5.18

lim wy, ;; = ugs, locally uniformly in €.
n—oo

By (5.37), u > wy in x € Q: d(x) > r,. Hence u > ugs, for every k > 0. The proof in the case
0< k< % is similar. O

As a consequence we provide a full classification of positive solution of (4.1) with a boundary iso-
lated singularity.

Theorem 5.23. Assume 1 < q < q. and u € C(Q\ {0}) is a positive solution of (4.1) which satisfies

L@
zeslzl,rgag W)~ 0, VE&e o\ {0}.

~

Then the following alternative holds
(i) Either there exists k > 0 such that

. N+2t 9 _
Llim N () = k(o) (5.38)

zlz|”! > o

and u solves

—Au—d%u—&-uqzo in )
(5.39)
(ii) Or
. 2
m ) = (o) (5.40)
zlz| 7" = o

locally uniformly on Sf_l.

The result is a consequence of the following result

Lemma 5.24. Assume 1 < q¢ < ¢, a € 0Q and F.(a) = 002N B(a). Then

lim U, (a) = oo ,a- (5.41)
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Proof. Without loss of generality, we can assume a = 0. Clearly, Uygy := lime 0 U, (o) is a solution
of (5.1) which satisfies

. Uy
i;nlgw(x)_o vE € 00\ {0}

locally uniformly on 992 \ {0}. By (6.20) it verifies
__2 d(z) QT+
Utoy () < clz| "7 (7> . (5.42)

|

By Proposition 4.5 and (6.24), we can follow the same argument like in the proof of Theorem 3.4.6-
(ii) in [25] to prove that: there exists ¢y = c112(N, K, ¢) > 1 such that

1 _ 2 d(:c))2 e <d(x))2
—|x| " T | —~ < Uoo,0() < Usoy(x) < colz| "1 | —F
el ()7 < (o) < Vi) < ol (55
Which implies
Utoy(z) < ctoo0() Vo € Q, (5.43)

where ¢ = ¢192(N, K, q) > 1.

Assume Uy} 7# Uoo,0, thus Uyoy (7) > teoo(2) forall 2 € Q and put % = e 0 — %(U{O} — Uso,0)-
By convexity « is a supersolution of (5.1) which is smaller than v 0. Now %um,o is a subsolution,
thus there exists a solution u of (5.1) in 2 which satisfies

c+1
2c

Uso,0(z) < u(z) < U(z) < Uso,0(2) Va € Q. (5.44)

This implies that Trpq(u) = ({0}, 0), and by Theorem 5.17, u > 0,0, Which is a contradiction.

Proof of Theorem 5.23 Assume a = 0 without loss of generality. If « € S,, then for any ¢ > 0,
u < U, (o) which is a maximal solution which vanishes on 92 \ F.(0). Thus, using (5.41)

<1l = = .
u < im Ur, (o) = Ugo} = too,0

If 0 € R,, this implies that Troq(u) = (0, kdy) for some k& > 0 and we conclude with Corollary
44. O

The next result can be proven by using the same approximation methods as in [22, Th 9.6].

Theorem 5.25. . Assume S C 02 is closed and v is a positive Radon measure on R = 0Q \ S. Then
there exists a positive solution of (4.1) in Q with boundary trace (S, ).

6 Appendix I: barriers and a priori estimates

6.1 Barriers

Following a localization principle introduced in [22] we the following lemma is at the core of the a priori
estimates construction
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Proposition 6.1. Ler Q) C RY be a C? domain 0 < k < % and p > 1.Then there exists Ry > 0 such
that for any z € 00 and 0 < R < Ry, there exists a super solution f := fr . of (4.1) in QN Bg(z) such
that f € C(Q N Bgr(2)), f(z) — oo when dist (x, K) — 0, for any compact subset K C Q N OBg(z)
and which vanishes on 02 N Br(z), and more precisely

Boymg(R2— |z —22)PdV(z) Vye(5,%) ifo<r<i

f(x) - iam . (61)
cprq(R2 = |z — 2*)77/d(z), /In (d d(m()m> if =3

for B > max{qg—1 + 7, %, 1}

Proof. We assume z = 0

Step 1: k < 1. Set f(z) = A(R? — |z|*)7#(d(x))” where 3,7 > 0 to be chosen later on. Then, with
r=lal,

AL f
= —(R? —r?) 7P (Ad" + kd"?) — dVA(R* — r?)=F — 2V(R? — r?) =PV d"

Since Ad(z) = (N—1)H, where H, is the mean curvature of the foliated set ¥4 := {a € Q : d(z) = d}

and |Vd|? = 1,

AdY = (N — 1)yHgd" = + (v — 1)d' 2
Ad" 4 kd"™? = (N — D)yHad" ™ + (y(y — 1) + &) d" 2
Vd' =~d'~'Vd,

