Stability properties for quasilinear parabolic equations with measure data - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2015

Stability properties for quasilinear parabolic equations with measure data

Résumé

Let $\Omega$ be a bounded domain of $\mathbb{R}^{N}$, and $Q=\Omega \times(0,T).$ We study problems of the model type \[ \left\{ \begin{array} [c]{l}% {u_{t}}-{\Delta_{p}}u=\mu\qquad\text{in }Q,\\ {u}=0\qquad\text{on }\partial\Omega\times(0,T),\\ u(0)=u_{0}\qquad\text{in }\Omega, \end{array} \right. \] where $p>1$, $\mu\in\mathcal{M}_{b}(Q)$ and $u_{0}\in L^{1}(\Omega).$ Our main result is a \textit{stability theorem }extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u\longmapsto\mathcal{A}(u)=$div$(A(x,t,\nabla u))$\textit{. }
Fichier principal
Vignette du fichier
BVNQH-HAL-Stability-4-septembre-14.pdf (298 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01060682 , version 1 (04-09-2014)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Quoc-Hung Nguyen. Stability properties for quasilinear parabolic equations with measure data. Journal of the European Mathematical Society, 2015, 17, pp.2103-2135. ⟨10.4171/JEMS/552⟩. ⟨hal-01060682⟩
114 Consultations
84 Téléchargements

Altmetric

Partager

More