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Partial Differential Equations MEASURE BOUNDARY VALUE PROBLEM FOR SEMILINEAR ELLIPTIC EQUATIONS WITH CRITICAL HARDY POTENTIALS

Let Ω ⊂ R N be a bounded C 2 domain and Lκ = -∆ -κ d 2 the Hardy operator where d = dist (., ∂Ω) and 0 < κ ≤ 1 4 . Let α ± = 1 ± √ 1 -4κ be the two Hardy exponents, λκ the first eigenvalue of Lκ with corresponding positive eigenfunction φκ. If g is a continuous nondecreasing function satisfying

then for any Radon measures ν ∈ M φκ (Ω) and µ ∈ M(∂Ω) there exists a unique weak solution to problem Pν,µ : Lκu + g(u) = ν in Ω, u = µ on ∂Ω. If g(r) = |r| q-1 u (q > 1) we prove that, in the supercritical range of q, a necessary and sufficient condition for solving P 0,µ with µ > 0 is that µ is absolutely continuous with respect to the capacity associated to the Besov space B 2-2+α + 2q ′ ,q ′

(R N-1 ). We also characterize the boundary removable sets in terms of this capacity. In the subcritical range of q we classify the isolated singularities of positive solutions. Pν,µ : Lκu + g(u) = ν dans Ω, u = µ sur ∂Ω. Si g(r) = |r| q-1 u (q > 1) nous démontrons qu'une condition nécessaire et suffisante pour résoudre P 0,µ avec µ > 0 est que µ soit absolument continue par rapport à la capacité associée à l'espace de Besov B

Problèmes aux limites avec données mesures pour des équations semi linéaires elliptiques avec des potentiels de Hardy critiques

2-

2+α + 2q ′ ,q ′ (R N-1 ). Nous caractérisons les ensembles éliminables pour les valeurs sur critiques de q. Dans le cas sous-critique nous classifions les singularités isolées au bord des solutions positives.

Version française abrégée. Soit Ω un domaine de R N de classe C 2 . On désigne par d(x) la distance de x à ∂Ω et on définit l'opérateur de Hardy dans Ω par

(1)

L κ u = -∆u - κ d 2 u où 0 < κ ≤ 1 4 et ses exposants caractéristiques (2) α + = 1 + √ 1 -4κ α -= 1 - √ 1 -4κ.
1. Centro de Modelamiento Matemàtico, Universidad de Chile, Santiago de Chile, Chile. Email : kugkikas@gmail.com. Supported by Fondecyt Grant 3140567 2. Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours France. E-mail : veronl@univ-tours.fr. Supported by MATH-Amsud program QUESP On supposera Ω convexe si κ = 1 4 . Il est bien connu que sous ces conditions L κ possède une première valeur propre λ κ > 0 définie par [START_REF] Brezis | Hardy's inequalities revisited Ann[END_REF] λ Ω := inf

u∈H 1 0 (Ω)\{0} Ω |∇u| 2 dx Ω d -2 u 2 dx .
La première fonction propre positive associée φ κ n'appartient à H 1 0 (Ω) que si 0 < κ < 1 4 , et dans tous les cas elle vérifie φ κ (x) ∼ (d(x)) α+ au voisinage de ∂Ω. On dénote par G κ et K κ les noyaux de Green et de Poisson de L κ dans Ω et par ω x0 la mesure L κ -harmonique dans Ω (x 0 ∈ Ω). Si g est une fonction continue et croissante sur R telle que g(0) ≥ 0, nous étudions tout d'abord le problème (P ν,µ ) suivant :

(4) L κ u + g(u) = ν in Ω u = µ in ∂Ω,
où ν, µ sont des mesures de Radon.

Théorème 1. Supposons que g vérifie

(5) ∞ 1 (g(s) + |g(-s)|) s -2 N -1+ α + 2 N -2+ α + 2 ds < ∞;
alors pour toutes mesures de Radon ν et µ dans

Ω et ∂Ω respectivement, ν vérifiant en outre Ω φ κ d|ν| < ∞, il existe une unique fonction u = u ν,µ ∈ L 1 φκ (Ω) telle que g•u ∈ L 1 φκ (Ω) vérifiant (6) Ω (uL κ ζ + ζg•u) dx = Ω Ω G κ (x, y)dν(y)ζ(x)dx + Ω ∂Ω K κ (x, y)dµ(y)L κ ζ(x)dx pour toute ζ ∈ X κ (Ω) où (7) X κ (Ω) = {ζ ∈ H 1 loc (Ω) : (φ κ ) -1 ζ ∈ H 1 0 (Ω, φ κ dx), (φ κ ) -1 L κ ζ ∈ L ∞ (Ω)}.
En outre l'application (ν, µ) → u ν,µ de M φκ (Ω)×M(∂Ω) dans L 1 φκ (Ω) est croissante et stable pour la convergence faible des mesures.