V(R? —r?)7# = 28(R? — r?) P 1y,
thus
V(R? —r?)PVd = 2Byd" "1 (R* — r?)~P"12Vd

A(R? —12)~F = ONB(R? — r2) 9~ + 45(B + 1)(R? — 1)~

=2B(R? —r?) P72 (NR? + (28 42— N)r?)
Then

AL f = —(R? =) P20 2 [(R? = 2)? (N — 1)yHad +7(y — 1) + )

+2Bd% (NR? + (28 + 2 — N)r?) + 48yd(R? — r*)aVd }
Therefore

Lof +f1=AR?—r2)"P2q1—2 [Aq—l(R2 — r2)~(a=DF+2gla—1)7+2
—(R? = r?)? (N = 1)yHad +7(y = 1) + k) (6.2)

—28d? (NR? + (28 + 2 — N)r2) + 48vd(R2 — r?)2Vd }
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If we fix 8 > max{q%l + 7, %, 1}, there holds
28d* (NR? + (28 +2 — N)r?) + 4Bvd(R* — r*)zVd < 4d*B(8 + 1)NR? + 4B8ydR(R* — 1?)
We choose % < v < %+ so that y(y — 1) 4+ & < 0. There exist do, €g > 0 such that
(N=DyHgd+~v(y—1)+Kr < —¢ < -1
provided d(x) < dy. We set

60(R2 — 7’2)

— : <
A {xEQﬁBR d(z) < 163

} and B::Am{xGQOBR:d(x) géo}
Then, if x € B, there holds
—(R?2 —r?)? ((N = 1)yHqd + v(y — 1) + k) — 28d*> (NR* 4+ (28 + 2 — N)r?)

2 .2\2
+4Byd(R? — r?)aVd > 7(1% )€

Finally, assume x € A° N {x €QNBg:d(z) < 50} and thus

R2 _ T2
d 2 C1 R
In order to have
(4) A1 (R? — 2)2=(a=DBgla—1)7+2 > 2 2
6.3
(i) AT"H(R2 — ¢2)2-(a=DBgla=D7+2 > JR(R? — 2) (6.3)
or equivalently
(i) < Avd > (R? —12)~
g—1 1 (¢g—1)B—1 (64)
(ii) <= AG@=DvF1d > Rla-D~F1 (R2 - 7«2) (a=D~F1
it is sufficient to have, for (i)
1 R — 2 2 _ .22 28—
Ay > (R?—r%)~> Vre(0,R) <= A>cyR¥7 (6.5)
and for (ii)
_ 2 _ .2 o D51
ClA(q—ql)’lH-l R —r > Rm (R? —r?) e vr e (0,R) 66)
(6.

— A>cR¥P

where ¢o = co(N,~,8) > 0since 8 > v+ qT21
Atend, in the set C := {x € Q : d(z) > dp}, it suffices that

A > ¢3 max {RQB, R%—ﬁ} 6.7)
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for some ¢35 = ¢5(N, v, 8, max |Hg|, d9) > 0 in order to insure
(i) ATHR? =) D22 > (R? —¢2)2(N — 1)y|Hqld
(i)  AITH(R? — p2)~ (@ DA+24(a= 1742 > 4423(8 + 1) N R? (6.8)
(iid) AT"1(R% — p2)=(a=DB+2g(a=17+2 > 4BJR(R2 — r?).

Noticing that 28 > 25 — qul, 28—y > 28—y — q%l, we conclude that there exists a constant

cy = C4(N, v, B, max |Hd|, 50) > 0 such that if
A > ¢y max {R25 R } (6.9)
there holds
Lo(f)+f1>0 in Q. (6.10)

Step 2: k= L. Set f(x) = A(R? — r?)~PV/d(In )3 for some A, 3 to be fixed. Then

AV (I )% + g Vd(n Gt = X2 (5 )b - J0n ) ) Hy - r(nef)
— di%(ln %)*% [(N —1)dHy (%(ln %)2 - %(ln %)) - %)]
Further
—p2)=B—1(p eB -3
V(R — 1) PV )} = HEE T (<) 1) 2V
Therefore

AL f = —(R? —r?) 024~ % (In &) -3
(R —12)2 [(N — 1)dH, (1(In £8)2 — 1(In <)) — 1]

+28(R* — r?)d [(In <)% — (In £)] 2Vd + 28d*(In <)% [NR* + (28 + 2 — N)r?]

