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IMPROVEMENT OF THE ENERGY METHOD FOR
STRONGLY NON RESONANT DISPERSIVE EQUATIONS
AND APPLICATIONS

LUC MOLINET AND STEPHANE VENTO

ABSTRACT. In this paper we propose a new approach to prove the lo-
cal well-posedness of the Cauchy problem associated with strongly non
resonant dispersive equations. As an example we obtain unconditional
well-posedness of the Cauchy problem below H' for a large class of
one-dimensional dispersive equations with a dispersion that is greater
or equal to the one of the Benjamin-Ono equation. Since this is done
without using a gauge transform, this enables us to prove strong conver-
gence results for solutions of viscous versions of these equations towards
the purely dispersive solutions.

1. INTRODUCTION

The Cauchy problem associated with dispersive equations with derivative
nonlinearity has been extensively studied since the eighties. The first results
were obtained by using energy methods that did not make use of the dis-
persive effects (see for instance [14] and [1]). These methods were restricted
to regular initial data (s > d/2 were d > 1 is the spatial dimension) and
only ensured the continuity of the solution-map. At the end of the eighties,
Kenig, Ponce and Vega proved new dispersive estimates that enable them
to lower the regularity requirement on the initial data (see for instance [15],
[16], [26]). They even succeed to obtain local well-posedness for a large class
of dispersive equations by a fixed point argument in a suitable Banach space
related to linear dispersive estimates. Then in the early nineties, Bourgain
introduced the now so-called Bourgain’s spaces where one can solve by a
fixed point argument a wide class of dispersive equations with very rough
initial data ([4], [5]). It is worth noticing that, since the nonlinearity of these
equations is in general algebraic, the fixed point argument ensures the real
analyticity of the solution-map. Now, in the early 2000’s, Molinet, Saut and
Tzvetkov [24] noticed that a large class of ”weakly” dispersive equations,
including in particular the Benjamin-Ono equation, cannot be solved by a
fixed point argument for initial data in any Sobolev spaces H®. This ob-
struction is due to bad interactions between high frequencies and very low
frequencies. Since then, roughly speaking, two approaches have been devel-
oped to lower the regularity requirement for such equations. The first one is
the so called gauge method. This consists in introducing a nonlinear gauge
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transform of the solution that solved an equation with less bad interactions
than the original one. This method was proved to be very efficient to obtain
the lowest regularity index for solving canonical equations (see [28], [12], [6],
[23] for the BO equation and [11] for dispersive generalized BO equation)
but has the disadvantage to behave very bad with respect to perturbation of
the equation. The second one consists in improving the dispersive estimates
by localizing it on space frequency depending time intervals and then mixing
it with classical energy estimates. This type of method was first introduced
by Koch and Tzvetkov [19] (see also [17] for some improvements) in the
framework of Strichartz’s spaces and then by Koch and Tataru [18] (see also
[13]) in the framework of Bourgain’s spaces. It is less efficient to get the best
regularity index but it is surely more flexible with respect to perturbation
of the equation.

In this paper we propose a new approach to derive local and global well-
posedness results for dispersive equations that do not exhibit too strong
resonances. This approach combines classical energy estimates with Bour-
gain’s type estimates on an interval of time that does not depend on the
space frequency. Here, we will apply this method to prove unconditional
local well-posedness results on both R and T without the use of a gauge
transform for a large class of one-dimensional quadratic dispersive equa-
tions with a dispersion between the one of the Benjamin-Ono equation and
the KdV equation. This class contains in particular the equations with pure
power dispersion that read

(1.1) ug + 0p Dyu + uuy, =0

with a € [1,2].
The principle of the method is particularly simple in the regular case s > 1/2.
We start with the classical space frequency localized energy estimate

t
/ / 8$PN(UZ)PNU
0 JR

obtained by projecting the equation on frequencies of order N and taking
the inner product with JZu. Note that the second term in the RHS of (1.2)
is easily controlled (after summing in N) by ||uH?}J<7>9HS for s > 3/2. This

(12)  |[Pvulfeens S IPvuolfs + sup (N)*
t€]0,T']

is the main point in the standard energy method that lead to LWP in H?®,
s> 3/2. In order to take into account the dispersive effects of the equation,
we will decompose the three factors in the integral term into dyadic pieces
for the modulation variables and use the Bourgain’s spaces X*® in a non
conventional way. Actually, it is known that standard bilinear estimates in
X#b_spaces with b = 1/2+ fail, for equation (1.1), for any s € R as soon as
a < 2. On the other hand, as noticed in [20], it is easy to deduce from the
equation that a solution u € L*°(0,T; H®) to (1.3) has to belong to the space
X{ffl’l. This means that, if we accept to lose a few spatial derivatives on the
solution, then we may gain some regularity in the modulation variable. This
is particularly profitable when the equation enjoys a strongly non resonance
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relation as (2.5). Actually, this formally allows to estimate the second term
in (1.2) at the desired level. However, this term involves a multiplication
by 1o and it is well-known that such multiplication is not bounded in
XLl To overcome this difficulty we decompose this function into two
parts. A high frequency part that will be very small in L%p and a low-
frequency part that will have good properties with respect to multiplication
with high modulation functions in X*~ 1. This decomposition will depend
on the space frequency localization of the three functions that appear in the
trilinear term.

1.1. Presentation of the results. In this paper we consider the dispersive
equation

(1.3) Ut + Loy1u + uu, =0

where z € R or T, v = u(t,x) is a real-valued function and the linear
operator L, satisfies the following hypothesis.

Hypothesis 1. We assume that L.y1 is the Fourier multiplier operator by
iPa+1 where pat1 s a real-valued odd function satisfying :
For any (£1,&) € R? with |€1] > 1 and any 0 < A < 1 it holds

(1.4) ATHAATIELATE)] ~ (€ minlé]Sax -
where

Q(61,€2) = pat1(81 +&2) — Pat1(&1) — Pat1(&2),
€ min = min(|&1], [§2], [§1 + &a]) and [€]max = max(|&1], [§2], [§1 + &21)-

Remark 1.1. We will see in Lemma 2.1 below that, for a > 0, a very
simple criterion on p ensures (1.4). With this criterion in hand, it is not
too hard to check that the following linear operators satisfy Hypothesis 1 :

(1) The purely dispersive operators L := 0, DS with a > 0.

(2) The linear Intermediate Long Wave operator L := 0,D, coth(Dy).
Note that here o = 1.

(8) Some perturbations of the Benjamin-Ono equation as the Smith op-
erator L := 0,(D2 + 1)'/2 (see [27]). Here again oo = 1.

Theorem 1.1. Let K = R or T, Lot+1 satisfying Hypothesis 1 with 1 <

o < 2andlet s > 1— 9 with (s,a) # (3,1). Then the Cauchy problem
associated with (1.3) is unconditionally locally well-posed in H*(K) with a
2(a+1)
2a—1

mazimal time of existence T Z (1 + |[uo|l ;1-4)

Remark 1.2. In the regular case (Cauchy problem in H® with s > 1/2), we
actually need (1.4) only for |&1] A |&] > 1.

Remark 1.3. Our method also work in the case o > 2. In this case we get
the unconditional well-posedness in H*(K) for s >0 .
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Remark 1.4. In the appendix we indicate the small modifications that en-
able to obtain the local-well posedness in the limit case (s,a) = (1/2,1).
Howewver, in this limit case we are not able to prove the unconditional unique-
ness in Li}oHl/z.

Remark 1.5. For L,y := 8%, we recover the unconditional LWP result in
L*(T) obtained in [2] for the KdV equation. However, our Lipschitz bound
on the solution-map holds at the level H=/? whereas in [2] it holds at the
level H=1. Note that the L*(R) case was treated in [29)].

Let us assume now that the symbol p,41 satisfies moreover

(1.5) [Pact1(€)] S 1€] for €] <1 and [pat1(€)] ~ [¢]*+! for [¢] > 1.

Then it is not too hard to check that equation (1.3) enjoys the following
conservation laws:

d

— [ w?dx =0,

dt Jy

d 1

“ Aa/2 210 203)de =0

where A%? is the space Fourier multiplier defined by

1/2
paJrgl (5) ‘ 1/)\(5)

Combined with the embedding H%/2 < L3, we get an a priori bound of the

H®/2-norm of the solution. We may then iterate Theorem 1.1 and obtain
the following corollary.

Corollary 1.1. Let K = R or T, Lo41 satisfying Hypothesis 1 and (1.5)
with 1 < a <2 . Then the Cauchy problem associated with (1.3) is uncon-
ditionally globally well-posed in HO‘/Q(K) .

APu(E) =

Remark 1.6. The linear operators given in Remark 1.1 also satisfy assump-
tion (1.5).

It is well-known that gauge transform often do not well behave with re-
spect to perturbation of the equation. On the other hand it is well-known
that, taking into account some damping or dissipative effects, dissipative
versions of (1.3) can be derived (see for instance [25], [7]). One quite direct
application of the fact that we do not need a gauge transform to solve (1.3),
is that we can easily treat the dissipative limit of dissipative versions of
(1.3). Such dissipative limit was for example studied for the Benjamin-Ono
equation on the real line in [9] and [21].

