Stability properties for quasilinear parabolic equations with measure data
Résumé
Let $\Omega$ be a bounded domain of $\mathbb{R}^{N}$, and $Q=\Omega \times(0,T).$ We study problems of the model type \[ \left\{ \begin{array} [c]{l}% {u_{t}}-{\Delta_{p}}u=\mu\qquad\text{in }Q,\\ {u}=0\qquad\text{on }\partial\Omega\times(0,T),\\ u(0)=u_{0}\qquad\text{in }\Omega, \end{array} \right. \] where $p>1$, $\mu\in\mathcal{M}_{b}(Q)$ and $u_{0}\in L^{1}(\Omega).$ Our main result is a \textit{stability theorem }extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u\longmapsto\mathcal{A}(u)=$div$(A(x,t,\nabla u))$\textit{. }
Origine | Fichiers produits par l'(les) auteur(s) |
---|