Finally
Lof + f9= AR —12)"F~2d73 (In £B) =3 | AT 1(R2 — ¢2)(1-0)B+2¢ 5" (In )3 (a-1D+2

—(R? = %)% [(N — 1)dHy (3(In €)? — 1(In <)) — 1]

—2B(R? — r?)d [(In <)% — (In <¢)] 2Vd — 2B8d*(In £2)2 [NR? + (28 + 2 — N)r?] } .

6.11)
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Notice that % > e thus —
holds

1 < (In<f)? — (In <) < (In <)2 If B is large enough, as in Step 1, there

|28(R* — r?)d [(In €)% — (In <)| #.Vd + 28d*(In <&)2 [NR* + (28 4+ 2 — N)r?]|
<ANB(B+1)(In §)* (R* —r*)dR + d*R?) .
There exists dp > 0 such that
(N —1)dHy (1(In )% —
if d(z) < d. If we define A, B by

60(R2 - 7’2)

A:{.TegmBR d()im

} andB::Aﬂ{xEQOBR:d(m)§5O}

there holds if x € B
—2B(R?* — r?)d [(In %)% — (In <&)] 2.Vd — 28d*(In <2)2 [NR? + (28 + 2 — N)r?]
(R =[N D (40n 502 = fin ) - ] >

Ifre AN{zeQnNQ:d(z) <d}, then

2 2
)z R]?m_e(;:)z 6.12)
In order to have
(i) AIH(RE = r2) 08420 (1n ) 552 > (In D)2 (B2 — 2)dR (6.13)
(i) AR = )0 0N () > (1 PR -
or equivalently
(4) A%d(ln %)Z% > (R? —1?) 2e=pp=2 2, o
(i) Adnef > Re (R? - r“‘)%*ﬁ -
Up to taking ¢; small enough, (6.12) is fulfilled if
% = RzR_Q 2 (ln(Rffrz))Q —d> e(Ri; ) (1n(R5_"’T2))_2. (6.15)

Inequality (6.13)-(i) will be insured if

2g—2

AT > é(R2 —7r?)

(g=1)B—1 _ 2 2 2
2T Rt () 7

which holds if, for any ¢ > 0, we have for any r € (0, R)

2¢—2 (g—1)B—1 R2 ‘
AT > C(R? — 22t TlRw ! ( ) '

R2 _ 2
A sufficient condition for such a task is, with the help of (6.15),

A > ey R¥P 7T (6.16)
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As for (6.13)-(ii), it will be insured if

A> e R¥- 7178 (6.17)

Thus, if
A > csmax{R* 7172 R} (6.18)
for some c5 > 0 = ¢5(N, 7, B, do, | Hqal), the function f satisfies (6.10). O

6.2 A priori estimates

By the Keller-Osserman estimate, it is clear that any solution w of 4.1 in (2 satisfies
w(z) < C(q,Q, N)d w1 (z), Vae. (6.19)

This estimate is also a consequence of the following result [3, Prop 3.4]

Proposition 6.2. Let ¢, be the first positive eigenfunction of —A in H}(Q). For q > 1, there exists

~v > 0 and €y > 0 such that for any 0 < € < € the function hye = (s — e)_% is a supersolution of
4.1inQc g, ={x € Q: pi(x) > €}

‘We recall here that

=

d= (x) if K <
W(z) = {

dz ()] log d(z)| if k=

N

Proposition 6.3. Let Q be a bounded open domain uniformly of class C? and let F be a compact subset
of the boundary. Let u be a nonnegative solution of 5.1 in ) such that

i

=0, V¢€€IN\F,
locally uniformly in O\ F. Then there exists a constant C depending only on q, k and Q) such that,

lu(z)| < CdZ () (dist(z, F)) 77~ 7, Ve, (6.20)

| af:r) B gfy) | < Clz — y|f (dist(z, F)) 712~ W(z,y) € QxQ (6.21)
d= (z) d= (y)

such that dist(z, F) < dist(y, F),

e

Vu(z)| < CdF 1) (dist(z, F)) 712, Vae. (6.22)

Proof. The proof is based on the proof of Proposition 3.4.3 in [25]. Let £ € 902\ F and put dp(§) =
1dist(¢, F'). Denote by Q¢ the domain

Qf ={yeR": dp(£)y € Q}.
If u is a positive solution of (5.1) in £, denote by u¢ the function

u(y) = |dr (&) T Tuldr(€)y), Yy € QF.
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Then,

—Aut + ’u§|q =0 in QF.

u
 dist(y, 096

Let R, be the constant in Proposition 6.1. First, we assume that

1
dist(&, F) < .
(& F) < 14+ Ro
Setrg = %, then the solution W,.; . mentioned in Proposition 6.1 satisfies

u(y) < Wrpe(y), Yy € Ban (§) N Q.