Let us introduce the following dissipative version

(1.6) Ut + Loy1u + eAgu + uu, =0

where e > 0 is a small parameter, 8 > 0 and Ag is a linear operator satisfying
the following hypothesis :
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Hypothesis 2. We assume that Ag is the Fourier multiplier operator by
qp where qg is a real-valued even function, bounded on bounded intervals,
satisfying : For all0 < A< 1 and £ > 1,

Nag(Ae) ~ ¢°.

Remark 1.7. The homogeneous operators Dg and the non homogeneous
operators J;? satisfy Hypothesis 2.

Theorem 1.2. Let K=R orT,1<a<2,0<pg<1l+aands>1-5.

(1) Then the Cauchy problem associated with (1.6) is locally well-posed
in H*(K).
(2) For uy € H*(K), let u be solution to (1.3) emanating from uy. We

2(a+1)
call T 2 (1 + |lugl j1-g) 22=" the mazimal time of existence of u

in H®. Then for e > 0 small enough, the mazximal time of existence
T. of the solution u. to (1.6) emanating from ug satisfies T, > T.
Moreover, u. — w in C([0,T[; H*) ase — 0 .

Remark 1.8. The constraint < 1+« is clearly an artefact of the method
we used. We think that it could be dropped by replacing, in some estimates,
the dispersive Bourgain’s spaces by dispersive-dissipative Bourgain’s spaces
that were first introduced in [22]. But since the dissipative operators involved
in wave motions are commonly of order less or equal to 2 we do not pursue
this issue.

The rest of the paper is organized as follows: in Section 2, we introduce
the notations, define the function spaces and state some preliminary lemmas.
In Section 3 we develop our method in the simplest case s > 1/2, while the
non regular case is treated in Section 4. Section 5 is devoted to the proof of
Theorem 1.2. We conclude the paper with an appendix explaining how to
deal with the special case (s,a) = (1/2,1).

2. NOTATIONS, FUNCTION SPACES AND PRELIMINARY LEMMAS

2.1. Notation. For any positive numbers a and b, the notation a < b means
that there exists a positive constant ¢ such that a < cb. We also denote a ~ b
when a < b and b < a. Moreover, if a € R, oy, respectively a_, will denote
a number slightly greater, respectively lesser, than .

For u = u(x,t) € S(R?), Fu = u will denote its space-time Fourier
transform, whereas F,u = (u)"=, respectively Fru = (u)t, will denote its
Fourier transform in space, respectively in time. For s € R, we define the
Bessel and Riesz potentials of order —s, J; and D3, by

Jiu= .7:;1 ((1 + |£|2)%]:mu) and Dju= ]:;1(|£|5]:xu).
Throughout the paper, we fix a smooth cutoff function 7 such that
neCR), 0<n<1l, mn_,,=1 and supp(n) C[-22].
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We set ¢(&) :=n(&) —n(28). For | € Z, we define

621(€) = $(27'¢),
and, for [ € N*,
P (&, 7) = o (T — Pay1(§)),
where ip,41 is the Fourier symbol of L,11. By convention, we also denote
Yo(&,7) == (2T = pat1(§)))-

Any summations over capitalized variables such as N, L, K or M are pre-
sumed to be dyadic with N, L, K or M > 0, i.e., these variables range over
numbers of the form {2* : k € Z}. Then, we have that

S on(€) =1, supp(6w) C {5 <l 2N} N>1, and supp(6) € {J¢] < 1),

Let us define the Littlewood-Paley multipliers by

Pyu=F; (¢nFou), Qru=F ' (¢YrFu),
Pon =3 gon Pr, P<n = Ygan P, @>1 = 2> Qk and Q<p =
ZKSL Qx. For brevity we also write uy = Pyu, u<ny = P<yu, ...

Let x be a (possibly complex-valued) bounded function on R? and define
the pseudo-product operator II =II,, on & (R)? by

FI(f,9)() = /R FEF(E — £x(E. £1)den

Throughout the paper, we write II = II, where x may be different at each
occurrence of II. This bilinear operator behaves like a product in the sense
that it satisfies the following properties

I(f,9) = fgif x =1,

(2.1) [ tan= [ e = [ 1z

for any f,g,h € S(R). Moreover, we easily check from Bernstein inequality
that if f; € L?(R) has a Fourier transform localized in an annulus {|¢| ~ N;},
i1=1,2,3, then

(2.2) ' [ 1 s <NifziH||f@||Lz

where the implicit constant only depends on Hxﬂ reo(r2) and Nypip, = min{ Ny, Na, N3}.
With this notation in hand, we will be able to systematically estimate terms

of the form
/ PN(UQ)GJ;PNU
R

to put the derivative on the lowest frequency factor.
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2.2. Function spaces. For 1 < p < oo, LP(R) is the usual Lebesgue space
with the norm || - ||zr, and for s € R , the real-valued Sobolev spaces H*(R)
denote the spaces of all real-valued functions with the usual norms

[Dllers = NI Tz0llL2 -

If B is one of the spaces defined above, 1 < p < oo, we will define the
space-time spaces LB and LY B equipped with the norms

iz = ([ 15C003ar)

with obvious modifications for p = oo, and
1
3
15 = (D2 1PV I2p5)"
N>0

For s, b € R, we introduce the Bourgain spaces X*? related to the linear
part of (1.3) as the completion of the Schwartz space S(R?) under the norm

2b ¢\ 25| 2 2
23 lolles = ([ = pan©P >0 nPdear )
where (x) := 1+ |z| and ipy41 is Fourier symbol of L,y1. Recall that
[olxss = [Val—t)oll o0

where U, (t) = exp(tLq+1) is the generator of the free evolution associated
with (1.3).

Finally, we will use restriction in time versions of these spaces. Let T" > 0
be a positive time and Y be a normed space of space-time functions. The
restriction space Y7 will be the space of functions v : Rx]0, T[— R satisfying

[v]lyy = mf{||o]ly | 7:R xR = R, dlgyjor = v} <00
2.3. Preliminary lemmas.

Lemma 2.1. Letp: R — R be an odd function belonging to C*(R)NC?(R*)
such that for all |€] > 1,

(2.4) ()~ g™ and ")~ lg*,

for some o > 0. Then the Fourier multiplier Loy1 by @ p satisfies Hypothesis
1.

Proof. By symmetry we can assume |§3| < |£1]. We separate different cases:
1. [&] < |&|. Since |&1] > 1, we can assume that (2.4) holds for any
¢ > |&1] and thus there exists 0 € [{1,&1 + &2] such that

AP (& + &) — p(A L&) | = A& (A 10))
~ A&l o)
~ |€all€r]®
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for all 0 < A < 1. On the other hand, if A™1&| < |€;] then

XA )] < X6 N P ()] < l&ll&]*

and if A71&| > |&1] then
AT (AT )| = A p(&) + p(A 1) — p(&)

<>\o¢+1 +>\—1 )\—1 @
<2l max (O] + 3 lhel)

< |&|*T + A &] max |p/(6)] < |&]é]
£€[0,]&1]

Gathering these two estimates leads for 0 < A < 1 to

ATHRAT G, ATIG)| ~ |&é]

2. [&2| Z |&1]- In this case we can assume that (2.4) holds for any & > |£].
2.1. £1.£ > 0. Then we have 0 < & < & < & + &. We notice that

&o
AR, A )] =2 A WO 0) )b
X (P + &) — P ) A (&)
with
IP(ATEEL 4 &) — p(ATLE)| S EATOEY « AT gl

and

&1
PO E 4 0) — p (A1) = A / YO+ ) dp

But for £ > &, p” does not change sign since [p”(¢)| ~ [£]*~! and p”
continuous outside 0. Therefore,

AT / O+ p))dp ~ AT / YO+ ) tdp
~ AT <(§1 +0)* — 9°‘>
~ AT

Gathering these estimates we obtain

AFHQATIE, A1) | ~ &8s

2.2. £1.69 < 0. We can assume that & > 0. Then we have 0 < & 4+ & <
—& < &. For & + & < =&, recalling that p is an odd function, we can
argue exactly as in the case 1. but with & + & , —& and &; playing the
role of respectively &, & and & + &. Finally, for & + & 2 —&s, we argue
exactly as in the case 2.1 with the same exchange of roles than above. [J
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Lemma 2.2. Assume that po+1 satisfies (1.4) with A = 1. Let Ly, Lo, L3 >
0, 0 < Ny < Ny < N3 be dyadic numbers and u,v,w € S'(RQ). Then

/2 (Qr, Pnyu, Qr,Pn,v) Qry Pnsw =0
R

whenever the following relation is not satisfied :
(2.5) max (L, Lo, L3) ~ max(N1Ns', Lineq)
where Lyeq = max({L1, Lo, L3} — {Lmax})-

Proof. This is a direct consequence of the hypothesis (1.4) on the resonance
function (&1, &2) since

Q(&1,8) = o(m + 12,6 + &) —o(11,61) — 0(12,&2)

with o(7,&) := 7 — pat1(&). -

Lemma 2.3. Let L > 0, 1 < p < oo and s € R. The operator Q<r, is
bounded in LYH® uniformly in L > 0.

