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Stability properties for quasilinear parabolic equations with
measure data

Marie-Frangoise BIDAUT-VERON* Quoc-Hung NGUYENT

Abstract
Let  be a bounded domain of RV, and Q = Q x (0, T). We study problems of the model type

u — Ap = 4 in Q,
u=20 on 90 x (0,T),
u(0) = uo in Q,

where p > 1, p € Mp(Q) and up € L*(R2). Our main result is a stability theorem extending the re-
sults of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators u ——

A(u) =div(A(z,t, Vu)).

1 Introduction

Let  be a bounded domain of RV, and Q = Q x (0,T), T > 0. We denote by M,(£2) and M,(Q) the sets
of bounded Radon measures on 2 and @ respectively. We are concerned with the problem

u — div(A(z, t, Vu)) = p in Q,
u=0 on 99 x (0,7T), (1.1)
u(0) = uo in Q,

where 11 € My(Q), ug € L*(Q) and A is a Caratheodory function on @ x R¥ such that for a.e. (z,t) € Q,
and any &, ¢ € RY,

A(Iﬁ,t,&)f > Al |§|p7 |A(£L', t7§>| < a(z, t) + A2 |§|P_1 ) A17A2 > 05 ac Lp/ (Q)7 (12)
(A(z,t,8) = A(2,1,0)). (=) >0 ifE#C, (1.3)
for p > 1.This includes the model problem where div(A(z,t, Vu)) = A,u, where A, is the p-Laplacian.

The corresponding elliptic problem:

—Apu=p in Q, u=20 on 01,
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with u € Mp(§2), was studied in [9, 10] for p > 2 — 1/N, leading to the existence of solutions in the sense of
distributions. For any p > 1, and p € L(f2), existence and uniqueness are proved in [4] in the class of entropy
solutions. For any p € Mp(§2) the main work is done in [14, Theorems 3.1, 3.2], where not only existence is
proved in the class of renormalized solutions, but also a stability result, fundamental for applications.

Concerning problem (1.1), the first studies concern the case u € LP' (Q) and ug € L%(R), where existence
and uniqueness are obtained by variational methods, see [19]. In the general case u € My(Q) and ug €
My(9), the pionner results come from [9], proving the existence of solutions in the sense of distributions for

1

- 1.4
N+1’ (1.4)

p>p=2—
see also [11]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces u € LP=*° (Q) and |Vu| €
L™ (Q), where

N
pe=p—1+L  m —p (1.5)

N N+1
This condition (1.4) ensures that u and |Vu| belong to L! (Q), since m. > 1 means p > p; and p. > 1 means
p > 2N/(N + 1). Uniqueness follows in the case p = 2, A(z,t, Vu) = Vu, by duality methods, see [21].
For p € L'(Q), uniqueness is obtained in new classes of entropy solutions, and renormalized solutions,
see [5, 26, 27].
A larger set of measures is studied in [15]. They introduce a notion of parabolic capacity initiated and
inspired by [24], used after in [22, 23], defined by

Q _ . . S .
cp (E) 1nf(ECU1(I)1pfenCQ{||u||W cu € Wou>xu  ae in Q}),

for any Borel set E C Q, where setting X = LP((0,T); Wy'?(Q) N L3(Q)),
W={z:2€X, z €X'}, embedded with the norm ||u|[w = |[u||x + ||u||x"-
Let Mo(Q) be the set of Radon measures p on @ that do not charge the sets of zero c}?—capacity:

VE Borel set C Q, c¢%(E)=0=>|u|(E)=0.

Then existence and uniqueness of renormalized solutions of (1.1) hold for any measure pu € Mp(Q) N Mo(Q),
called soft (or diffuse, or reqular) measure, and ug € L'(2), and p > 1. The equivalence with the notion of
entropy solutions is shown in [16]. For such a soft measure, an extension to equations of type (b(u))i—Apu = u
is given in [6]; another formulation is used in [23] for solving a perturbed problem from (1.1) by an absorption
term.

Next consider an arbitrary measure 1 € Mp(Q). Let M4(Q) be the set of all bounded Radon measures
on @ with support on a set of zero ¢¥-capacity, also called singular. Let M (Q), M7 (Q), M7 (Q) be the
positive cones of M;(Q), Mo(Q), Ms(Q). From [15], p can be written (in a unique way) under the form

p=po+ps, o €Mo(Q), s =pd —pg, il ey € MEQ), (1.6)
and pp € Mo(Q) admits (at least) a decomposition under the form
po=f—divg+h, fELYQ), ge(L”@Q)Y, heX, (L.7)

and we write o = (f, g,h). Conversely, any measure of this form, such that h € L*(Q), lies in M(Q),
see [23, Proposition 3.1]. The solutions of (1.1) are searched in a renormalized sense linked to this decom-
position, introduced in [15, 22]. In the range (1.4) the existence of a renormalized solution relative to the



decomposition (1.7) is proved in [22], using suitable approximations of pg and ps. Uniqueness is still open,
as well as in the elliptic case.

In all the sequel we suppose that p satisfies (1.4). Then the embedding W, ?(Q) C L2(Q) is valid, that
means

X =LP((0,T); Wy P(Q), X =LV ((0,7); W (Q)).