Thus u is bounded in Bsr, (€) N Q¢ by a constant C' > 0 depending only on n,q, s and the C?
5

characteristic of Q%. As dp (&) < 1 a C? characteristic of 2 is also a C? characteristic of 2* therefore
the constant C' can be taken to be independent of £. We note here that the constant 0 < Ry < 1 depends
on C? characteristic of (2.
Now we note that
ut (y)
yeNé, y—P W(x)

=0, VP € 09N Ban, (£).

Thus in view of the proof of Lemmas 2.11 and 2.12, by the above inequality and in view of the proof of
Theorem 2.12 in [12], we have that there exists C' > 0 depending only on n, p, x such that

ot
2

uf(y) < |dist(y, 005)|7, Vy € Bay (§) NQE. (6.23)
3 13
CW o co W vy e Bay (6 N0
|dist(y, 00¢)| 2" |dist(x, 0Q8)| 2 :
Hence
a ,

ué(2) < dF (2)dp(€) T T, Yr € By m ()N

u(y) f(x)
d%*( )< Od“%(x)

Let x € Q) r, and assume that
2

. Yo,y € By o m(§) N (6.24)

d(z) < %dp(l').
Let & be the unique point in 9 \ F’ such that |z — | = d(x). Then we have
dp(§) < d(z) +dp(z) < (14 Ro)dp(z) <1

and
ot

lu(z)] < Cd (z) (1 + Ro)dist(z, F)) 712 .
If d(z) > Bodp(z), then by (6.19) we have that

)| < C7n@) < 0aF @ (R r) T

Thus (6.20) holds for every 2 € Q r, such that dist(z, F) < —2
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Now we assume that x € () r, and

(]
2

1

i ) > .
dist(x, F) > 1T R

Let £ be the unique point in 92 \ F' such that |z — £| = d(x). Similarly with the proof of 6.23 we can
prove that

o

w(z) < CdF (z) < dF (2)C (1 + Ro)dist(z, F)) 71 2, Vae B (§) N Q.

Now if € Q \ Q &, , the proof of (6.20) follows by (6.19).
2
(ii) Let x¢ € 2. Set
Q% ={y e R": d(zo)y € N},
and d, (y) = dist(y, 002%). If € Bag) (zo) then y = T(rgy belongs to B (yo), where yg = Ty
2

%
Also we have that 5 < dy,(y) < 3 foreach y € By (yo). Setnow v(y) = u(d(zo)y), Yy € By (yo)-
Then v satisfies

u
—AV — ks + d%(20) [v|T = 0 in Bi(yop)-
|d (y)]2 2

By standard elliptic estimate we have

sup [Vol<C | sup |+ sup d(mo)ol’ |,
yEB%(yo) yEB%(yo) yEB%(yo)

Now since Vu(y) = d(zo)Vu(d(zo)y), by above inequality and (6.20) we have that

a
n
> —1

Vu(zo)l < € (d (w0) (dist(wo, F)) ™71~ % 4 d"7 1 (a) (dist(xo,F))—q(%—%*)) .

Using % = .27 + 2 and the fact that z is arbitrary the result follows. O

Proposition 6.4. Let O C 9N be a relatively open subset and F' = O. Let U be defined by (5.7) be the
maximal solution of (5.1) which vanishes on 92\ F. Then for any compact set K C O, there holds

2(g+1)
(g—1)?

Proof. Step 1. We claim that for any € > 0 there exists C¢, 7e > 0 such that for any 2z € O such that
Bs..(z) C O, there holds

lim (d(€)) 2T U (€) = £, = (

E—a

T
+ /{) uniformly with respect to x € K. (6.25)

u(z) < (e+ 0 )TTr 7T + G Vr € (0,7, Yo € 2(Br, (2)). (6.26)

Werecall that (B, (2)) = {z € Q, z ~ (d(2),0(2)),d(z) = 7,0(z) € B-.(2)}. Setg(z) = Ed_ﬁ(aﬂ),

then
2q

Log—+ gl = ded_% + (ra=1 — pa-1) d a—1 (6.27)
q_ 1 K ?
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where H, is the mean curvature of >;. If € is convex we take { = /,; and g is a supersolution for

1 2
d(z) < Ry for some Ry. In the general case, we take £ = £(¢) = (e+£4~1)aT,and g = g. = l(e)d a1
is a supersolution in the set {2, where