Proof. Let R<y, be the Fourier multiplier by nr(7) where 7, is defined in
Section 2.1. The trick is to notice that Q<ru = Uy (t)(R<rUqs(—t)u). There-
fore, using the unitarity of U,(-) in H*(R) we infer that

1Q<rullrps = [[Ua(t)(RerUa(=t)u)| rprs = [[R<pUa(=t)ull ey
S WUa(=t)ullzr s = llullLrgs -

O

For any T' > 0, we consider 17 the characteristic function of [0,7] and
use the decomposition

(2.6) lp = 1%+ 109 1w (7) = n(r/R)1p(7)
for some R > 0.

The properties of this decomposition we will need are listed in the following
lemmas.

Lemma 2.4. For any R >0 and T > 0 it holds
(2.7) 5| ST AR
and

(2.8) NPz < 1.
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Proof. A direct computation provide

high o . s 1 $)ds
s - [ \ [t = 10 = s R)F s

< / / |FLn(s)\dtds
R J([0,T\[s/R,T+s/R])U([s/R,T+s/R]\[0,T7])

S [ nlsl/mIFa(s)lds
R
<TARL
Finally, the proof of (2.8) is obvious. O

Lemma 2.5. Let u € L*(R?). Then for any T >0, R > 0 and L > R it
holds

IQLARRWIL2 S 1Q~rul 2

Proof. By Plancherel we get

I, = [|QL(1P%u) | 12

—

= oL (r —w(@) VG - (7, &)l 12

N e*iT(T*T/) -1
= Z@L(T—W(@)/ <PL1(T/—w(§))u(7/7§)77((7—T,)/R)ﬁdT/
Ly R L2
In the region where L1 < L or Ly > L, we have |t — 7| ~ LV L1 > R,
thus I, vanishes. On the other hand, for L ~ L, we get

IS Y 1QuF%QL w2 S |Qnrulle.

L
U

3. UNCONDITIONAL WELL-POSEDNESS IN THE REGULAR CASE s > 1/2

In this section we develop our method in the regular case s > 1/2. This
will emphasize the simplicity of this approach to prove unconditional well-
posedness for equation (1.3) posed on R or T.

Let A > 0 and L), be the Fourier multiplier by iA*™p,1(A71). We
notice that if u is solution to (1.3) on ]0, 7| then uy(t, z) = A*u(A\“*1¢t, \x)
is solution to (1.3) on ]0, \~ (VT [ with L1 replaced by L), . Therefore,
up to this change of unknown and equation, we can always assume that the
operator L1 verifies (1.4) with 0 < A < 1.

3.1. A priori estimates. For s € R we define the function space M* as
M?* = L°H* N X551 endowed with the natural norm

HUHMS = HUHL;’OHS + HUHXs—l,l .
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For ug € H*(R), s > 1/2, we will construct a solution to (1.3) in M3,
whereas the difference of two solutions emanating from initial data belonging
to H*(R) will take place in M "

Lemma 3.1. Let 0 <T <2, s >1/2 and w € LFH?® be a solution to (1.3).
Then w € M7 and it holds

(3.1) ullarg, < llullogers + HU||L39H8HU||L39H%+ :

Moreover, for any couple (v,w) € (L H®)? of solutions to (1.3), it holds
3:2)  u—=vllya-r Sllv = vllpge s + llu+vllogrs lu = ol g a1 -

Proof. We have to extend the function w from (0,7") to R. For this we follow
[20] and introduce the extension operator pr defined by

(3.3) pru(t) == nt)u(Tu/T))

where 7 is the smooth cut-off function defined in Section 2.1 and u(t) =
max(1 — |t — 1],0). pr is a bounded operator from Xg’b into X% and from
LP(0,7;X) into LP(R; X) for any b €] — 00,1}, s € R, p € [1,00] and any
Banach space X. Moreover, these bounds are uniform for 0 <7 < 1.

By using this extension operator, it is clear that we only have to estimate
the X;_l’l—norm of u to prove (3.1). But by the Duhamel formula of (1.3)
and standard linear estimates in Bourgain’s spaces, we have

lull o S uollzzems + 19 () ot
< Mol + a2l
S ol + el g el

by standard product estimates in Sobolev spaces.
In the same way we have

lu = vllys—21 S lluoll e + [(u +0)(u = )12 o
S luollgs—2 + llu +ollgmsllu = vl g prs-1
which proves (3.2) O

Lemma 3.2. Assume u; € MY, i = 1,2,3 are functions with spatial Fourier
support in {|§| ~ N;} with N; > 0 dyadic satisfying Ny < Ny < Nj3. For
any t > 0 we set

t
It(ul,UQ,us)Z/ /H(uhuz)us-
o Jr

If N1 < 29 it holds

1/2
(3-4) [y, uz, us)| S Ny [l ooz llua | o2, sl -
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In the case Ny > 27 it holds

—1/2 _
[ (un, ug, us)| SNy 2NG uall e 2 (luall 2, llusll -1 + fuallx-1a Jusll 2 )

n N1/2

N3 *lug|[x-1a Hu2||fo||u3HL§°L§
1 a—1/8
+ NNy / |utll ooz lluall oo p2llusllLoo 2 -

Proof. Estimate (3.4) easily follows from (2.2) together with Hélder inequal-
ity, thus it suffices to estimate |I;| for Ny > 2. Note that I; vanishes unless

Ny ~ N3. Setting R = ]\73/2 1/8 , we split I; as
Ii(uy,ug,u3) = Io(1 ?Z}ghul,ug,ug) +I(1 tRul,ug,ug)
(3.5) = [oh  plow
where I (u,v,w) fRQ u,v)w. The contribution of I igh ig estimated
thanks to Lemma 2.4 as well as (2.2) and Holder 1nequahty by
(36) LS NI sl e e sl 2 lus e 2
< NN Y ||u1||L;>°L§||U2HL;>°L§||U3HL;>°L§

To evaluate the contribution Iéow we use that, according to Lemma 2.2, we
have the following decomposition:

Too (117 un, uz, uz) =Ioo(Qsa-1n, ng (17 u1), uz, us)
+ I (Q<o- 4N1N°‘(155Ru1) Q>2*4N1N§‘u27u3)
(3.7) + Ioo(Q<o-1n, Ng (1t,R u1), Qco—1n, Ng U2, QN NgU3) -

It is worth noticing that since Ny > 2 R« 2*4N1N§‘. Therefore the con-

tribution It1 19w of the first term of the above RHS to Ilov is easily estimated
thanks to Lemma 2.5 by

1,1 1/2 _
1o NI (NING) ™ oo [fusl 2, sl e 2

1/2 n7—
(3.8) SN2l lua 2. sl e 2 -

2,low

Thanks to Lemmas 2.3 and 2.5, the contribution I;” of the second term

can be handle in the following way
2,0 1/2 _
124 SN (N NG) e gz o s e 2
—1/2 x71—
(3.9) SN PN | e 2 Nz -1 ffus 2.
Finally the contribution of the third term is estimated in the same way. [J

Remark 3.1. From (2.1) we see that estimates in Lemma 3.2 also hold for
any other rearrangements of N1, No, N3.

We are now in position to derive our “improved” energy estimate on
smooth solutions to (1.3).
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Proposition 3.1. Let 0 <T < 2 and u € LFH® with s > 1/2 be a solution
o (1.3). Then it holds

(3.10)  lullgems < lluollms + (1 + IIU\ILOOH2+)IIU\|L%OH%+IIUHL;PHS :
Proof. Applying the operator Py with N > 0 dyadic to equation (1.3),

taking the H® scalar product with Pyu and integrating on ]0,¢[ we obtain

(3.11) HPNUHLOOHS < || Pyuol/3s + sup (N)?* (u*)0, Pyu
t€]0,T'|
Thus it remains to estimate
(3.12) I := 25 sup ‘/ /PN )0, PNU‘ .
N>0 t€]0,T'[

We take an extension @ of u supported in time in | — 2, 2[ such that ||@| s S
[u[[azz. - To simplify the notation we drop the tilde in the sequel.
By localization considerations, we get

(3.13) PN(UQ) = PN(UZNUQN) + QPN(U<<NU).
Moreover, using a Taylor expansion of ¢, we easily get
(3.14) P (uent) = uenyPyu+ N0 uen, u),

where II = II, with x(&,&) = —¢ fol ¢'(N7L(E — 0€1))df € L. Inserting
(3.13)-(3.14) into (3.12) and integrating by parts we deduce

I<Z Z N)?EY sup // X1 UNUUNUN‘

N>0 N1 <N t€]0,7]
N)Y2s=)
S <5m//wwWw
N>0 N1 <N t€]0,7]
1
+ E E (s—1) sup / / s (UN,, U NNl)uN‘
N>0N;>N t€]0,T]

where x;, 1 <i < 3 are bounded uniformly in N, Ny and defined by

315 66) = laay, (1),

su N 1su N
(3.16) x2(§,&1) = x(&, 51)%% ppq;w(j)(f _plzf) (&)

(17 wl(E6) = Son(e).

Recalling now the definition of I; (see Lemma 3.2), it follows that

(818) IS Y Y NN sup |L(un, ueny uw,)-

N>0N{>N ¢€]0,T7
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The contribution of the sum over N < 29 is easily estimated thanks to (3.4)
and Cauchy-Schwarz by

Z Z Nl 2 HUNHLOOLQHUJ\HHL?L?

