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Abstract

In the case of the sphere and the square, Antonie Stern (1925) claimed in her
PhD thesis the existence of an infinite sequence of eigenvalues whose corresponding
eigenspaces contain an eigenfunction with two nodal domains. These two state-
ments were given complete proofs respectively by Hans Lewy in 1977, and the
authors in 2014 (see also Gauthier-Shalom–Przybytkowski (2006)). The aim of this
paper is to obtain a similar result in the case of the isotropic quantum harmonic
oscillator in the two dimensional case.
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1 Introduction and main results

The aim of this paper is to construct a sequence of eigenvalues, and a corresponding
sequence of eigenfunctions, for the 2D isotropic quantum harmonic oscillator

Ĥ := −∆+ x2 + y2 , (1.1)

with exactly two nodal domains. Similar results were stated in Antonie Stern’ PhD thesis
(with R. Courant as advisor), for the Dirichlet problem for the Laplacian in the square,
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and in the case of the Laplace-Beltrami operator on the sphere S2 [14]. This is only much
later that H. Lewy [9] in the case of the sphere (see also [2]), and the authors [1] in the
case of the square with Dirichlet conditions (see also Gauthier-Shalom–Przybytkowski
[6]), have proposed complete proofs of her statements.

Coming back to the isotropic harmonic oscillator, an orthogonal basis of eigenfunctions
is given by

φm,n(x, y) = Hm(x)Hn(y) exp(−
x2 + y2

2
) , (1.2)

for (m,n) ∈ N
2, where Hn(x) denotes the Hermite polynomial of degree n.

The eigenfunction φm,n corresponds to the eigenvalue 2(m+ n+ 1) ,

Ĥφm,n = 2(m+ n+ 1)φm,n . (1.3)

Here we use the definitions and notation of Szegö [16, §5.5].
The eigenspace Eℓ associated with the eigenvalue λ̂(ℓ) = 2(ℓ + 1) has dimension (ℓ + 1),
and is generated by the eigenfunctions φℓ,0, φℓ−1,1, . . . , φ0,ℓ.

For θ ∈ [0, π[, we shall consider the families of eigenfunctions,

Φθ
n := cos θ φn,0 + sin θ φ0,n , (1.4)

corresponding to the eigenvalue 2(n+ 1).

Our aim is to prove the following theorems.

Theorem 1.1 Assume that n is odd. Then, there exists an open interval Iπ
4
containing

π
4
, and an open interval I 3π

4

, containing 3π
4
, such that for

θ ∈ Iπ
4
∪ I 3π

4

\ {π
4
,
3π

4
} ,

the nodal set N(Φθ
n) is a connected simple regular curve, and the eigenfunction Φθ

n has

two nodal domains in R
2.

Theorem 1.2 Assume that n is odd. Then, there exists θc > 0 such that, for 0 < θ < θc,
the nodal set N(Φθ

n) is a connected simple regular curve, and the eigenfunction Φθ
n has

two nodal domains in R
2.

As in the case of the square, to prove Theorem 1.1, we begin by a symmetry argument to
reduce to a neighborhood of either π/4 or 3π/4, say 3π/4. The first step in the proof is
to analyze the zero set when θ = 3π

4
, in particular the points where the zero set is critical,

and to show that this only occurs on the diagonal.

The second step is then to show that the double crossings on the diagonal disappear
by perturbation, for θ close to and different from 3π

4
. Using the local nodal patterns

and some barrier lemmas, one can then show that the nodal set becomes a connected
simple curve, asymptotic to x = y at ±∞ . The local stability of the nodal set under
perturbation, then gives an explicit interval containing 3π/4 in which the phenomenon
occurs (for θ 6= 3π

4
of course).

The proof of Theorem 1.2 follows similar lines.
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Remarks.

