On the number of nodal domains of the 2D isotropic quantum harmonic oscillator -- an extension of results of A. Stern -- - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

On the number of nodal domains of the 2D isotropic quantum harmonic oscillator -- an extension of results of A. Stern --

Résumé

In the case of the sphere and the square, Antonie Stern (1925) claimed in her PhD thesis the existence of an infinite sequence of eigenvalues whose corresponding eigenspaces contain an eigenfunction with two nodal domains. These two statements were given complete proofs respectively by Hans Lewy in 1977, and the authors in 2014 (see also Gauthier-Shalom--Przybytkowski (2006)). The aim of this paper is to obtain a similar result in the case of the isotropic quantum harmonic oscillator in the two dimensional case.
Fichier principal
Vignette du fichier
berard-helffer-quantum-harmonic-osc-V1-140908.pdf (298.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01061738 , version 1 (08-09-2014)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. On the number of nodal domains of the 2D isotropic quantum harmonic oscillator -- an extension of results of A. Stern --. 2014. ⟨hal-01061738⟩
347 Consultations
102 Téléchargements

Altmetric

Partager

More