N<29 Ny >N
(3.19) S Nullzse L2 l|ulZee s

Finally the contribution of the sum over N > 29 is controlled with the second
part of Lemma 3.2 by

S 3 NNE NN e gl Dz a1

N>29 NiZN
+ Nl/zN_aHuNHX*LlHUN1”%§>°L§
+ N~ 1N_1/8HuN||LtooLg||uN1||%§°L§]
520) <Ml ol e -

T

Gathering all the above estimates leads to

(3.21) lullZge e S Nuollzes + llull | g llellagg llulloge e
T

which, together with (3.1) completes the proof of the proposition. O

Let us now establish an a priori estimate at the regularity level s — 1 on
the difference of two solutions.

Proposition 3.2. Let 0 < T < 2 and u,v € LPH® with s > 1/2 be two
solutions to (1.3). Then it holds

3:22)  lu—vllpgena—r S lluo —vollgs—1 + lu+vllagg [lu — ol s -
Proof. The difference w = u — v satisfies
(3.23) wy + D%, = 0,(2w),

where z = u 4+ v. Proceeding as in the proof of the preceding proposition,
we infer that for N > 0,

(3.24)
| Pnvw|| e o1 < || Prnwol/4en + sup (N)2E~ 1)‘ PN (zw)0, Pnyw
T t€]0, T
We take extensions Z and @ of z and w supported in time in | — 2, 2[ such

that ||Z]|ars S |lullazg and [[@0] ars—1 S [[ull pys-1. To simplify the notation we
T

drop the tilde in the sequel.

Setting

(3.25) Ji= S (N)CD sup (/ /PN 20)8, Pyw

NSO t€0,7]
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it follows from (3.14) and classical dyadic decomposition that for all N > 0,

Pn(zw) = Pn(zenw) + PN(ZNNUJSN) + Z Py (zn, weny)
Ni>N
(3.26)

= Z& NWN + N*IHX(sz<<N,w) + PN(ZNNW5N) + Z Py (zn, weny ).
N1>N

Inserting this into (3.25) and integrating by parts we infer

J< Z Z 2(5 1) sup / / X1 le,wN)wN‘

N>0 N <N ¢€]0,T

+ D D M) sup // xo (2N, w ~N)wN'
N>0 N1 <N te]0.T|

+y > NN sup // X3 NN,le)wN'
N>0 N1 <N t€]0,T]

D D NV sup // xs (2N, w ~N1)?UN'
N>0 Ny >N t€]0,T

where x;, 1 < i < 3 are defined in (3.15)-(3.16)-(3.17). Therefore it suffices
to estimate

TS ST N2 sup |L(aw, wen,, wn )|

N>0 N1 >N t€]o,T|
+ Z Z Ny (VDY sup [T (zany, wi, way )|
N>0 N >N t€]0,T]
+ ) NV)PETY sup [z, way  wiy))
N>0 N >N t€]0,TY
(3.27) =J1 + Jo+ Js.

The contribution of the sum over N < 29 in (3.27) is easily estimated thanks
to (3.4) by

> 3 NN e zllon, 12 s

N<29 N12N
+ Ni(ND T w2 s llwn ] ge 2 1wy |2 e
+ NNzl e w2 e w2 )

(3.28) S Nzl 2wl Zoe groms + HwHL;»H;% 12l o s 1wl Lge gra=

For the contribution of the sum over N > 2°, it is worth noticing that since
s> 1/2, the term Js is controlled by J. The contribution of .J; is estimated
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thanks to Lemma 3.2 by

> > NN NN e ezl oy -
N>29 N1 >N
+ NVENT2n -1 w1 e 2
+ NN ol e, 3 e
(3.29) S Dellagy/zs fwlgems ol o e

Finally, we bound in the same way Jo by

> > Nfsfl[N_l/szfanNHLgOLg(HZN1HngHleﬂx—m + Iz [ x-11lwny llz2,)
N>29 Ny 2N

+ NN Jwn || x-11 ]|z, Lo r2llwny | poo 2

_ —-1/8
+ NN o ez low ez ol 2

(3.30)
S 2llaes 1wl yp—1/o+ Jwl pge s + 2l ags lwllars-1 1wl poo 172+ -

Gathering estimates (3.27)-(3.30) we obtain
(3.31)

J S (HZ”Mé+“w“M5*1+“Z”M%HwH MewllLge ra=1+[l2l|azg 1wl ars-1 Jw]

M3 L%OH*%+

which leads to (3.22) and completes the proof of the proposition. O

3.2. Unconditional well-posedness. It is well known (see for instance
[1]) that (1.3) is locally well-posed in H® for s > 3/2 with a minimum
time of existence which depends on [lugl|gs/2. As in the beginning of this
section, we will use that uy (¢, ) := A*u(A\*T1t, Ar) is solution to (1.3) with
Lq1 replaced by L5\4+1 that is the Fourier multiplier by iA*"!p, 1 (A71).
Let u be a smooth solution to (1.3) emanating from a smooth initial data
u, it follows from (1.4) that the estimate (3.10) also holds for uy with 0 <

A < 1. Since Hu,\(O)HH%Jr < )\0‘*1/2HUOHH%+, a classical continuity argument

1
ensures that for A ~ (1 + ||u0HH%+)_a—1/2, u) exists at least on [0, 1] with

Hu}‘”Lw(o,l;H%ﬂ < )\0‘*1/2HUOHH%+. Going back to u we obtain that it exists
at least on [0,77], with T = T(||uol| 1, ) = (1 + [|uol|

_ 2(a41)
1,.) 2e-1 and

[ullzoe 0,711y < lluol[ s for s > 1/2.

Now, let ugp € H*(R) with s > 1/2. From the above remark, we infer that
we can pass to the limit on a sequence of solutions emanating from smooth
approximations of v to obtain the existence of a solution u € L H?, with
initial data wug, of (1.3). Moreover, (3.22)-(3.2) ensure that this solution is
the only one in this class. Now the continuity of u with values in H*(R) as
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well as the continuity of the flow-map in H*(R) will follow from the Bona-
Smith argument (see [3]). For any ¢ € H*(R), any dyadic integer N > 1
and any r > 0, straightforward calculations in Fourier space lead to
(3.32)

1Penllyser S Nllgllms and i — Penollger S o(N "Il -

Let ug € H® with s > 1/2. We denote by u"¥ the solution of (1.3) emanating
from P<nugp and for 1 < Ny < Na, we set
wi=u" — N2,

It follows from the estimates of the previous subsection applied to w that
for T'=T(||lu||, 1) and any —3+ < r < s it holds
Hz

(3.33) [wllarg, S [lw(0)[[ar < N ™°e(N1)

with e(y) — 0 as y — +o0o . Moreover, for any r > 0 we have
) N;

(3.34) ™ (g < g s S NY o] s

Next, we observe that w solves the equation
(3.35) wi + Lopi1w = %&E(UP) + 0, (v w)
Proposition 3.3. Let 0 < T < 2 and w € L H® with s > 1/2 be a solution
o (3.35). Then it holds
lwlisers S lwolls + llwlis
(3.36) ™ azg wllRgs, + 1™ [yt lwllagg 1wl e -

Proof. Actually it is a consequence of estimates derived in the proof of
Propositions 3.1 and 3.2. We separate the contributions of d,(w?) and
Oz (uMNw). Let t €]0,T[. First (3.21) leads to

ZN2S/ /pNa 2) Pya| S wlllys -

Second, applying (3.31) at the level s with z replaced by u™M we obtain

Z N2s

N
which leads to (3.36) since s > 1/2. O
(3.33)-(3.34) together with (3.36) lead to
(3.37) lwllZgerrs S Ilwolls +e(N1) + Ny Ny 'e(N1)
S (),

This shows that {u’} is a Cauchy sequence in C([0,T]; H*) and thus {u}
converges in C([0,T]; H®) to a solution of (1.3) emanating from wug. There-
fore, the uniqueness result ensures that v € C([0,T]; H®).

t
N N N
/0 /RPNam(u 1w)PNw( S e g flwl| 3+l Hlagges el el g

T
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3.3. Continuity of the flow map. Let s > 1/2 and {ug,} C H*(R) be
such that ug , — uo in H*(R). We want to prove that the emanating solution
uy, tends to w in C([0,T]; H®). By the triangle inequality,

= unllpoems < [lu—u™ || zeomrs + u™ = w) || Lo s + [|uh) — tnl|zoo s
Using the above estimates on the solution to (3.35) we first infer that
(3.38) Ju — uM| oo ms + llun — up) || Leo s = e(N),
where €(y) — 0 as y — oo. Next, we get the bound

e —wlpgems S ™ (0) = up (0)][as + o(1)

[ P<n (u(0) —u"(0))[|g= + (V)
S lwo — wonllms +e(N)

(3.39)

where again £(y) — 0 as y — oco. Collecting (3.38) and (3.39) ends the proof
of the continuity of the flow map. Thus the proof of Theorem 1.1 is now
completed in the case s > 1/2.