1. In the case of the square the same kind of analysis is also interesting for determining
when the number of nodal domains of an n-th eigenfunction is equal to n (the
so called Courant sharp situation). Pleijel [11] observed that in the case of the
square (Dirichlet condition) this only occurs for the first, the second and the fourth
eigenfunctions (see [1] for a complete argument). In the case of the sphere, as a
consequence of the analysis of Leydold [10], this only occurs for the first and the
second eigenfunctions. It is natural to investigate a similar question in the case
of the isotropic harmonic oscillator, and more generally, the validity of Pleijel’s
theorem in this case. In the last section, we will give a Leydold’s like proof of the
fact that the only Courant sharp eigenvalues of the harmonic oscillator are λ̂(ℓ), for
ℓ = 0, 1 and 2. As communicated by I. Polterovich, this question will be analyzed
from a different point of view in [3].

2. A connected question is to analyze the zero set when θ is a random variable. We
refer to [7] for results in this direction.

3. These questions are related to the question of spectral minimal partitions [8]. In
the case of the harmonic oscillator similar questions appear in the analysis of the
properties of ultracold atoms (see for example [13]).

Theorems 1.1 and 1.2 concern the eigenspace En of the harmonic oscillator, with n odd.
When n is even, the picture is different. Some nodal sets have compact connected com-
ponents, with or without critical zeros, some have both compact and non-compact com-
ponents. Other examples can be analyzed as well. This will be analyzed in the future.

Acknowledgements.

The second author would like to thank D. Jakobson, I. Polterovich and M. Persson-
Sundqvist for useful discussions, transmission of information or computations.

2 A reminder on Hermite polynomials

We use the definition, normalization, and notations of Szegö’s book [16]. With these
choices, Hn has the following properties, [16, § 5.5 and Theorem 6.32].

1. Hn satisfies the differential equation

y′′(t)− 2t y′(t) + 2n y(t) = 0 .

2. Hn(t) is a polynomial of degree n which is even (resp. odd) for n even (resp. odd).

3. Hn(t) = 2tHn−1(t)− 2(n− 1)Hn−2(t) , n ≥ 2 , H0(t) = 1 , H1(t) = 2t .

4. Hn has n simple zeros tn,1 < tn,2 < · · · < tn,n .

5.
Hn(t) = 2tHn−1(t)−H ′

n−1(t) .
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6.
H ′

n(t) = 2nHn−1(t) . (2.1)

7. The coefficient of tn in Hn is 2n.

8. ∫ +∞

−∞

e−t2 |Hn(t)|2 dt = π
1

2 2n n! .

9. The first zero tn,1 of Hn satisfies

tn,1 = (2n+ 1)
1

2 − 6−
1

2 (2n+ 1)−
1

6 (i1 + ǫn) , (2.2)

where i1 is the first positive real zero of the Airy function, and limn→+∞ ǫn = 0 .

The following result (Theorem 7.6.1 in Szegö’s book [16]) will also be useful:

Lemma 2.1 The successive relative maxima of |Hn(t)| form an increasing sequence for

t ≥ 0 .

Proof.

It is enough to observe that the function

Θn(t) := 2nHn(t)
2 +H ′

n(t)
2

satisfies
Θ′

n(t) = 4t (H ′

n(t))
2 .

�

3 Stern-like constructions for the harmonic oscilla-

tor, case n-odd

3.1 The case of the square

Consider the square [0, π]2, with Dirichlet boundary conditions, and the following families
of eigenfunctions associated with the eigenvalues λ̂(1, 2r) := 1+4r2, where r is a positive
integer, and θ ∈ [0, π/4],

(x, y) 7→ cos θ sin x sin(2ry) + sin θ sin(2rx) sin y .

According to [14], for any given r, the typical evolution of the nodal sets when θ varies is
similar to the case r = 4 shown in Figure 1 [1, Figure 6.9]: generally speaking, the nodal
sets deform continuously, except for finitely many values of θ, for which crossings appear
or disappear.