La démonstration utilise des estimations des noyaux de Green et de Poisson déduits des propriétés de la mesure ω κ . Dans le cas où g•u = |u| q-1 u, (5) est vérifiée si 0 < q < q c := 2N +α+ 2N +α+-4 . Dans le cas q > 1 nous dénotons par

C R N -1 2- 2+α + 2q ′ ,q ′ la capacité associée à l'espace de Besov B 2- 2+α + 2q ′ ,q ′ (R N -1
) et nous démontrons :

Théorème 2. Soit q ≥ q c et ν ∈ M + (∂Ω). Alors le problème (8) L κ u + |u| q-1 u = 0 in Ω u = µ in ∂Ω admet une unique solution u := u µ si et seulement si pour tout borélien E ⊂ ∂Ω, (9) 
C R N -1 2- 2+α + 2q ′ ,q ′ (E) = 0 =⇒ µ(E) = 0.
Nous caractérisons aussi les sous ensembles du bord éliminables pour l'équation (10)

L κ u + |u| q-1 u = 0 in Ω. Définissons (11) W (x) = (d(x)) α - 2 if 0 < κ < 1 4 d(x) ln |d(x)| if κ = 1 4 . Théorème 3. Soit q > 1 et K ⊂ ∂Ω un sous-ensemble compact. Toute solution u ∈ C(Ω \ {K}) de (10) qui vérifie (12) lim x→y u(x) W (x) = 0 ∀y ∈ ∂Ω \ {K}, est identiquement nulle dans Ω si et seulement si C R N -1 2- 2+α +
2q ′ ,q ′ (K) = 0. Nous montrons que si q > 1, toute solution positive de [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] dans Ω admet une trace au bord représentée par une mesure de Borel régulière. En supposant que 0 ∈ ∂Ω et 1 < q < q c , nous étudions aussi le comportement au voisinage de 0 des solutions positives de [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] qui vérifient (12) avec K = {0}.

-------------------------------Let Ω be a bounded C 2 domain in R N , N ≥ 3 and d(x) = dist (x, Ω). We define λ Ω by (3). It is well known that λ Ω ∈ (0, 1 4 ]. Also we define the Hardy operator L κ in Ω by [START_REF] Bandle | Boundary blow up type sub-solutions to semilinear elliptic equations with Hardy potential[END_REF] 

with 0 < κ < λ Ω if λ Ω < 1 4 or 0 < κ ≤ 1 4 if λ Ω = 1 4
and the characteristic exponents by [START_REF] Barbatis | A unified approach to improved L p Hardy inequalities with best constants[END_REF]. We assume that Ω is convex if κ = 1 4 . It is well known that L κ possesses a first eigenvalue λ κ > 0 defined by ( 13)

λ κ := inf u∈H 1 0 (Ω)\{0} Ω |∇u| 2 dx -κ Ω d -2 u 2 dx Ω u 2 dx .
The first positive eigenfunction φ κ > 0 may or may not belong to H 1 0 (Ω) according 0 < κ < 1 4 or κ = 1 4 , and

φ κ (x) ∼ (d(x)) α + 2 , |∇φ κ (x)| ∼ (d(x)) α + 2 -1 as d(x) → 0. Let G κ (x, y) (resp. K κ (x, y)) be the Green (resp. Poisson) kernel of L κ , then (14) G κ (x, y) ∼ min      1 |x -y| N -2 , (d(x)) α + 2 (d(y)) α + 2 |x -y| N -2+α+      ∀(x, y) ∈ Ω×Ω, x = y, (15) K κ (x, y) ∼ (d(x)) α + 2 |x -y| N -2+α+ ∀(x, y) ∈ Ω × ∂Ω.
The corresponding Green and Poisson operators are denoted by G κ [.] and

K κ [.].
We first consider the boundary value problem (4) where g is a continuous nondecreasing function such that g(0) ≥ 0 and ν and µ are Radon measures in Ω and ∂Ω respectively. We say that g is a subcritical nonlinearity if it satisfies (5).