4. ESTIMATES IN THE NON REGULAR CASE

In this section, we provide the needed estimates at level s > 1 — /2 for
1 < a < 2. We introduce the space

(4.1) b peeh _ xa- b/ | - e )
endowed with the usual norm and we define

1+«

VS —ySY — L;)OHS N Fs,a,1/2 _ LtooHs N (XsfaTH,l _{_Xsf %

ool

)

For up € H*(R) we will construct a solution to (1.3) that belongs to Y for
some T = T(luol| ;1-¢) > 0. As in the regular case, by a dilation argument,
we may assume that L,y satisfies (1.4) for 0 < X < 1.

Remark 4.1. Actually except in the case (s,a) = (0,2) we could simply
take Y% := L{°H® N X351, But to include the case (s,a) = (0,2) in
the general case we prefer to introduce the sum space F>*Y? (see (4.1)) in
all the cases.

Lemma 4.1. Let 0 < T <2, 1<a<2,s>1—a/2 andu € LFH® be
a solution to (1.3). Then u belongs to Y7*. Moreover, if (s,a) # (0,2) it
holds

(42) Jullyge S lullg a1+ el o)
and if (s,a) = (0,2),

(4.3) [ullyor S llullpgera (T + HUH%%OLg) :
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Proof. As in Lemma 3.1 we will work with the extension @ = pru of u (see
(3.3)). Recall that suppu C [—2,2] x R and that

[ullegens S lullegpms and  [allxor S flullxor

for any (0,b) € Rx] — oo, 1]. It thus remains to control the F;’a’l/z—norm of
_oatl
u. In the case (s,a) # (0,2) we actually simply control the X; 2 7-norm

of u. Using the integral formulation, standard linear estimates in Bourgain’s
spaces and standard product estimates in Sobolev spaces we infer that

2
Jull ot S ol sge + 10O g
2
S Mol yo-sge + ol g
S ol oo g + ol g lulsgerns

since for 1 < a < 2and s > 1—§ with (s,a) # (0,2), it holds s +1—5 >0
and s +1—9 — (s + 152) =1/2.

Let us now tackle the case (s, ) = (0,2). First we notice that since L*(R) <
H*%*(R), we have

7 S llullzeerz (1 + flullpeere) -

< 2
(4.4) IIUHX;Z,l S lluoll -7 + llu]]

3
L?H™ %

1
To bound the F*?2-norm of u, we decompose u? as

(4.5) u2 = P§2u2 + Z (PN(P<<NU uNN) + Z PN(UN1UN1)> .
N>2 N{NleN

The contribution of the first term in the right hand side is easily controlled
by [[u/[? ;2. The contribution of the (LH)- interactions is easily estimated
T x

by

H Z Oz Pn(Penu UNN)‘ JEERS! S H Z PnOy(P«nu uNN)HX_%,O
N>2 r N>2 T
5 1/2
S (X 1P (Pevuuam)Is 1 )
N>2
1/2
S (X2 lunll a1 Penulders)
N>1

(4.6) S llull sz llullpee e
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_3
8

To estimate the (HH)-interactions, we take advantage of the X % -part
of FO2=3. For N > 2 we have
(4.7) > 102 P (P, uPpu)| o,
NI~N1ZN T
< >, N Y %PnQrL(Qr, N, Qryiiyy)
N{~Ni1ZN (L,L1,L2) satisfying (2.5) X_%’_%

For the contribution of the sum over L > NN? in (4.7) we obtain

Z HaxpNQZNNIQ (ﬁNde{)HX—

oolw

_3
8

Ni~N|ZN
5 _ ~ ~
S Z NEN'2(NNY) 3/8HUN1HL§IHUN{HL§OL§
Ni~N|ZN
~ N \3/4 _
Sl Y (5) " lawlle,
N1>N
(4.8) S lal7ers »-

with [|(727)llizeyy < 1. The contribution of the region ( L < NN and
Ly 2 NN?)in (4.7) is controlled by

> 100 PNQ < yn2 (Qz ynztn tiny) | -

ooleo

_3
8

Ni~N|ZN
5 AT~ ~
S Z NgNl/Q(NNf) 1N14||UN1||X7g,1HUN{HL;>°Lg
Ni~N|ZN
(4.9) SNV all ez llall 5.0 -

Finally, the contribution of the last region ( L, L; < NN and Ly ~ NN?)
in (4.7) is controlled in the same way. Gathering (4.4) and (4.7)-(4.9), we
obtain the desired result for the case (s,a) = (0,2). O

In the sequel we will need the following straightforward estimates.

Lemma 4.2. Let « > 0 and w € FO%. For1 < B < Nt it holds
_ lta
(4.10) 1Qzpwn e S BT'NZ |Qzpwnll o

and, for B > (N)*T! it holds

1+«

(4.11) 1Q>pwnllze < B™/4(N) S Qs puwn]

1 .
FO2
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Proof. Noticing that FO3 = plas — x—5%1 4 x5 ’g, it is direct to
check that

1Qzpwnlz2 < maX(B_1<N> B~ = )lQzpwn| 70}
< By ( 1+Q/B>% 1@z .4
which leads to the desired result. O

Now we rewrite Lemma 3.2 in the context of the F*? spaces.

Lemma 4.3. Assume u; € Y°, i =1,2,3 are functions with spatial Fourier
support in {|&] ~ N;} with N; > 0 dyadic satisfying N < Ny < Nj.

If N3 > 2° and Ny 2 ]\73(1 A 29, it holds for (p,q) € {(2,00), (00,2)}

Clar—1/2 152
Iy (g, ug,us)| S Y 27N, /2N, Jurllrp 2| Qot vy ngviall o3 lusllporz
I>—4

1/2

l-a
+ Ny Ny 2wl e gz luall o |Qen Ngus|

7%
1/8 lra . —5a/8

+ NS NG | o g Nzl 2 s e 2

1/4

+ Ny Nag_i |t ll oo r2 luzl| oo p2[lusll Loo 2 -

a1
Proof. For R = N; 3/ 4N > ® we decompose I; as in (3.5) and obtain from
(3.6) that

3
high —1/4r5—%5
[ S Ny / Ny * HHUiHLg%g-

To evaluate I/°" we use decomposition (3.7) and notice that

+

R=NYNZ™

1 24+«
8 S N1N23 24 < N1N3 and NlNgv > N > 1.

Therefore the contribution Itl’low of the first term of the RHS of (3.7) to I}
is easily estimated thanks to Lemmas 2.5 and 4.2 by

1,1 1/2 - atl
L] < NP (NN (N S | pollualipz llusllpeerz,

which is acceptable. Thanks to Lemmas 2.3, 2.5 and 4.2, the contribution
17" of the second term can be handle in the following way

2,1 1/2
S0 MPEIN NG N, T HuluL"LQ”QZZNIN??‘UQHFO,%”u?’HLng

>4

I Ar—1/2 A5
(412) < Z 27N / Ny 2 ”uluLngHQQlNlNg‘uQ”FO,%”u?’HLng :
1>—4
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In the same way, we get that the contribution IE’ low of the third term to
I'*v is bounded by

3,1 1/2
1P| SNY (NS N ||u1HLpL2||u2HLqL2||Q~N1N o3|l 0.4

(4.13) SNy PNG lurllpprz lluell e pe @~ Ngusll o, -

Gathering all these estimates, we obtain the desired bound. U
Proposition 4.1. Let 0 < T <2, 1<a <2, s>1—-«a/2 andu € LFPH?
be a solution to (1.3). Then u belongs to L H® and it holds

(@14 iz g S lluollas + ull e pyimg el + lell e sl a-g

Proof. Applying the operator Py with N > 0 dyadic to equation (1.3),
taking the H® scalar product with Pyu and integrating on |0, ¢[ we obtain

(4.15) HPNUHLOOHS < ||Pyuol|3s + sup (N)? (u*)0, Pyu).

t€]0,T'|

We take an extension 4 of u supported in time in | — 4, 4[ such that ||a|ys <
|ully;: . To simplify the notation we drop the tilde in the sequel.
We infer from (3.18) that it suffices to estimate

I = Z Z Nl 2 sup |It(uN’u~N1’uN1)|
N>0 N =N t€]0.T7

The low frequencies part N < 29 is estimated exactly as in (3.19) by
2
[ull go rz llullZoo ars-

On the other hand, the contribution of the sum over N > 29 is controlled
thanks to Lemma 4.3 by

—1

> S I(F) Tt aloslie o,

N>29 Ny >N

N 5a/8
+ <F1> HuNHFl*%’%”uNlHLfHSHUNlHL?oHs

FNETENE T ] g g o [
(4.16) S lully-g lE oo e + ol e - il s s,

where we use discrete Young’s inequality in N; and then Cauchy-Schwarz
in N to bound the first two terms.
Gathering the above estimates we eventually obtain

(4.17) L5 llullyi-g lullZse 1o + 1l oo prg lellnge e lullv;

which completes the proof of the proposition.
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4.1. Estimates on the difference of two solutions. First we introduce
the function spaces where we will estimate the difference of two solutions of
(1.3). Contrary to the regular case, we will have to work in a function space

that put a weight on the very low frequencies. For 6 € R we denote by 2K
the completion of S(R) for the norm

lellze = I41€12)(€) 2l .2

Then we define the space ffgﬁe by

1/2
— 2
(4.18) lolgege =( > lenl? )