In Section 2 we recall the definition of renormalized solutions, given in [22], that we call R-solutions of
(1.1), relative to the decomposition (1.7) of pg, and study some of their properties. Our main result is a
stability theorem for problem (1.1), proved in Section 3, extending to the parabolic case the stability result
of [14, Theorem 3.4]. In order to state it, we recall that a sequence of measures u, € Mp(Q) converges to a
measure p € Mp(Q) in the narrow topology of measures if

n—oo

lim wdun=/ pdp Vo € C(Q) N L7(Q).
Q Q

Theorem 1.1 Let A: Q x RY — RY satisfy (1.2),(1.3). Let ug € L*(Q), and
p=f—divg+he +pd —pg € My(Q),
with f € LYQ),g € (LY (Q))N, h € X and uf, u; € MH(Q). Let ug,, € L'(),
tin = fn = divgn + (ha)e + pn — 1 € My(Q),
with fn € LYQ),gn € (L (Q))N, hy, € X, and pp,nn € M (Q), such that
pn=pp—diVpl +pus,  Tn=mn — divD] + s,
with py,my € LNQ), p2,m2 € (L7 (Q)N and pp s, nn,s € ME(Q). Assume that

sup || (Q) < oo,

and {upn} converges to ug strongly in L*(Q), {fn} converges to f weakly in L*(Q), {gn} converges to g
strongly in (LP (Q))N, {hn} converges to h strongly in X, {pn} converges to ut and {n,} converges to py
in the narrow topology; and {py.} ,{nL} are bounded in L*(Q), and {p2},{n2} bounded in (L? (Q))".

Let {u,} be a sequence of R-solutions of

Un,t — div(A(z,t, Vuy)) = tn in Q,
Up =0 on 90 x (0,T), (1.8)
Un (0) = ug p in Q.

relative to the decomposition (fn + pL —nL, gn + p2 — 02, hp) of pno. Let Uy = uy — hoy.

Then up to a subsequence, {u,} converges a.e. in Q to a R-solution u of (1.1), and {U,} converges a.e.
in Q toU = u— h. Moreover, {Vu,},{VU,} converge respectively to Vu,VU a.e. in @, and {T(U,)}
converge to T(U) strongly in X for any k > 0.

In Section 4 we check that any measure u € Mp(Q) can be approximated in the sense of the stability
Theorem, hence we find again the existence result of [22]:



Corollary 1.2 Let ug € L*(Q) and p € My(Q). Then there exists a R-solution u to the problem (1.1) with
data (p,ug).

Moreover we give more precise properties of approximations of u € M;(Q), fundamental for applications,
see Propositions 4.1 and 4.2. As in the elliptic case, Theorem 1.1 is a key point for obtaining existence results
for more general problems, and we give some of them in [2, 3, 20], for measures u satisfying suitable capacitary
conditions. In [2] we study perturbed problems of order 0, of type

ur — Apu+Gu) = p in Q, (1.9)

where G(u) is an absorption or a source term with a growth of power or exponential type, and p is a good
in time measure. In [3] we use potential estimates to give other existence results in case of absorption with
p > 2. In [20], one considers equations of the form

ug — div(A(z, t, Vu)) + G(u, Vu) = u

under (1.2),(1.3) with p = 2, and extend in particular the results of [1] to nonlinear operators.

2 Renormalized solutions of problem (1.1)

2.1 Notations and Definition

For any function f € L(Q), we write fQ f instead of fQ fdzdt, and for any measurable set E CQ, fE f
instead of [, fdxdt. For any open set @ of R™ and F € (L¥(w))", k € [1,00],m,v € N*, we set 1E0y.0 =
IF 1l 2k ()

We set T (r) = max{min{r, k}, —k}, for any & > 0 and r € R. We recall that if v is a measurable function
defined and finite a.e. in @, such that T (u) € X for any k > 0, there exists a measurable function w from
Q into RY such that VT (u) = Xju|<kW, a.e. in @, and for any k > 0. We define the gradient Vu of u by
w = Vu.

Let p = po+ps € Mp(Q), and (f, g, h) be a decomposition of g given by (1.7), and g = po—ht = f—divg.
In the general case jig ¢ M(Q), but we write, for convenience,

/ wdfig = / (fw+ g.Vw), Yw € XNL*™(Q).
Q Q

Definition 2.1 Let ug € LY(Q), pp = po + pus € Mp(Q). A measurable function u is a renormalized
solution, called R-solution of (1.1) if there exists a decompostion (f,g,h) of po such that

U=u—hecL((0,T);Wy° () NL=((0,T); LY(Q)), VYoec[l,m.); TpU)eX, Vk>0, (2.1)

and:

(i) for any S € W2 (R) such that S’ has compact support on R, and S(0) =0,

— | S(uo)e(0)dz — /Q oeS(U) + /Q S (U) A, t, Vi) Vg + /Q S (U)o Az, t, Vu) VU = /Q S'(U)pdfis,

Q
(2.2)
for any p € X N L>®(Q) such that o, € X' + LY (Q) and (., T) = 0;