Ry 2(N -1
Te = max {’T 0<T< 22, !HHTHLDO(ZT) +e> O}.
2 qg—1
Then fa,, , + ge is a supersolution of (5.1) in Ba,_(z) N £ which tends to infinity on 9(Ba,, (z) N Q) =
00N By, (2)UNNOBa, (z). Since we can replace g (x) by g. () = £(d(z) —7)7‘1%1 for 7 € (0, pe),
any positive solution u of (5.1) in €2 is bounded from above by fa,_ . + gc -~ and therefore by for_ . + ge.
This implies (6.26) with C. = max{far. .(y) : |y — 2| < 7.}, and it can be made explicit thanks to

(6.1).
Step 2. With the same constants as in step 1, we claim that

1

Up(z) > (8 =717 71 —C. Vre(0,7], Vo € S,(B,, (). (6.28)

If in the definition of the function g, we take £ = £(e) = (£4~1 — e)qfll then g is a subsolution in the
same set 2 . Since Up + far. . is a supersolution of (5.1) in Ba,_(z) N which tends to infinity on the

boundary, it dominates the subsolution g. _, = ¢(d(.) + T)_q%l for 7 € (0, pc) and thus , as 7 — 0,
ge(z) < Up(z) + far. .(z). This implies (6.28) with the same constant C..

Step 3. End of the proof. Since K C O is precompact, for any € > 0, there exists a finite number of
points z;, j = 1, ..., k such that K’ C U¥_, B, (z;) with By, (z;) C O. Therefore

(=l — )i T — O, < Up(z) < (e+ 3 Vo1 a7 +C. Vr e (0,7, Vo € 2.(K).

(6.29)
Since € is arbitrary, it yields to
lim, 0 |77 1 Up — Lul| 1o (s, (1)) = 0 (6.30)
which is (6.25). O]
Corollary 6.5. Let Usg, be the maximal solution of (5.1) in 2, then
lim (d(2)) 7T Upg () = L. (6.31)

d(x)—0

6.3 Moser Iteration

In this subsection we always assume that {2 is a bounded smooth convex domain, D = 2sup,, ,cq |7 —Y|

and fo € L9(Q2), ¢ > ¥ ;ro‘. The main goal of this subsection is to prove Boundary Harnack inequality

for positive solutions of the problem

2
Ly v = _dw(zng = é, in Q, (6.32)

where | f(z)]| < cf(llog;# + fo(z)), Yx € Q, for some positive constant ¢y > 0.

In the sequel we will use the following local representation of the boundary of 2. There exists a
finite number m of coordinate systems (v}, y») € 9, yi = (Yi1, ..., Yin—1) and the same number m of
functions a;(y;) defined on the closure cubs, A; := {z € R" : |y;; — ;| < b, for j = 1,...,n, and
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i € {1,..,m} so that for each point x € OS2 there is at least 7 such that x = (7, a;(z})). The function a;
satisfies the Lipschitz condition on A; with constant A > 0, that is

lai(y;) — ai(z)) < Aly; — 21,

for y}, 2z, € A;. Moreover there exists a positive constant b < 1 such that the set B; is defined for
any ¢ € {1,..,m} by the relation B; = {(v,yin) : ¥ € Ai, ai(¥)) < yin < ai(y) + b} and

Ty = BN ={(y.,yin) : ¥: € Ai, Yin = a;(y;)}. Furthermore, let us observe for any y € B; where
someone can make the following inequality on the distance function

1+ A) " (Yin — ai(y})) < d(y) < yin — ai(y;)-

Finally let z € dB; and v € C}(Q). Set z; = y; fori = 1,....n — 1 and z,, = y,, + a;(y’) then
Vyv = Vpv +v,, Vea(z') and vy, = vy, , thus

C(A)| V] < [Vyv| < e(A)| Vvl (6.33)

Let us now define the "balls" which we will use to prove some Poincaré, weighted Poincaré and
Moser inequalities. More precisely we have the following definition

Definition 6.6. Ler vy € (1,2).

Forany x € Q and forany 0 < r <
follows.
(i) If d(x) < yr then

%So’b}, we define the ball centered at x and having radius r as

Bz, r) ={Wi,yin) : ly; — il < 7yd(@) —r < yin — ai(yp) < v +d(2)},

where i € {1,...,m} is uniquely defined by the point T € ON) such that |x — Z| = d(x), that is by the
projection of the center x onto 0f).

(ii) If d(x) > ~r then B(x,r) = B(x,r) the Euclidean ball centered at .

We also define by

V) = [
B (z,r)N2

the volume of the "ball” centered at x and having radius r.
We first recall some known results which the proofs are in [12].