N—dyadic>0
We then define the function spaces Y? and Z%, 6 € R, by respectively
V0= LFH N FOY? and 2° = LFH 0 FOV/2

with F%° defined in (4.1).
If u,v € LYP H® are two solutions of (1.3) with s > 1—«/2, then according
to Lemma 4.1 and Proposition 4.1 we know that v and v belong to Y7 N

f;j‘?H 8. Moreover, using again the extension operator pr it is easy to check
that

4.19 YENLOHS < Vi
T T T

with an embedding constant that does not depend on 0 < 7" < 2. Hence,
u and v belong to Y. Assuming that ug — vy € H’, we claim that the
difference u — v belongs to Z7. Indeed, according to the above definitions

of Y* and Z° , it suffices to check that P;(u — v) belongs to IE’?FS. But
it is straightforward, since by the Duhamel formula for any dyadic integer
0 < N <1 it holds

1PN (= 0) ooz S o — vollgrs + N(llullZee 2 + 10lle 2) -

We are thus allowed to estimate the difference w = u — v in the space
Zsngr%

g .
Proposition 4.2. Let0 < T <1,1<a<2,s>1-a/2 andu,v € LPH®
be two solutions to (1.3) on ]0,T[. Then we have
(4.20)
vl gy S Bl o kol vl e e vllgacg ol gy
Proof. Recall that w = u — v satisfies (3.23) with z = u +v. We extend w
from (0,7) to R by using the extension operator pr defined in (3.3). On
account of the uniform bounds on pr (see the paragraph just after (3.3)),

3« 1
PRECIL

. . . S— . .
it remains to estimate the [, -norm of w. From classical linear
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estimates in the framework of Bourgain’s spaces, the Duhamel formulation
associated with (3.23) leads to

(4.21) ol o are S 0ol + 100 gy o

Let Z and w be time extensions of z and w satisfying ||Z]|y. < [/z/y. and
T

||@H257%+% S llwll .—3.q. To simplify the notation we drop the tilde in the
Z,

T
sequel. From (4.21) we see that it suffices to estimate

1/2
10: ()| g arje S <ZHPNam(zw)||;_g+%,_l/2) .
N
We first estimate the (low-high) contribution Py (P<yzPyw):

10: P (Pen2PN0)|| g aae S D NIPN(PyyzPyvw)l|xs-20

N1<N
1/2 _
< >0 NN P 2l e | Pywll g2
N1<N
Ni %5
S HPNwHL%HS—%Jr% Z (W) HPNlZHL;ﬂHl*%

Ni<N
rg ||ZHL%><>H1*% ||PNw||L;’°H57%+% .

Similarly, the (high-low) interactions are estimated as follows:

102 Pn (Pn 2 P< yw) 12 S N||Pn(PnzP<yw)| xs—20

N1 \1/2
Pl 32 (o) IPwwllipenoe
Ni<N

HF57%+%,

SIPvel el -

Now we deal with the high-high interactions term

10: PN (Pon2Psnw)ll o 5493

5 Z N Z amPNQL(Qlel\hQLQw]\h) )

Ni>N (L,L1,L2) satisfying (2.5) FS_%+%’_%

We may assume that N7 > 1 since otherwise, it holds N <« Ny < 1 and we
have

Hpslax(PlePslw)”Fs—%+%,_1/2 S ”P§1ZHL;>°L2”P51WH

_1.
L¥H™2

3o

For N1 > 1, we will take advantage of the fact that X558 o
3, «
F*~2+%71/2 The contribution of the sum over L > NNY can be thus
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controlled by

Z 10 PN Q2 nne (28w ) g 19,170

Ni1>N

S Y NIPvQznng (zmwn) oo 1930 s

Ni>N
_ 13 | 3«
SN NSRRI Py Qw2
N1>>NL>NN°‘
1_s

< Y NN R (NN TYENE T o, gz s o oo 12

Ni>N
s () \1Hs

< S vV a/8(m) e, gz prs 1w, | oo g1/

NI>N 1

S 5N||ZHLEHSHU)HL§°H*1/2’

where |(095);ll2(zy S 1. The contribution of the region (L < NN{* and
L; 2 NNy') is estimated thanks to (4.10) by

Z 100 PNQenNg (@ NN 2N N )| o 13430 5/

N1>>N
_ 13 3
< S NI | Py(Qan e zn, wiy )l 2
N1>>N
_ 13 | 3¢ _ 1-s+<
S NN R (VN I 1 Qanve ey 1w, g2
N1>>N
1/2 1ta <N> s—1+%
s Z( ST () IRz el el
NI >N E

S Onllzllysllwlz -1z

where [|(di)jli2(z) < 1. Finally the contribution of the last region can be
bounded thanks to (4.10) by

> 110 PnQenng (Qenng 2N1 Quinpwny )| 13

xs- 8+ -8
Ni>N
<> N<N>87*+38aHPNQ<<NN;*(Q<<NN;XZN1 QnNewn, )]l 12
Ni1>N
3/2(N 1 Arlta/2
S >N TNTNNE) TN TP Qeen e, e e | Qg wn, [ o122
N1>>N

1/2 1ta <N> s—1+%
S Z( ) TR (ES) el o pvae

<onle ol eIl 7

which is acceptable. This concludes the proof of Proposition 4.2. O
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Proposition 4.3. Let 1 < o < 2,0 < T < 2 and u,v € LFH® with
5> 1—a/2 be two solutions to (1.3). Then it holds!

(422) u= ol gog o= w0l g + et olhglu—ol g
Proof. Recall that the difference w = u — v satisfies (3.23) with z = u 4 v.

Applying the operator Py with N > 0 dyadic to equation (3.23), taking the
H? scalar product with Pyw and integrating on ]0,¢[ we obtain

lonl® geg S IPvuol . g g HN NS fﬁé%]‘/ | Putewposun|
<

Therefore we have to estimate

Ji= 3NN gup (/ /PN 21)d wN‘

N0 tE[O )

We take extensions Z and @ of z and w supported in time in | — 4, 4[ such
that [|Z[lys < [lully; and [[@]zs < [Jw]|zs. To simplify the notation we drop
the tilde in the sequel.

Proceeding as in (3.27) we get

TS ST NINTHWODETEY) sup [L(ew, weny, wn )|
N>0 N1 >N t€]0,T[
_ _3-a

+ 303 MUNTHNDZEEY sup Ly (zeny wn wa,)
N>0N;ZN tE}O,T[

+Z Z N<N71><N>2(8737Ta) sup |It(ZN1awN1awN)|
N>0N; 2N t€]0, T

(4.23) =J1 + Jy + J3.

Estimates for J;. The contribution of the sum over N < 27 in J; is estimated
thanks to (3.4) by

> > NS/QHZNHLOOBHleH

N<29 NiZN

S HZIILgOLgllwll%ﬁs,s_a.

T

1. We include the case o = 1 here since it does not lead to additional difficulties and
will be useful in the appendix to prove LWP for (o, s) = (1,1/2).
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The contribution N > 2% in J; can be controlled with Lemma 4.3 by

—1
-1
S S [Er(5) 7 g sl ol s,

N>29 Ny 2N [>—4

N 5a/8
F(R) Tl lom s ol 2

NN el g o 2]
S lellymg il -1z ol -2

where we used for the first term Cauchy-Schwarz in (IV, V1) and then sum in
l. Note that for @ > 1 we could replace the f{’SH s=3+% _norm by a standard
L*H s=5+$% by invoking the discrete Young inequality.

Estimates for Jo. We separate different contributions. First, the contribu-
tion of the sum over N; < 27 is directly estimated by HZHL%OLQHU]HiooH—%

2(1_q) !

The contribution of the sum over N < ng
estimated by

> > NN T HZNl”L2HSHwN”Looﬁ_l/QHle”L2Hs—§+%

and N; > 2° is then easily

N1>29 N<N3(l a)
ZN HzNIHLQHusHLoog—quleHLQHs_§+%
N1>29
(4.24) < IleL%OHusHL@—wIlwllLooHs_g+% -

201
Finally the contribution of the sum over N; > 2% and N > N; 3l1—e) is

bounded thanks to Lemma 4.3 by

S [ lenll e lQungwm sl e

N1>29N>>N3(1 a) 1>—4

Hllonll peegrrllwml ;o age 1@~ wvp 28 oy

o

_ Sta 91
+ NN SIS Hlonl g g ol o ppoage 2wz

+ NYANTYE lwy |
< zllys ()

where again we used Cauchy-Schwarz in (N, Nl) and then sum over /.
Estimates for J3. We first notice that for N < Ny and N; > 27, since
1+2(s — 352) > 0, it holds

—1/2[lwn || s—a ||2n, || Lge s

L H L H*™

vz |wl]

pegvalollae + w0l o120 g-v2)

N(NTH(N)HE53%) < N (NTE) ()23,
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Therefore the contribution of this region to Js is controlled by J,. Finally
the contribution of N < Ny < 27 is easily bounded by ||z oo 12 [|w]]?