We would like to get similar results for the isotropic quantum harmonic oscillator.
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Figure 1: Evolution of the nodal set in the case of the square.

3.2 Symmetries

Recall the notation,

Φθ
n(x, y) :=: Φn(x, y, θ) := cos θ φn,0 + sin θ φ0,n . (3.1)

Since Φθ+π
n = −Φθ

n, it suffices to vary the parameter θ in the interval [0, π[.

Since n is odd, we have the following symmetries.





Φθ
n(−x, y) = Φπ−θ

n (x, y) ,

Φθ
n(x,−y) = −Φπ−θ

n (x, y) ,

Φθ
n(y, x) = Φ

π
2
−θ

n (x, y) .

(3.2)

When n is odd, it therefore suffices to vary the parameter θ in the interval [0, π
4
]. The
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case θ = 0 is particular, so that we shall mainly consider θ ∈]0, π
4
].

3.3 Critical zeros

A critical zero of Φθ
n is a point (x, y) ∈ R

2 such that both Φθ
n and its differential dΦθ

n

vanish at (x, y). The critical zeros of Φθ
n satisfy the following equations.





cos θ Hn(x) + sin θ Hn(y) = 0 ,

cos θ H ′

n(x) = 0 ,

sin θ H ′

n(y) = 0 .

(3.3)

Equivalently, using the properties of the Hermite polynomials, a point (x, y) is a critical
zero of Φθ

n if and only if





cos θ Hn(x) + sin θ Hn(y) = 0 ,

cos θ Hn−1(x) = 0 ,

sin θ Hn−1(y) = 0 .

(3.4)

The only possible critical zeros of the eigenfunction Φθ
n are the points (tn−1,i , tn−1,j)

for 1 ≤ i, j ≤ (n − 1), where the coordinates are the zeros of the Hermite polynomial
Hn−1. The point (tn−1,i , tn−1,j) is a critical zero of Φθ

n if and only if θ = θ(i, j), where
θ(i, j) ∈]0, π[ is uniquely defined by the equation,

cos (θ(i, j)) Hn(tn−1,i) + sin (θ(i, j)) Hn(tn−1,j) = 0 . (3.5)

Here we have used the fact that Hn and H ′

n have no common zeros. We have proved the
following lemma.

Lemma 3.1 For θ ∈ [0, π[, the eigenfunction Φθ
n has no critical zero, unless θ is one

of the θ(i, j) defined by equation (3.5). In particular Φθ
n has no critical zero, except for

finitely many values of the parameter θ ∈ [0, π[. Let θ0 = θ(i0, j0), defined by some

(tn−1,i0 , tn−1,j0). The function Φθ0
n has finitely many critical zeros, namely the points

(tn−1,i , tn−1,j) which satisfy

cos θ0 Hn(tn−1,i) + sin θ0 Hn(tn−1,j) = 0 , (3.6)

among them the point (tn−1,i0 , tn−1,j0).

Remarks.
From the general properties of nodal lines [1, Properties 5.2], we derive the following
facts.

1. When θ 6∈ {θ(i, j) | 1 ≤ i, j ≤ n− 1}, the nodal set of the eigenfunction Φθ
n, denoted

by N(Φθ
n), is a smooth 1-dimensional submanifold of R2.
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2. When θ ∈ {θ(i, j) | 1 ≤ i, j ≤ n− 1}, the nodal set N(Φθ
n) has finitely many sin-

gularities which are double crossings. Indeed, the Hessian of the function Φθ
n at a

critical zero (tn−1,i, tn−1,j) is given by

Hess(tn−1,i,tn−1,j)Φ
θ
n = exp (−t2n−1,i + t2n−1,j

2
)

(
cos θ H ′′

n(tn−1,i) 0
0 sin θ H ′′

n(tn−1,j)

)
,

and the assertion follows from the fact that Hn−1 has simple zeros.

