Improvement of the energy method for strongly non resonant dispersive equations and applications - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2015

Improvement of the energy method for strongly non resonant dispersive equations and applications

Résumé

In this paper we propose a new approach to prove the local well-posedness of the Cauchy problem associated with strongly non resonant dispersive equations. As an example we obtain unconditional well-posedness of the Cauchy problem below $ H^1 $ for a large class of one-dimensional dispersive equations with a dispersion that is greater or equal to the one of the Benjamin-Ono equation. Since this is done without using a gauge transform, this enables us to prove strong convergence results for solutions of viscous versions of these equations towards the purely dispersive solutions.
Fichier principal
Vignette du fichier
NewEnergyMethod(14).pdf (323.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01064252 , version 1 (15-09-2014)

Identifiants

Citer

Luc Molinet, Stéphane Vento. Improvement of the energy method for strongly non resonant dispersive equations and applications. Analysis & PDE, 2015, 8 (6), pp.1455-1495. ⟨hal-01064252⟩
181 Consultations
167 Téléchargements

Altmetric

Partager

More