Lo M
Gathering all the estimates, we eventually obtain
(4.25)
S HZHYSHWHL%ﬁ—I/zHWHZ;_%% Il gl g os HWI!Z;_%+%
which completes the proof of (4.22). O

4.2. Unconditional well-posedness. We argue as in Section 3.2. We
notice that 1 — 5 > 0 > s, = % — « that is the critical Sobolev expo-
nent associated with (1.3) for dilation symmetry. Estimates (4.2), (4.3),
(4.14), dilations and continuity arguments ensure that the time of exis-

tence of a smooth solution is bounded from below by T' = T'(||ug|| ;;1-5) ~

2(a+1)
(1 + fluoll;;1-g) " 2»- . Passing to the limit on a sequence of smooth solu-

tions we construct a solution u € Y;# to (1.3) emanating from uy € H*(R).
On the other hand, Lemma 4.1, Proposition 4.1 and (4.19) ensure that any
L3 Hs-solution to (1.3) on ]0,T[ belongs to Y. Therefore, according to
(4.20) and (4.22), u is the only solution emanating from w that belongs
to L7S H®. Now the continuity of u with values in H*(R) as well as the
continuity of the flow-map in H*(R?) will follow from the Bona-Smith argu-
ment. Let ug € H® with s > 1 — 4. We denote by u” the solution of (1.3)
emanating from P<yug and we set for 1 < Nj < N, we set

Ny Na

w:i=u —Uu .

Let us notice that P<jwp = P<i(u™ —u¥?) = 0 and thus ||wo ||z ~ ||wol|m--
It thus follows from (4.20) -(4.22) and dilation arguments that for 7' ~

_ 2(a+t1) 1 .
(1 + [Juoll;i-g)" 2% and any —5 <r < s it holds

(4.26) lwllzg. S [lw(O) |l < Ny~%e(N1)

with e(y) — 0 as y — +o0o . Moreover, on account of Lemma 4.1 and
Proposition 4.1, for any r > 0 we have

(4.27) 1™y S g™ pzsr S N luol| s

Next, observing that w solves the equation

%(933(102) + am(ule) ,

we derive the following estimate on w.

(4.28) wy + Lopiw =

Proposition 4.4. Let1 <a <2, 0<T <2 andw € LFH® withs >1-5
be a solution to (4.28). Then it holds
2 < 2 3
lwllzeems < Nwollzs + [lwllZs,

(429) Hlu glholy + 1 g Bl gl
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Proof. We separate the contribution of 9, (w?) and 9, (u™N'w). First (4.17)

leads to
ZNZS/ /PNa ) Pyvw| S Jwl$s -

Second, applying (4.25) at the level s with z replaced by u’¥* we obtain
> / [ o)y < 1| et ol Tz g ol
T

which leads to (4.29) since s—3+2 > —1/2for s > 1—% and Z§ — Y. O
Estimates (4.26)-(4.27) together with (4.29) lead to

242
2

HwH%%OHS < lwol}s + (V1) + Ny 2T

S (V)
This shows that {u”"} is a Cauchy sequence in C([0,T]; H*) and thus {u”'}
converges in C([0,T]; H®) to a solution of (1.3) emanating from ug. There-
fore, the uniqueness result ensures that v € C([0,7]; H®). The proof of the

continuity of the solution-map is exactly the same as in Subsection 3.3 as
thus will be omitted .

w

Ny T ()

4.3. The periodic case. We notice that all our estimates still hold in the
periodic case and are uniform with respect to the period L > 1 as soon
as only frequencies with modulus greater or equal to 2—” are involved. We
thus have only to care about the contribution of the null frequencies. In the
regular case, it is not too hard to check that all the estimates still hold when
we also consider the contribution of the null frequencies. This is because
we only use the resonance hypothesis (1.4) for high input frequencies (see
Remark 1.2). In the non regular case, this is no longer true. Anyway, it is
easy to check that (1.3) preserves the mean-value and it is well-known that
the map u — v(t,x) := u(t,z — tfup) — fuo maps a solution of (1.3) with
mean-value {ug to a solution of (1.3) with mean value zero. Therefore, up
to this change of unknown, we may always assume that our solutions have
mean-value zero and thus all the estimates still hold in the periodic setting.
The proof of Theorem 1.1 is now completed.

5. DISSIPATIVE LIMITS

First, we notice that if w is solution to (1.6). then wy defined by wuy(t,z) =
Acu(AFet \z) is solution to

1
(5.1) Opuy + Loy quy + s)\O‘H_ﬁAZ\; uy + §am(u>\)2 =0

with o
L yv(8) = iX T pa 1 (AT1E)D(E) -

and

Av(€) = Mgs(\T1€)0(6), VE € R,
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Therefore, as in the preceding section, up to this change of unknown, of
parameter € and of operators we may assume that u satisfies (1.6) with
Lq41 and Ag that verify Hypotheses 1 and 2 for all 0 < A < 1.

Second, we notice that Hypothesis 2 now ensures that for 0 < A < 1 and
N > 1 dyadic,

(5.2) (A}Pyv, Pyv)rz 2 NP2 | Pyvlf3.
and
(5.3) |A3PNoll 2 S NP|| Pyl gz -

The main point is now to prove that the Cauchy problem (1.6) is locally
well-posed in H® uniformly in € > 0.

Proposition 5.1. Let 1 <a<2,0<p<1+aands>1-35.

2(a+1)
For any ¢ € H*(R) there exists T ~ (1 + |lugl| j1-¢) 2*=T and a solution
u. € C([0,T); H®) to (1.6). that is unique in some function space® embedded
in LF(0,T; H®). Moreover, there exists C > 0 such that for any € €]0,1],

(5.4) P [ue(B)l| s < Cllglms -

t ’
Finally, for any R > 0, the family of solution-maps S : ¢ +— u., € €]0, 1],
from B(0,R)ps into C([0,T(R)]; H*(R)) is equi-continuous, i.e. for any
sequence {¢n} C B(0, R)pgs converging to ¢ in H*(R) it holds
(5.5) P azﬁﬁ[ 1Se = Sepnll Lo (0.1(R) 15 (R))
Proof. We treat the cases («,s) # (1,1/2). This last case can be treated
in the same way by using the estimates derived in the appendix. First we
notice that for (1.6)., in view of (5.2), the energy estimate (4.14) becomes
(5.6)

lull 72 e+ VE ] g S lluollms+llull oo g lellvptliullizg msllull -5

LZHT2 T
On the other hand, viewing e Agu as a forced term, (4.2)-(4.3) together with
(5.3) lead to

2

G7) llullvy S lulloge e (U el a4

)+ el gm0
To derive an a priori bound from the above estimates, as in the previous
section, we have to use the dilation argument that is described in the be-
ginning of this section. So the dilation function wy, defined by wu)(¢,z) =
Au(A1Fet \z), satisfies (5.1) and we set

[vllvs == llvlloge s + Ver+1=5 v

B -
2 prs+
LTHS 2

2. For (a, s) # (1,1/2), this space is simply the space LFH* N LQTHS+§
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2(a+1)
Since f < a+1, this ensures that for A < (1+||¢||zs)” 20-T and 0 < T < 2,
it holds

luxllvg. < leoallas + (1 + HUAHij%)HUAHNl—%||UAHN% :
T T

with [[ox][mrs < A2 lloll s < 1. This leads to the uniform bound (5.4) for
smooth solutions to (1.6). by a classical continuity argument. Then passing
to the limit on sequence of smooth solutions we obtain the existence of a
solution u. € LFH® N L%HHg to (1.6). with 7" = (1 + ||UOHH1*%)_22(ZE)
and ¢ € H® as initial data. Obviously, this solution satisfies (5.4).

Now, proceeding in the same way for the difference of two solutions, it is
not too hard to check that (4.20) becomes

= vl oy Sl = vl g + =l g

+llutvllggllu = vl gz +llu+vligi-g llu—oll_._g.5-

T
whereas (4.22) becomes
It el g VA = g

S lluo = voll o-grg + llue +vellgyllue - vaIIZ;,%+% :
By the same dilation arguments as above this leads to
6:8) vl gy + Va0l g g S o vl g

and proves the uniqueness in the class L7, H® N LIQOCH s+8/2 " Finally the
continuity of the solution and the equi-continuity of the solution-map in
C(0,T; H?) follows from Bona-Smith arguments as in the previous section.

O

It is clear that the above proposition implies part (1) of Theorem 1.2.
Now, part (2) will follow from general arguments (see for instance [10]).