3.4 General properties of the nodal set N(Φθ
n)

Denote by L the finite lattice

L := {(tn,i , tn,j) | 1 ≤ i, j ≤ n} ⊂ R
2 , (3.7)

consisting of points whose coordinates are the zeros of the Hermite polynomial Hn. Since
we can assume that θ ∈]0, π

4
], we have the following inclusions for the nodal set,

L ⊂ N(Φθ
n) ⊂ L ∪

{
(x, y) ∈ R

2 | Hn(x)Hn(y) < 0
}
. (3.8)

Remarks. Assume that θ ∈]0, π
4
].

(i) The nodal set N(Φθ
n) cannot meet the vertical lines {x = tn,i}, or the horizontal lines

{y = tn,i} away from the set L.
(ii) The lattice point (tn,i, tn,j) is not a critical zero of Φθ

n (because Hn and H ′

n have no
common zero). As a matter of fact, near a lattice point, the nodal set N(Φθ

n) is a single
arc through the lattice point, with a tangent which is neither horizontal, nor vertical.

Figure 2 shows the evolution of the nodal set of Φθ
n when θ varies in the interval ]0, π

4
].

The values of θ with two digits are regular values (i.e. correspond to an eigenfunction
without critical zeros), the values of θ with at least three digits are critical values (i.e.
correspond to an eigenfunction with critical zeros). The form of the nodal set is stable
between two consecutive critical values of the parameter θ. In the figures, the grey lines
correspond to the zeros of H7. The blue lines correspond to the zeros of H ′

7, i.e. to the
zeros of H6.

We now describe the nodal set N(Φθ
n) outside a large enough square which contains the

lattice L. For this purpose, we give two barrier lemmas.

Lemma 3.2 Assume that θ ∈]0, π
4
]. For n ≥ 1, define tn−1,0 to be the unique point in

]−∞, tn,1[ such that Hn(tn−1,0) = −Hn(tn−1,1). Then,

1. ∀t ≤ tn,1, the function y 7→ Φθ
n(t, y) has exactly one zero in the interval [tn,n,+∞[ ;

2. ∀t < tn−1,0, the function y 7→ Φθ
n(t, y) has exactly one zero in the interval

]−∞,+∞[ .
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Figure 2: Evolution of the nodal set N(Φθ
n), for θ ∈]0, π

4
].

Proof.
Let v(y) := exp( t

2+y2

2
) Φθ

n(t, y). In ]tn,n,+∞[, v′(y) is positive, and v(tn,n) ≤ 0 . The first
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assertion follows. The local extrema of v occur at the points tn−1,j , for 1 ≤ j ≤ (n− 1) .
The second assertion follows from the definition of tn−1,0 , and from the inequalities,

cos θ Hn(t) + sin θ Hn(tn−1,j) ≤
1√
2

(
Hn(t)− |Hn|(tn−1,j)

)

< − 1√
2

(
Hn(tn−1,1)− |Hn|(tn−1,j)

)
≤ 0 ,

where we have used Lemma 2.1. �

Remark. Using the symmetry with respect to the vertical line {x = 0}, one has similar
statements for t ≥ tn,n and for t > −tn−1,0 .

Lemma 3.3 Let θ ∈]0, π
4
]. Define tθn−1,n ∈]tn,n , ∞[ to be the unique point such that

tan θ Hn(t
θ
n−1,n) = Hn(tn−1,1). Then,

1. ∀t ≥ tn,n, the function x 7→ Φθ
n(x, t) has exactly one zero in the interval ]−∞, tn,1] ;

2. ∀t > tθn−1,n, the function x 7→ Φθ
n(x, t) has exactly one zero in the interval ]−∞,∞[ .