Proposition 6.7. Lemma 2.2-[12]. There exist positive constants dy and dsy such that for any x € Q) and

O<r<w,wehave

dy max{d®(x),r*}rN < V(x,r) < dy max{d®(z),r*}rV.

From the previous Lemma someone can easily deduce the doubling property which reads as follows:

Corollary 6.8. Doubling property. Let N > 2, « > 0 and 2 be a smooth bounded domain. Then there
exist positive constants C(N,~,Q, «) and 5(82, ) such that for any x € Q and 0 < r < 3 we have

V(z,2r) < CV(x,r).
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Proposition 6.9. Local Poincaré inequality (Theorem 2.5-[12]). There exist positive constants C (N, vy, Q, )
and B(Q),~y) such that for any xo € Q and r < [8 we have

inf / Fly) — 2¢2dy < Or? / V() Pe2dy, VF € C(B(xo,r) N Q)
€eR B (zo,r)NQ B (zo,r)NQ

Proposition 6.10. Local weighted Moser inequality (Theorem 2.6-[12]). There exist positive constants
Cr (N, Q, o) and B(Q) such that foranyv > N + o, 29 € Q,r < fand f € C§°(B(xo,r) N Q) we
have

/ F@)PID 62 (y)dy
B (zo,r)NQ

< Cyr?Vix, r)_% /
B (zo,r)NQ

|Vf<y>|2¢i<y>dy( I |f<y>|2¢i<y>dy)

(xo,r)NQ
Let us now make precise the notion of a weak solution.

Definition 6.11. We will say that v € quﬁ(%(x, r) N Q) is a weak solution of Ly v = f in B(z,r)NQ,
if for each ® € C3°(B(x,r) N Q), we have

/ VoVedm = f®dm,
B(x,r)NQ B(z,r)NQ

where dm = ¢2dx and o > 0.

We denote here by H (B (x, ) N Q) the space which consists of all functions u : B(z,7) N Q — R
such that, Vu exists in the weak sense and

Hu||?{;) (B (2.r)NQ) :/ |Vu|?¢? da +/ uw? ¢ dr < oco.
" B (z,r)NQ B (z,r)NQ
Then we have

Theorem 6.12. Let v be a non-negative solution of Ly v = f in§), T > 0. Then there exists a constant
A > 0 such that the following estimate is valid for all x, y € Q.

v(y) < Av().

In order to prove the Harnack inequality in Theorem 6.12 we use the Moser iteration technique as
adapted to degenerate elliptic operators in [14], [15] and [SC2]. In this approach one inserts in the weak
form of the equation Ly v = f suitable test functions ®. One of the key ideas is to use test functions ®
of the form 72v? , where v is the weak solution of the equation, 7 is a cut off function and ¢ € R. To
this end one has to check that %0 is in the right space of test function. In this direction the following
density theorem is crucial, which proof is in [12]-Theorem 2.11.

Theorem 6.13. Let N > 2, a > 1 and U C R"™ be a smooth bounded domain. Then we have
Hy(U,d*(y)dy) = H' (U, d(y)dy).
Here H'(U,d"(y)dy) denotes the set

fo=v(y) : % /U (1Tl + v?)dy < o).
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We note here the above theorem allows us to take the cut of function n € C§°(B(x,r)) instead of
it as a usual taking in 7 € C5°(B(z,r) N Q). Clearly the two function spaces differ only if the "ball”
intersects the boundary of €.

To explain what are the appropriate modifications of the standard iteration argument by Moser, we
now present in detail the first step, which is the L? ;p > 2 mean value inequality for any positive local
subsolution of Ly v < f. Similarly with Definition 6.11, we call a function v € Hj(B(z,r) N Q)
subsolution of Ly, v < fin B(x,r) N Q, if foreach 0 < & € C§°(B(x,r) N Q) we have

/ VoVodmdt < / fdmdt, (6.34)
B (z,r)NQ B (z,r)NQ
where dm = ¢2dx.

Theorem 6.14. Let v € (1,2) and p > 2. Then there exist positive constants co(§2) and C(§2, p, k, co)
such that for any x € Q, R < c¢q and for any positive subsolution of Ly, v < f in B(x,r) N Q, we have
the estimate

c
swp ol < / olPg2dz
B(z,0R)NQ (1 - O')V+2V($, R) B (z,6' R)NQ

1
N+« q
+C [ R%c; + R* T (/ |f0|qq5idx>
B (z,R)NQ

foreach 0 < o < 1.

Proof. Let~y € (1,2) and xy € Q2. First we assume that d(xg) < R, in other case the proof is standard
and we omit it. Let R < min(cg, 1) we denote by Q% the domain

Qf = {¢eR": RE€Q}.