Theorem 1. Assume that g is a subcritical nonlinearity. Then for all (ν, µ) ∈ M φκ (Ω) × M(∂Ω) there exists a unique function 6) for all ζ in the space of test functions X κ (Ω) defined by [START_REF] Marcus | Removable singularities and boundary trace[END_REF]. Furthermore the mapping (ν, µ) → u ν,µ from M φκ (Ω) × M(∂Ω) into L 1 φκ (Ω) is nondecreasing and stable for the weak convergence of measures.

u = u ν,µ ∈ L 1 φκ (Ω) such that g•u ∈ L 1 φκ (Ω) verifying (
When g(u) = |u| q-1 u with q > 0, the inequality ( 6) means (16) 0 < q < q c := 2N + α + 2N + α + -4 .

When q ≥ q c not all the measures µ are eligible for solving [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF]. We denote by

C R N -1 2- 2+α + 2q ′ ,q ′ the capacity associated to the Besov space B 2- 2+α + 2q ′ ,q ′ (R N -1
).

Theorem 2. Let q > 1 and ν ∈ M + (∂Ω). Then problem ( 8) admits a solution if and only if µ is absolutely continuous with respect to C R N -1
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2+α + 2q ′ ,q ′ , i.e. for any Borel set E ⊂ ∂Ω, implication [START_REF] Marcus | Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains[END_REF] holds.

We also characterize the boundary removable sets for [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF].

Theorem 3. Let q > 1 and K ⊂ ∂Ω be compact. Any u ∈ C(Ω \ {K}) solution of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] which verifies ( 12) is identically zero in Ω if and only if C R N -1 2-2+α + 2q ′ ,q ′ (K) = 0. When 1 < q < q c only the empty set has zero capacity. There exist singular solutions of ( 10) with an isolated singularity on the boundary, either solutions u kδa of ( 8) with µ = kδ a for k > 0 and a ∈ ∂Ω or solutions u a = lim k→∞ u kδa . This very singular solution is described by considering the following problem on the half upper-sphere S N -1

+ = {x = (x 1 , ..., x N ) ∈ R N : |x| = 1, x N > 0} (17) -∆ ′ ω -ℓ N,q,κ ω - κ (eN .σ) 2 ω + |ω| q-1 ω = 0 in S N -1 + ω = 0 in ∂S N -1 +
where ∆ ′ is the Laplace-Beltrami operator on S N -1 , (e 1 , ..., e N ) is the canonic basis in R N , σ = x |x| and ℓ N,q = 2 q -1 2q q -1 -N .

The spherical Hardy operator

ω → L ′ κ := -∆ ′ ω - κ (eN .σ) 2 ω on S N -1
+ admits a first eigenvalue µ κ defined by (18) µ κ,1 = inf

ψ∈H 1 0 (S N -1 + )\{0} S N -1 + |∇ ′ ψ| 2 -κ(e N .σ) -2 ω 2 dS Ω (e N .σ) -2 ψ 2 dS .
We prove that µ κ,1 = α+ 2 N + α+ 2 -2 with corresponding positive eigenfunction ρ κ = (e N .σ) α + 2 . There exists a second eigenvalue µ κ,2 = µ κ,1 +N +α + -1 with N -1 independent eigenfunctions ρ κ,j = (e N .σ) α + 2 e j .σ for j = 1, ..., N -1. We denote by E κ the set of functions ω such that ρ -1

κ ω ∈ L q+1 ρ q+1 κ (S N -1 + ) ∩ H 1 0 (S N -1 +
, ρ 2 κ dS) which satisfy (17), and by E + κ the set of positive solutions. Theorem 4. I-If q ≥ q c , E κ = {∅}. II-If 1 < q < q c , E + κ = {0, ωκ} where ω κ is the unique positive solution of (17). III-If q e ≤ q < q c , E κ = {0, ω κ , -ω κ } where q e := 2N + 2 + α + 2N -2 + α + .