3. For θ2 > θ1, we have tθ2n−1,n < tθ1n−1,n .

Proof. Let h(x) := exp(x
2+t2

2
) Φθ

n(x, t). In the interval ] −∞, tn,1], the derivative h′(x)
is positive, h(tn,1) > 0, and limx→−∞ h(x) = −∞, since n is odd. The first assertion
follows. The local extrema of h are achieved at the points tn−1,j. Using Lemma 2.1, for
t ≥ tθn−1,n , we have the inequalities,

Hn(tn−1,j) + tan θ Hn(t) ≥ tan θ Hn(t
θ
n−1,n)− |Hn(tn−1,j)|

= Hn(tn−1,1)− |Hn(tn−1,j)| ≥ 0 .

�

Remark. Using the symmetry with respect to the horizontal line {y = 0}, one has
similar statements for t ≤ tn,1 and for t < −tθn−1,n .

As a consequence of the above lemmas, we have the following description of the nodal
set far enough from (0, 0).

Proposition 3.4 Let θ ∈]0, π
4
]. In the set R2\]−tθn−1,n, t

θ
n−1,n[×]tn−1,0, |tn−1,0|[, the nodal

set N(Φθ
n) consists of two regular arcs. The first arc is a graph y(x) over the interval

]−∞, tn,1], starting from the point (tn,1, tn,n) and escaping to infinity with,

lim
x→−∞

y(x)

x
= − n

√
cot θ .

The second arc is the image of the first one under the symmetry with respect to (0, 0) in
R

2.
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3.5 Local nodal patterns

As in the case of the square, we study the possible local nodal patterns taking into account
the fact that the nodal set contains the lattice points L, can only intersect the connected
components of the set {Hn(x)Hn(y) < 0}, and consists of a simple arc at the lattice
points. The following figure summarized the possible nodal patterns in the interior of the
square [1, Figure 6.4],

Figure 3: Local nodal patterns.

Except for nodal arcs which escape to infinity, the local nodal patterns for the quantum
harmonic oscillator are the same (note that in the present case, the connected components
of the set {Hn(x)Hn(y) < 0} are rectangles, no longer equal squares).

Case (C) occurs near a critical zero. Following the same ideas as in the case of the square,
in order to decide between cases (A) and (B), we use the barrier lemmas, Lemma 3.2
or 3.3, the vertical lines {x = tn−1,j}, or the horizontal lines {y = tn−1,j}.
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4 Proof of Theorem 1.1

Note that
φn,0(x, y)− φ0,n(x, y) = −Φ

3π
4

n (x, y) = −Φ
π
4

n (y, x) .

Hence it is the same to work with θ = π
4
and the anti-diagonal, or to work with θ = 3π

4

and the diagonal. From now on, we work near 3π
4
.

4.1 The nodal set of Φ
3π

4

n

Proposition 4.1 Let {tn−1,i , 1 ≤ i ≤ n − 1} denote the zeroes of Hn−1. For n odd, the

nodal set of φn,0 − φ0,n consists of the diagonal x = y, and of n−1
2

disjoint simple closed

curves crossing the diagonal at the (n− 1) points (tn−1,i , tn−1,i), and the antidiagonal at

the (n− 1) points (tn,i ,−tn,i).

To prove Proposition 4.1, we first observe that it is enough to analyze the zero set of

(x, y) 7→ Ψn(x, y) := Hn(x)−Hn(y) .

The critical points of Ψn are determined by

H ′

n(x) = 0 , H ′

n(y) = 0 .

Hence, the critical points of Ψn consist of the (n − 1)2 points (tn−1,i , tn−1,j), for
1 ≤ i, j ≤ (n− 1), where tn−1,i is the i-th zero of the polynomial Hn−1 .

The zero set of Ψn contains the diagonal {x = y} . Since n is odd, there are only n points
belonging to the zero set on the anti-diagonal {x+ y = 0}.
On the diagonal, there are (n − 1) critical points. We claim that there are no critical
zeros outside the diagonal. Indeed, let (tn−1,i , tn−1,j) be a critical zero. Then, Hn(tn−1,i) =
Hn(tn−1,j). Using Lemma 2.1 and the parity properties of Hermite polynomials, we see
that |Hn(tn−1,i)| = |Hn(tn−1,j)| occurs if and only if tn−1,i = ±tn−1,j . Since n is odd, we
can conclude that Hn(tn−1,i) = Hn(tn−1,j) occurs if and only if tn−1,i = tn−1,j .