Set zg = Ryo, %m(y) = ¢x(Ry)

‘7(y, r)= / gi(x)dz,
B(y,r)NQE

d(Ry)
7
As R < 1 a C? characteristic of € is also a C? characteristic of Q% therefore the constant C' can be
taken to be independent of . We note here that the constant 0 < ¢y < 1 depends on C? characteristic of
Q.
Set o(y) = v(Ry), ¢c; = Ry, f(y) = R*f(Ry), foly) = R*fo(Ry) u =  + k, where k =

cFt+ ||%||Lq(QR F2dz) - Then u is bounded away from zero. Thus by (6.34) we have for any ® €
C3°(B(y, 1) N Q)

d(y) = dist(y, Q) =

~ d
/ Vuv(l)gbidz < / @foqﬁidl‘ + Cf/ |log @del‘
B (y0,1)NN B (yo,1)NQE B (yo,1)NQE D

Let 5 > 0, we set

u u<k+m
Uy =
k+m u>k+m



Konstantinos T. Gkikas, Laurent Véron 85

and ® = 1)%u? u. Due to Theorem 6.13 there exists a sequence of functions ®;, in C™(B(yo, 1) N QF)
having compact support in  such that ®; — ® in H'(B(yo, 1) N QF, d*+dy). Since ¢ ~ d=", we
have that &5, — ® in Héﬁ (B(yo, 1)NQF). Hence for any V ¢ € C5°(B(yo, 1)) and m > 1 the function
P = 1/)2ufnu is an admissible test function, that is, the following holds true:

/ VuV( 2ufnu)<zidx S/ 2uﬁn%$idx
B (yo,1)NQE B (yo,1)NQE
d(z)

+ c~/ | log [?ul udx
T J o ynn D
1 o

<:/ Vb P fodda
k B (yo,1)NQE

°F d(x)
f 2, 8.2

+ = | log —= |v*ul, udx,
k- Jwyo,nnan D

Thus by straightforward calculations and Holder inequality we have
1

5 / |Vu|2u§nz/}2q~5idx + B |Vum\2uflw2<;idx
B (yo,1)NQE B (yo,1)NQE

~ 1 .
< VPl + ¢ [ SRl 2 fodRda
B (yo,1)NQE k B (yo,1)NQE

F d(x)

f/ 1o 2. 8,2
g [Y*uy, u”d.

ks (yo,nnar D

_|_

Now we have by Holder inequality

/ u2¢2u5ﬁ)$ndm
B (yo,1)NQE

1 a
1 T g ! _q_ ~ !
<1 ( / |fo|%idx> ( / |ufnu2w2|w¢idx>
B (yo,1)NQE B (yo,1)NQR

%%fj% > % >2ifg > N 3“’, we have by interpolation inequality and (2.8)

E

—1

Since

q—1

q
2 21— 72
(/( o |U§LU 1/} |‘11(;5Kdl‘>
B(yo,1)N
N+o¢+—2

Ntog Ntag _ Niay _
<e / | u)?| N o +C(N,ay,q)e 2q’”“‘*/ |y, |7 dae
B (yo,1)NQF B (yo,1)NQE
N+a

8 ~ _ -
< E/ \V(uﬁbuw)\zqﬁdm +C(N,aq,q)e 2N+t / \ufnu2¢2|¢id$.
B (yo,1)NQE B (yo,1)NQE
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Also
/ |lo gd( )Wuﬂ de——/ | log dlx )|dVdV V2l u?)da
B(yo,1)NQF D B (yo,1)NQF
J@) TA T2
- [log —= |dAdy* G (uy ) udx
%( 0 1)ﬁQR ‘D

+ / V2l ulda
B (yo,1)NQE

Let 0 < 0 < ¢/ < 1, we choose a function ¢ = £(|y{, — 2’|)§ (|:17n —a(a') — d(yo)|), where £ € C°°( )
and satisfies 0 < € < 1,(s) = 1if s < Z and £(s) = 0if s > o’. Then clearly we have |V¢)| < —£—.