Let us denote by S: and S the nonlinear group associated with respectively

(1.6): and (1.3). Let ¢ € H*(R), s > 1—§ and let T' = T(||¢| ,,1-4) > 0

be given by Proposition 5.1. For any N > 0 we can rewrite S:(¢) — S(p) as
S:(0) = S(@) = (S:(¢) = Se(Pen)) + (S=(Pene) — S(Pene?))
+(S(Peng) = S(9)) = Lo + Jew + K
By continuity with respect to initial data in H*(R) of the solution map
associated with (1.3), we have ]\}1—I>noo KN 2o (0,7m5) = 0. Moreover, (5.5)

ensures that

lim sup HIE’N”LOO(QT;HS) =0.
0 e€]0,1]
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It thus remains to check that for any fixed N > 0, lin% | Je.N || oo (0,7;3) = O-
e— *

Since P<yp € H*™(R), it is worth noticing that Sc.(P<n¢) and S(P<n¢)
belong to C*°(R; H*(R)). Moreover, according to Theorem 1.2 and Propo-
sition 5.1, for all § € R and ¢ €]0, 1],

1S (P<n@)llzee o + 1S (P<n@)ll Lo e < C(N, 0, [0l 2) -

Now, setting v. := S.(P<ny) and v := S(P<n¢), we observe that w, :=
v, — v satisfies

1
Owe + Loprwe = —5393 (we(v + vg)) —eAgv.

with initial data w.(0) = 0. For s > 0, taking the H*-scalar product of this
last equation with w. and integrating by parts we get

d
g lwellaes S <1+||3x(v+vs)HL;°>Hwellquﬂl[zfs@x,(v+ve)]welngstlleJreQHvasllqu :

Applying the mean-value theorem on the Fourier transform of the commu-
tator term, it is not too hard to check that

(5.9) 11720z, fl9llz S W fellmatrllglles

that leads to

d
%Ilwe(f)llqu S O(Nys+2, [l 2)llwe ()1 H; +*C(N, s+ B, llell22)? -

Integrating this differential inequality on [0, T'], this ensures that lir% |well Lo (0,7;55) =
e— ”

0 and proves that
(5.10) ue — w in C([0,T]; H?)

2(a+1)
with 7' ~ (1 + [luoll,;i-¢) " 22-1 . Now, the fact that, ¢ being fixed, the
time of existence T of Sc(¢) in H® is greater or equal for ¢ > 0 small
enough to the time of existence T of S(¢p) follows by a classical contradiction

argument. Indeed, assuming that this is not true, there exists g, \, 0 such
that im7,, =T" < Ty. We set

- 2(a+1)
2a—1

0= (1 + HS(SD)HLoo(QT*;Hl*%))

which is well-defined since T* < T. Applying (5.10) about 7% /4 times we
eventually obtain that for n large enough

.9
156, ()T = 15 lin-2 = 2SO e 0 711~ %) -

But then the uniform bound from below on the existence time ensures that
T., > T* 4+ §/2 that contradicts limT., = T*. This ensures that T, > Ty
for £ > 0 small enough and, for 0 < T* < Ty, applying (5.10) about 7%/
times we get (5.10) with 7" = T™. This completes the proof of Theorem 1.2.
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6. APPENDIX: THE CASE v =1 AND s = 1/2.

This case is important since H'/2 is the energy space for the Benjamin-
Ono equation and also the Intermediate Long Waves equation. Unfortu-
nately, we are not able to prove the unconditional well-posedness in this
case. However, we are able to prove the well-posedness without using a
gauge transform. This is useful to treat perturbations of these equations
as we explained in the preceding section. In this section we indicate the
modifications of the proofs in this case. In the sequel we set

Ml/? . i;&éHl/2 mX71/2,1 .

Lemma 6.1. Let a =1,0<T < 2, and u € M%ﬂ be a solution to (1.3).
Then it holds

(6.1) lull g2 S el gz + HUII%@Q :

Proof. Working with the extension @ = pru (see (3.3)), still denoted w, if
suffices to estimate the X~ Y/21norm of u. First we notice that the low
frequency part can be easily controlled by

1P<asull 120 S ullTge 2 -

Now for N > 29, we have

lunlly =120 S I1Pxuoll-12 + NY2I S 0 unyung

Nj~No>N 1312
x

+N1/2 Z PN(%ZNNuM)
oy L1313

- HPNUQ”H_1/2 +IN +IIN .

Clearly, it holds

1/2
Iy 5 NY Z ||UN2HL§H1/2H|UN§||L§OH1/2
Nj~N2>N

S 5NH|“H%<;<>H1/2 )

with ||(0n)]|;2 S 1. On the other hand,

IIn 3 Nl/QH > Qunn, Pr(uay un,) o +N1/2H > Qunn, Py (uay un,)
NN te NN

< I+ 113

2
Ltac
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By almost orthogonality, we have

2 \1/2
my < N2(Y HQNNNQPN(UNNuNQ) L2>
N2<<N tx
1/2
< N2 el e lons e 2)
No< N
S uenlgzane g g e
S owlull e vzl g gy

with ||(dn5) ;2 < 1. It remains to control II%. Since the Fourier projectors
ensure that (7 — pa(§)) ¢ NNy, the resonance relation (1.4) leads to |r —
p2(&)| V|7 =71 —p2(€—&1)|) > NN; for I13,. We separate the contributions
of @>nnu~n and Q>nnN,UN,. For the first contribution we have

oy S NY2 YT (NNo) VANV Qo vyt | xersaasa s, | oo e
No< N

lunnllxrsaarallull oo prave

1/4 3/4

<
~Y
S Onllullg e [l o e lull go e s

with [|(dn)]|;z < 1 and where we used interpolation at the last step. For the
second contribution we write

oy S N2 Qenmunnlige sl @ Nwouns 2 ra

No&N

S N2 YT NTVNQanmouan oo 2 | Qs Nauns [l 210
No<N

S N1/ Z N71/4(NN2)71/4HUNNHLfOHl/QHU’N2HX1/4,1/4
No<N

1/4 3/4
S onllulge sl s N e
with ||(0n)]|;2 S 1. Gathering the above estimates, (5.2) follows. O

Lemma 6.2. Leta =1, 0<T <2 and u € M%/Q be a solution to (1.3).
Then it holds

(6.2 ez 1 S Nl e + ol g gl -

Proof. We follow the proof of Proposition 4.1. Note that MY2 < Y12,
According to (4.15) it suffices to control

I=Y" Y N(N) sup [L(un, veny,uny)l-
N>0 N1 >N ¢€]0,7

It is easy to check that the only term of the left-hand side of (4.16) that
causes trouble in the case @ = 1 is the first one. This term corresponds
to the contribution of QQzNN?uNl and Q~nNNpun,. For o =1 we control
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these contributions by applying Cauchy-Schwarz in (NN, N1). For instance,
the contribution of Q1 NeUnN, is estimated thanks to Lemma 4.3 by

S>>0 NN > 2N a2 11Qa e ey [ posz [ty [l poe 2
N>29 Ny >N [>—4

B 1/2
<Y (Y Bl Begs) (X 1Qunpun aae)

>—4 N1ZN>29 N1>N>29

1/2

S Null 2z llull g g ellull e -
U

Lemma 6.3. Let 0 < T < 1 and u,v € ]\7%/2 be two solutions to (1.3) on
10,T[. Then we have

(6.3)

ool -y S ol g ool gyallu—l ot ol s luol_y
and

64) vl gy S o=l + kvl =l

Remark 6.1. Actually we could avoid to put a weight on the low frequencies

of the difference uw — v. However, working in Z;l/Q allow us to use directly
some results of Section 4.

Proof. First we notice that (6.4) is already proven in Proposition 4.3. since

]\7%/2 — EN/TI/? — Y%/2. It remains to prove (6.3). We follow the proof
of Proposition 4.1. It is not to hard to check that the only contribution
that causes troubles in the right-hand side member of (4.21), in the case
a = 1, is the contribution of the low-high interaction term : Py (P<yzwny).
We proceed as in Lemma 6.1 . We take extensions z and w, supported in
|~ 4,4{ of = and w such that |25z < 1l /2 and ] 7-2/2 % ]2

For simplicity we drop the tilde. We first notice that the contribution of
P<yz is easily estimated by

102 Px (P12 wen) | p-12a.-12. S (N) T2 Py (Perzwan)zz, S N2 lpee 2wl g2 172
which is acceptable. Now we decompose the remaining contribution as

||8;,3PN(P>>1P§NZU)NN)||F71/2,1,71/2 <N Z Pn(Pn, zwn) | x-3/2.0
1< N <N

ST YT Quvni Pu(Pyyzwen)llz,
1«N1SN

+(N)T DT Quam Pu(Pyzwen) gz,
1N SN
=JiNn+JonN -
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By almost-orthogonality it holds

1/2
Jx SN0 Qe Py(Pry w2 )
1<KN1 SN

3 1/2
ST 1w el vl )
1<KN1SN
S HUJNNHL;X’H*U?HZHLle/Q’

which is acceptable. To treat Jo, we notice that the Fourier projectors ensure
that (7 — pa(&)) # NNy, the resonance relation (1.4) leads to |11 — p2(&1)| V
|7 — 11 —p2(§ — &1)|) > NNy for Jo . We separate the contributions of
Q>nnN, ZN, and Q>nN,w~n. For the first contribution we write

_ 1/2
N S (N2 ST NPPIQenw P2z, ol s

1<«N; <N
< (V2SS (NN TYVANY Qv P 2l s ol e 2
1< N1 <N
—1/4 3/4
S e 121 g allomll e 172

which is acceptable. For the second contribution, according to (4.10) we
have

J2 S <N>_1/2 Z HZNl||L§°H1/2||QZNN1U)NNHL?I
1< N1 <N

S )T (NN TN 2w, [ e e lwen | p-1/20 /2
1<NI <N

S Nwenllp-1202112] Lo g1/

which is acceptable. Gathering the above estimates we obtain (6.3). O

Gathering Lemmas 6.1-6.3 and proceeding as in Subsection 4.2 we obtain
the local-well-posedness in H'/2 of (1.3) for @ = 1. Note that the uniqueness

holds in the space Mr}/ 2,
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