4.2 Existence of disjoint simple closed curves in the nodal set

of Φ
3π

4

n

The second part in the proof of the proposition follows closely the proof in the case of
the square (see Section 5 in [1]). Essentially, the Chebyshev polynomials are replaced
by the Hermite polynomials. Note however that the checkerboard is no more with equal
squares, and that the square [0, π]2 has to be replaced in the argument by the rectangle
[tn−1,0,−tn−1,0] × [−tθn−1,n, t

θ
n−1,n], for some θ such that 0 < θ < 3π

4
, see Lemmas 3.2

and 3.3.

The checkerboard argument holds, see (3.8).
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The separation lemmas of our previous paper [1] must be substituted by Lemmas 3.2
and 3.3, and similar statements with the lines {x = tn−1,j} and {y = tn−1,j}, for 1 ≤ j ≤
(n− 1).

One needs to control what is going on at infinity. As a matter of fact, outside a specific
rectangle centered at the origin, the zero set is the diagonal {x = y}, see Proposition 3.4.

Hence in this way (like for the square), we get that inside the zero set, we have the
diagonal and n−1

2
disjoint simple closed lines turning around the origin.

4.3 No other closed curve in the nodal set of Φ
3π

4

n

It remains to show that there are no other closed curves which do not cross the diagonal.
The “energy” considerations of our previous papers work in the following way.

Assume there is a connected component of the nodal set which does not meet the lattice
L. Using Proposition 3.4, we see that this component must be contained in some large
coordinate square centered at (0, 0), call it C. Since the nodal set cannot meet the vertical
or horizontal lines defined by the zeros of Hn, we would have a nodal domain ω contained
in C, hence in one of the bounded connected components of {Hn(x)Hn(y) < 0}, and
hence also in some infinite rectangle R between two consecutive zeros of Hn. We can
compute the energy for ω by applying Green’s formula in ω. We can compute the energy
of the infinite rectangle R by applying Green’s formula first in a finite rectangle, and
then taking the limit (using the decaying exponential factor). We have that the first
Dirichlet eigenvalues λ1 satisfy λ1(ω) = λ1(R) = 2(n + 1). On the other hand, taking
some ω1 such that ω ⊂ ω1 ⊂ R, with strict inclusions, we have λ1(ω) > λ1(ω1) ≥ λ1(R),
a contradiction.

A simple alternative argument is the following. We look at the line y = αx for some
α 6= 1. The intersection of the zero set with this line corresponds to the zeroes of the
polynomial x 7→ Hn(x) − Hn(αx) which has at most n zeroes. But in our previous
construction, we get at least n zeroes. So the presence of extra curves would lead to a
contradiction for some α. This argument solves the problem at infinity as well.

4.4 Perturbation argument

Figure 4 shows the desingularization of the nodal set N(Φ
3π
4

n ), from below and from above.
The picture is the same as in the case of the square (see Figure 1), all the critical points
disappear at the same time and in the same manner, i.e. all the double crossings open
up horizontally or vertically depending whether θ is less than or bigger than 3π

4
.

As in the case of the square, in order to show that the nodal set can be desingularized

under small perturbation, we look at the signs of the eigenfunction Φ
3π
4

n near the critical
zeros. We use the cases [i] and [ii] which appear in Figure 5 below (see also [1, Figure 6.7]).

The sign configuration for φn,0(x, y)−φ0,n(x, y) near the critical zero (tn−1,i, tn−1,i) is that

12



Figure 4: The nodal set of N(Φθ
n) near

3π
4
.

Figure 5: Signs near the critical zeros.

of {
case [i], if i is even,
case [ii], if i is odd.