/ |log @|d|vw|ufnu2d@" < IC / |log Mﬂwuf@ﬁdaz
B (yo,1)NQF D 0 = 0 JB(yo,1)NOQR D
c / 2o 57(95) 2
= d?VdV (|log —=|yu? u?)da
o' -0 ( B (yo,1)NQF ( D | )

- /C / JQAd(\log@|wu§1u2)dx .
g — 0 ‘B(yo,l)ﬂQR D

B/ |log —= ( ) |2 |Vt [u uda < = b V|Vt [P0l do da
B (yo,1)NQE B (yo,1)NQE
d ~
+C |log dz) 12d* =+ %l u?da.
B (yo,1)NO" D
Worklng as the last two inequalities and using the fact that ¢,1 T+ we can prove that there exists
€ (0,2 — a), such that
dl ~
/ |log ( ) [ upu’de < o VP V|, o7 da
B (yo,1)NQF 4 J(yo,1)n0R
1 ~
+ f/ V2 Vul*ul ¢? dx
4 J3(yo,1)n0R

1)? ~
+ 70(,6j )2 / V2l P e de.
(o' —0) B (y,0")NQE

Let 8 > 2, combining all above there exist 6 = §(N, ay,q) > 0and C = C(N,a4,q) > 0 such
that

/ |Vu\2ufnw2$idx + / |Vum|2ufnw2$idx
B (yo,1)NQE B (yo,1)NQE

é —~,
< _CF 5 / ul u? ¢ da.
(R - T) B(y,0’)NQE
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8
Set know w = u,3,, then we have

J

%(yo,l)ﬁQR

<C@B+1) / VulPul G + / Vit [Pl 232 |
B (yo,1)NQE B (yo,1)NQR

Thus we have

541 _
/ |V (w)|?dx < cﬁi2 / w?¢?dx (6.35)
B (yo,1)NQT (R—r) B (yo,1)NQE
By above inequality and Proposition 6.10 we have
/ O N e
B (yo,0)NQE B (yo,1)NOQE
2
< p( [ wwopsa)( [ i) (630
B (yo,1)NQR B (yo,1)NQE

<

1 _ 142
ECBH! (/ |w|2¢§dx>
(U/ - 0)2 B(x,0")NQ

where E = Cy/V =% (yo, 1) is the constant in Proposition 6.10.
Set 5 = p and let m — oo, then we have by (6.37) and definition of w,

~ 5+1 _ 142
/ [ulP ) G < A(f’z / |wu|p¢idl’> ,
B (yo,0)NQ (U - U) B(z,0")

where A = EC the constant in (6.37).

i
We note that by iteration for py = p, p1 = p(1 + %), ey D = p(l + i) that

/ upigidxdt <oo, Yi>0and o' <.
B (yo,0')NQ

Thus by the same argument as before we have

. it —  \'
/ upi+1¢idx < A(/Z2/ upiqﬁidx) , (6.37)
B (z,0)NQ (O’ - U) B (xz,0")NQ

Now setrg = o’ and r; = 0/ — (0/ — o) Z;Zl 279, Thenr; — 7y = (8 —8)27" L and pjyq =
pi(1 + 2), thus inequality (6.37) becomes

- 92(i+1) - 143
/ upi“qﬁidx < Ail 5 <pf+1/ upigbid:v) =
sB(yoﬂ‘p*,l)f-‘IQR (U - 0) gB(y(),’!‘i)f-]QR

N\ 20i41) \ 7y ~  \ 7
(/ upiJrquidx) Pit1 < Amil < 2/ i 2) Pit1 <p?+1/ Upid’idm) P
%(yo,Ti+1)ﬂQR (U - U) %(yo,’(‘i)ﬂQR
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1 1 1
“—+ = ; . S+1 -
A Piy1 | pi 204D 4 2; OFL ~ Pio1
- : P; Pi—1 i— 2
< < 2 2 Pit1 | Pi D; piil uP 1¢de
(U J) ‘B(yo,’l‘ifl)ﬂQR
1

A 1 Z?O 1 @7j Do
P == 1§ oo jHl 41 N0 o—J ~ ~, 0

<(o25) 13 D0 G o B0 onon) (| i) "
(¢! —0) B (yo,m0)NQF

where © = 1+ 2.Observe now that r; — § as ¢ — 0o, all sum above are finite and Z‘;O:O 07 =%+1.

Hence we have,

v 1 ~
sup  Jul? < Af/iy/ lulPp2de, ¥V p>2.
B (yo,0)NQE (U - U) B (yo,0’ )NQE

where A = Cp/ V=7 (2, 1).
Thus we have

sup  [O]P < AZ2Y / OP@2de + k|, Vp>2,
B(yo,5)NQE B (yo,1)NQR

which implies

1
sup  JulP < / lv[Pp2dr +k |, Vp>2,
B (yo, B)NQF V(z, R) B (y0,1)NQE
The estimate in B (yo, o R) N2 can be obtained by applying the above result to B(yo, (1 —o)R) N
forany y € B(y,cR) N Q. O

Using Moser iteration we can prove

Proposition 6.15. Let u be a weak solution of (6.32). Then there exist constant C = C(, N, k) and
0 < a=a(Q,N,k), such that

1

syeQazy [T =Yl B (z,R)NQ
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