Measure boundary value problem for semilinear elliptic equations with critical Hardy potentials - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Measure boundary value problem for semilinear elliptic equations with critical Hardy potentials

Résumé

Let $\Omega\subset\BBR^N$ be a bounded $C^2$ domain and $\CL_\gk=-\Gd-\frac{\gk}{d^2}$ the Hardy operator where $d=\dist (.,\prt\Gw)$ and $0<\gk\leq\frac{1}{4}$. Let $\ga_{\pm}=1\pm\sqrt{1-4\gk}$ be the two Hardy exponents, $\gl_\gk$ the first eigenvalue of $\CL_\gk$ with corresponding positive eigenfunction $\phi_\gk$. If $g$ is a continuous nondecreasing function satisfying $\int_1^\infty(g(s)+|g(-s)|)s^{-2\frac{2N-2+\ga_+}{2N-4+\ga_+}}ds<\infty$, then for any Radon measures $\gn\in \GTM_{\phi_\gk}(\Gw)$ and $\gm\in \GTM(\prt\Gw)$ there exists a unique weak solution to problem $P_{\gn,\gm}$: $\CL_\gk u+g(u)=\gn$ in $\Gw$, $u=\gm$ on $\prt\Gw$. If $g(r)=|r|^{q-1}u$ ($q>1$) we prove that, in the subcritical range of $q$, a necessary and sufficient condition for solving $P_{0,\gm}$ with $\gm>0$ is that $\gm$ is absolutely continuous with respect to the capacity associated to the Besov space $B^{2-\frac{2+\ga_+}{2q'},q'}(\BBR^{N-1})$. We also characterize the boundary removable sets in terms of this capacity. In the subcritical range of $q$ we classify the isolated singularities of positive solutions.
Fichier principal
Vignette du fichier
CR2.pdf (149.76 Ko) Télécharger le fichier
CR1.pdf (146.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01071455 , version 1 (05-10-2014)
hal-01071455 , version 2 (28-10-2014)

Identifiants

Citer

Konstantinos Gkikas, Laurent Veron. Measure boundary value problem for semilinear elliptic equations with critical Hardy potentials. 2014. ⟨hal-01071455v2⟩
245 Consultations
111 Téléchargements

Altmetric

Partager

More