Looking at the intersection of the nodal set with the vertical line {y = tn−1,i}, we have
that

(−1)i (Hn(t)−Hn(tn−1,i)) ≥ 0, for t ∈]tn,i, tn,i+1[ .

For positive ǫ small, we write

(−1)i (Hn(t)− (1 + ǫ)Hn(tn−1,i)) = (−1)i (Hn(t)−Hn(tn−1,i)) + ǫ(−1)i+1 Hn(tn−1,i) ,

so that

(−1)i (Hn(t)− (1 + ǫ)Hn(tn−1,i)) ≥ 0, for t ∈]tn,i, tn,i+1[ .

A similar statement can be written for horizontal line {x = tn−1,i} and −ǫ, with ǫ > 0,
small enough. These inequalities describe how the crossings open up all at the same time,
and in the same manner, vertically (case I) or horizontally (case II), see Figure 6, as in
the case of the square [1, Figure 6.8].

We can then conclude as in the case of the square, using the local nodal patterns, Sec-
tion 3.5.
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Figure 6: Desingularization at a critical zero.

Remark. Because the local nodal patterns can only change when θ passes through one
of the values θ(i, j) defined in (3.5), the above arguments work for θ ∈ J \ {3π

4
}, for any

interval J containing 3π
4
and no other value θ(i, j).

5 Proof of Theorem 1.2

Proposition 5.1 The conclusion of Theorem 1.2 holds with

θc := inf {θ(i, j) | 1 ≤ i, j ≤ n− 1} . (5.1)

Proof. The proof consists in the following steps. For simplicity, we call N the nodal set
N(Φθ

n).

• Step 1. By Proposition 3.4, the structure of the nodal set N is known outside a
large coordinate rectangle centered at (0, 0) whose sides are defined by the ad hoc
numbers in Lemmas 3.2 and 3.3. Notice that the sides of the rectangle serve as
barriers for the arguments using the local nodal patterns as in our paper for the
square.

• Step 2. For 1 ≤ j ≤ n− 1, the line {x = tn−1,j} intersects the set N at exactly one
point (tn−1,j, yj), with yj > tn,n when j is odd, resp. with yj < tn,1 when j is even.
The proof is given below, and is similar to the proofs of Lemmas 3.2 or 3.3.

• Step 3. Any connected component of N has at least one point in common with the
set L. This follows from the argument with y = αx or from the energy argument
(see Subsection 4.3).

• Step 4. Follow the nodal set from the point (tn,1, tn,n) to the point (tn,n, tn,1), using
the analysis of the local nodal patterns as in the case of the square.

Proof of Step 2. For 1 ≤ j ≤ (n− 1), define the function vj by

vj(y) := cos θ Hn(tn−1,j) + sin θ Hn(y) .
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The local extrema of vj are achieved at the points tn−1,i, for 1 ≤ i ≤ (n−1), and we have

vj(tn−1,i) = cos θ Hn(tn−1,j) + sin θ Hn(tn−1,i) ,

which can be rewritten, using (3.5), as

vj(tn−1,i) =
Hn(tn−1,j)

sin θ(j, i)
sin (θ(j, i)− θ) .

The first term in the right-hand side has the sign of (−1)j+1 and the second term is
positive provided that 0 < θ < θc. Under this last assumption, we have

(−1)j+1 vj(tn−1,i) > 0, ∀i, 1 ≤ i ≤ (n− 1) . (5.2)

The assertion follows. �

6 Courant’s theorem for the 2D quantum harmonic

oscillator

Recall that Eℓ is the eigenspace of Ĥ associated with the eigenvalue λ̂(ℓ) := 2(ℓ + 1).
This eigenspace is generated by the eigenfunctions φℓ−j,j, for 0 ≤ j ≤ ℓ. It has dimension
(ℓ + 1). The functions in Eℓ are even (resp. odd) under the map a : (x, y) 7→ (−x,−y)
when ℓ is even (resp. odd).