This allows us to describe the isolated boundary singularities of positive solutions of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]. Assume 0 ∈ ∂Ω and e N is the outward normal unit vector to ∂Ω at 0. Theorem 5. Assume , 1 < q < q c and u ∈ C(Ω \ {0}) is a positive solution of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] which verifies( 12) with K = {0}. Then (i) either there exists k ≥ 0 such that u = u kδ0 and lim |x|→0 |x|

N + α + 2 -2 u(x) = c N k(e N . x |x| ) α + 2 , (ii) or lim |x|→0 |x| 2 q-1 u(x) = ω κ ( x |x| )
. The above two convergence hold locally uniformly on S N -1 + .

We can also define a boundary trace of any positive solution u of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]. For δ > 0 small enough, we denote by ω x0 Ω ′ δ the harmonic measure relative to the operator L κ in Ω ′ δ = {x ∈ Ω : d(x) > δ} where x 0 ∈ Ω (with d(x 0 ) ≥ δ 1 > δ) and set Σ δ = ∂Ω ′ δ . Theorem 6. Assume q > 1 and u ∈ C(Ω \ {0}) is a positive solution of [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] in Ω. Then for any y ∈ ∂Ω, the following dichotomy occurs : (i) Either there exist an open subset U ⊂ R N containing y and a positive Radon measure λ U on ∂Ω ∩ U such that

(19) lim δ→0 Σ δ ∩U Z(x)u(x)dω x0 Ω ′ δ = ∂Ω∩U Zdλ U ∀Z ∈ C 0 (U ).
(ii) Or for any open subset U ⊂ R N containing y, there holds

(20) lim δ→0 Σ δ ∩U u(x)dω x0 Ω ′ δ = ∞.
The set R u of y such that (i) holds is relatively open in ∂Ω and it carries a positive Radon measure µ u such that (19) occurs with U replaced by R u and λ U by µ u ; its complement S u in ∂Ω has the property that (20) occurs for any open subset U such that U ∩ S u = {∅}. Abridged proof of Theorem 1. Let (ν, µ) ∈ M φκ (Ω) × M(∂Ω). For λ > 0 we set

(21) E λ (ν) = {x ∈ Ω : G κ [|ν|](x) > λ}, E λ (ν) = E λ (ν) φ κ dx, and (22) 
F λ (ν) = {x ∈ Ω : K κ [|µ|](x) > λ}, F λ (µ) = E λ (ν) dx,
and prove

(23) E λ (ν) + F λ (µ) ≤ c ν M φκ (Ω) + µ M(∂Ω) λ 2N +α + 2N +α + -4 .
If g satisfies ( 5) and {(ν n , µ n )} is a sequence of smooth functions which converges in the weak-star topology of measures to (ν, µ), then the corresponding solutions {u νn,µn } of problem P νn,µn defined in (4) converges to some u and {g • u νn,µn } converges to g • u in L 1 φκ by Vitali convergence theorem. This implies u = u ν,µ . Uniqueness holds by adapting Brezis estimates and using monotonicity.

Abridged proof of Theorem 2. Using estimate (15) and the harmonic lifting in Besov spaces introduced in [9, Sect. 3] we prove that for any µ ∈ M(∂Ω) there holds

(24) 1 c µ q B -2+ 2+α + 2q ′ ,q ≤ Ω (K κ [|µ|]) q φ κ dx ≤ c µ q B -2+ 2+α + 2q ′ ,q
, for some c = c(Ω, κ, q) > 0. If the above quantity is finite, we can solve [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] with

such a µ. If µ ∈ B -2+ 2+α +
2q ′ ,q (∂Ω)∩M + (∂Ω), it is absolutely continuous with respect to the capacity C R N -1 2-2+α + 2q ′ ,q ′ . Finally, if µ ∈ M + (∂Ω) is absolutely continuous with respect to the capacity C R N -1 2-2+α + 2q ′ ,q ′ , there exists an increasing sequence {µ n } ⊂ B -2+ 2+α + 2q ′ ,q (∂Ω) ∩ M + (∂Ω) which converges to µ. This implies that u µn converges to u µ in L q φκ (Ω). Conversely, if µ ∈ M + (∂Ω) is such that there exists a solution u µ to (8), we use a variant of the optimal lifting R[.] defined in [START_REF] Marcus | Removable singularities and boundary trace[END_REF]Sect. 1] to prove that for any η ∈ C 2 (∂Ω) such that 0 ≤ η ≤ 1 there holds (25)

∂Ω ηdµ ≤ c Ω u q ζdx + c Ω u q ζdx 1 q Ω φ κ dx + η q ′ B 2- 2+α + 2q ′ ,q ′ 1 q ′ . Here ζ = φ κ (R[η]) q ′ and R : C 2 (∂Ω) → C 2 (Ω) is a linear mapping which satisfies 0 ≤ η ≤ 1 =⇒ 0 ≤ R[η] ≤ 1 and R[η]⌊ ∂Ω = η. If K ⊂ ∂Ω is a compact set with zero C R N -1 2- 2+α + 2q ′ ,q
-capacity, there exists a sequence {η n } ⊂ C 2 (∂Ω) such that 0 ≤ η n ≤ 1,

η n = 1 on K and η n q ′ B 2- 2+α + 2q ′ ,q ′ → 0. This implies φ κ (R[η n ]) q ′ → 0 and finally µ(K) = 0. Abridged proof of Theorem 3. If K ⊂ ∂Ω is compact with C R N -1 2- 2+α + 2q ′ ,q (K) > 0, its capacitary measure µ K belongs to B -2+ 2+α +
2q ′ ,q (∂Ω)∩M + (∂Ω) . Thus u µK exists and K is not removable. Conversely by using again optimal lifting, and test functions of the form φ κ (R[1η]) 2q ′ where 0 ≤ η ≤ 1 and η = 1 in a neighborhood of K, we prove first that that u ∈ L q φκ (Ω) and finally that u = 0. Abridged proof of Theorems 4-5. Existence is obtained in minimizing the functional

J κ defined over L q+1 ρ q+1 κ (S N -1 + ) ∩ H 1 0 (S N -1 + , ρ 2 κ dS) by (26) J κ (w) := S N -1 + |∇ ′ w| 2 -(ℓ N,q -µ κ,1 )w 2 + 2 q + 1 ρ q-1 κ |w| q+1 ρ 2 κ dS.
A non-trivial minimizer w exists if ℓ N,q > µ κ,1 (defined by (18)), i.e. 1 < q < q c , and ω = ρ κ w satisfies (17). Nonexistence in standard since µ κ,1 < ℓ N,q if and only if 1 < q < q c . For uniqueness we assume that ω j (j = 1, 2) are positive solutions of (17) and we set w j = ωj ρκ . Then -div ′ .(ρ 2 κ ∇ ′ w j ) + (µ κ,1ℓ N,q )ρ 2 κ w j + ρ q+1 κ w q j = 0 on S N -1 + Since w j ∼ ρ , we use Green formula and get

S N -1 + ∇ ′ w 1 w 1 - ∇ ′ w 2 w 2 .∇ ′ (w 2 1 -w 2 
2 ) + ρ q-1 κ (w q-1 1 w q-1 2 )(w With this estimate we adapt the scaling method developed in [START_REF] Phuoc | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]Sect. 3.3] to obtain the classification result.

Résumé. 1 - 2 2N

 12 Soient Ω ⊂ R N un domaine de classe C 2 et Lκ = -∆-κ d 2 l'opérateur de Hardy où d = dist (., ∂Ω) et 0 < κ ≤ 1 4 . Soient α ± = 1 ± √ 4κ les deux exposants de Hardy, λκ première valeur propre de Lκ et φκ la fonction propre positive correspondante. Si g est une fonction continue croissante vérifiant ∞ 1 (g(s) + |g(-s)|)s --2+α + 2N -4+α + ds < ∞, alors pour toutes mesures de Radon ν ∈ M φκ (Ω) et µ ∈ M(∂Ω) il existe une unique solution faible au problème

2 1 -w 2 2 ) ρ 2 κ dS = 0, thus w 1 = w 2 . 2 q

 2122 For statement III we first prove, by the method used in[START_REF] Véron | Geometric invariance of singular solutions of some nonlinear partial differential equations[END_REF] Th 3.1], that any solution ω depends only on the azimuthal angle θ ∈ [0,π 2 ]. Then we show that the corresponding ODE verified by ω admits only constant sign solutions. For Theorem 5, we construct a barrier function as in[START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] Appendix] and obtain (27) u(x) ≤ c|x| -