Since dim(
⊕ℓ−1

j=0 Ej) = ℓ(ℓ+1)
2

, Courant’s theorem gives the following estimate for the
number µ(u) of nodal domains of an eigenfunction u ∈ Eℓ,

µ(u) ≤ ℓ(ℓ+ 1)

2
+ 1 =: µC(ℓ) . (6.1)

Using the symmetry or anti-symmetry with respect to a, one can improve Courant’s
estimate.

Proposition 6.1 Let u ∈ Eℓ. Then, the number µ(u) of nodal domains of u satisfies the

inequalities,

µ(u) ≤ µL(ℓ) :=

{
2(r2 + 1) if ℓ = 2r ,
2r(r + 1) + 2 if ℓ = 2r + 1 .

(6.2)

In particular, we have that µL(ℓ) < µC(ℓ) provided that ℓ ≥ 3, and µL(ℓ) = µC(ℓ), when
ℓ = 2.

Corollary 6.2 The only Courant sharp eigenvalues of the quantum harmonic oscillator

are the eigenvalues, 



λ̂(0) = 2, with µC(0) = 1 ,

λ̂(1) = 4, with µC(1) = 2 ,

λ̂(2) = 6, with µC(2) = 4 .

(6.3)
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Proof of the corollary. The first two assertions are clear. The last one follows from
the fact than the nodal set of an eigenfunction in E2 is a hyperbola, the union of two lines
which intersect, or an ellipse. �

Proof of the proposition. We use Leydold’s argument in [10], namely the symmetry
properties of the eigenfunctions with respect to a, the fact that an odd eigenfunction is
always orthogonal to an even one, and Courant’s proof.

• Assume that u ∈ Eℓ with ℓ = 2r. We have

dim(
r−1⊕

j=0

E2j) = r2 .

There are ki nodal domains of u which are a invariant, a(ω) = ω, and 2ka nodal domains
which are not invariant, a(ω) ∩ ω = ∅. Assume that ki + ka ≥ r2 + 2. Define functions
uj such that uj = u|ωj

, and 0 elsewhere, for each invariant domain ωj, 1 ≤ j ≤ ki − 1,
and uj = u|ωp∪a(ωp), and 0 elsewhere, for the ka non-invariant domains. This gives us
ka + ki − 1 ≥ r2 + 1 independent functions. We can find a linear combination v of
these functions such that ‖v‖L2 = 1, v ⊥ ⊕r−1

j=0 E2j, and Q(v)) = 2(ℓ + 1), where Q
is the quadratic form associated with Ĥ. The function v is even by construction so
that it is orthogonal to any odd eigenfunction. It follows that v ∈ Eℓ which leads to a
contradiction since v vanishes on an open set. It follows that ki + ka ≤ r2 + 1 and hence
that ki + 2ka ≤ 2(r2 + 1). This proves the first assertion.

• Assume that u ∈ Eℓ with ℓ = 2r + 1. The proof is similar. We have that

dim(
r−1⊕

j=0

E2j+1) = r(r + 1) .

For an odd eigenfunction u, the nodal domains satisfy a(ω) ∩ ω = ∅, so that µ(u) = 2k,
and we can construct k linearly independent functions uj = u|a(ω)∪ω, and we can proceed
as above. �

Remark. In the above proof, we used Courant’s proof which is based on energy estimates,
using Green’s formula for the eigenfunction u. That this can be done in the case of the
quantum harmonic operator follows from the following argument. At infinity, the nodal
set of u is a regular submanifold. It consists of arcs asymptotic to lines determined by the
homogeneous higher order terms in exp(x

2+y2

2
) u(x, y)). We can apply Green’s formula to

the intersections of the nodal domains of u with balls B(0, r). When r tends to infinity,
the boundary terms involving the ball tend to zero due to the presence of the exponential
factors.
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