(ii) for any ¢ € C(Q),

1
lim — / qu(:c,t,Vu).VU:/ dut (2.3)
{m<U<2m}
lim E / (bA(z,t,Vu).VU:/ odpy . (2.4)
m—oo m Q

{—-m>U>—-2m}

Remark 2.2 As a consequence, S(U) € C([0,T]; L*(?)) and S(U)(.,0) = S(u,) in Q; and u satisfies the
equation

(S(U)), — div(S' (U)A(x,t, V) + S"(U)A(x, t, Vu). VU= £§'(U) — div(gS"(U)) + S"(U)g.VU,  (2.5)

in the sense of distributions in Q, see [22, Remark 3]. Moreover assume that [—k,k] D suppS’. then from
(1.2) and the Holder inequality, we find easily that

/v
1Sy iy < € 1Sl qay lIVuP 012k |2+ 190012k o + IIVTROIIE
1/
t lally o + lals o + 17110 + Nl o IVl xiorenllV2 + gl o). (26)
,Q

where C' = C(p, o). We also deduce that, for any ¢ € X N L>(Q), such that p;€ X' + LY(Q),

/S dm—/Suo d:c—/antS(U)—l—/QS’(U)A(x,t,Vu).Vgo

Jr/QS”(U)A(x,t,Vu).VUcp/QS/(U)gadﬁB. (2.7)

Remark 2.3 Let u,U satisfy (2.1). It is easy to see that the condition (2.8) ( resp. (2.4) ) is equivalent to

1
lim — / PA(z,t, Vu).Vu = / pdut (2.8)
m—oo 1M Q
{m<U<2m}
resp.
1
lim — / ¢A(x,t,Vu).Vu = / odu . (2.9)
m—oo M Q
{m>U>—-2m}
In particular, for any ¢ € Lp,(Q) there holds
. 1 . 1
lim — |[Vulp =0, lim — [VU|p = 0. (2.10)
m—o0 M m—oo M
m<|U|<2m m<|U|<2m

Remark 2.4 (i) Any function U € X such that Uy € X' + LY(Q) admits a unique cg—quasi continuous
representative, defined cg quasi a.e. in @, still denoted U. Furthermore, if U € L*°(Q), then for any uop €
Mo(Q), there holds U € L>®(Q, duo), see [22, Theorem 3§ and Corollary 1].

(i1) Let u be any R- solution of problem (1.1). Then, U = u — h admits a cg-quasi continuous functions
representative which is finite cz?—quasi a.e. in Q, and u satisfies definition 2.1 for every decomposition (f, g, iL)
such that h — h € L*°(Q), see [22, Proposition 3 and Theorem / |.



2.2 Steklov and Landes approximations

A main difficulty for proving Theorem 1.1 is the choice of admissible test functions (S, ) in (2.2), valid for
any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted
to parabolic equations:

Definition 2.5 Let ¢ € (0,T) and z € L}, .(Q). For anyl € (0,e) we define the Steklov time-averages
[Z]la [Z]*l sz by

t+1
[2)i(z,t) = % / 2(x, s)ds fora.e. (x,t) € Qx (0,T —¢),

[z]—i(z,t) = % / z(x, s)ds for a.e. (z,t) € Q x (e,T).
=1

The idea to use this approximation for R-solutions can be found in [7]. Recall some properties, given in [23].
Let e € (0,7), and 1 € CZ(2 x [0,T)), p2 € C°(€2 x (0,T]) with Suppy; C Q x [0,T — ¢], Suppya C
Q) x [g,T]. There holds:

(i) If z € X, then ¢1[z]; and @a[z]_; € W.

(i) If 2 € X and 2z, € X' + LY(Q), then, as | — 0, (¢1[2];) and (p2[2]—;) converge respectively to 1z and
oz in X, and a.e. in @Q; and (p1[2]1),, (p2[z]—1), converge to (p12)s, (p22): in X' + L1(Q).

(iil) If moreover z € L*°(Q), then from any sequence {l,,} — 0, there exists a subsequence {l,} such that
{[z]1,},{[#]=1,} converge to z, cg—quasi everywhere in Q.

Next we recall the approximation used in several articles [8, 12, 11], first introduced in [17].

Definition 2.6 Let k > 0, andy € L>=(2) and Y € X such that ||y||p~) < k and ||Y||p=q) < k. For
any v € N, a Landes-time approximation (Y), of the function Y is defined as follows:

¢
Y),(x,t) = Z//O Y(z,s)e’Cds + ez, (x), Y(z,t) € Q.

where {z,} is a sequence of functions in Wol’p(Q) N L>(Q), such that ||2,||p~) <k, {2,} converges to y
: —1 P
a.e. in Q, and v ||zl,||W017p(Q) converges to 0.

Therefore, we can verify that ((Y),): € X, (Y), € X N L2(Q), ||(Y)||lco,0 < k and {(Y),} converges
to Y strongly in X and a.e. in Q. Moreover, (Y), satisfies the equation ((Y),): = v (Y — (Y),) in the sense
of distributions in @, and (Y),(0) = z, in . In this paper, we only use the Landes-time approximation
of the function Y = T} (U), where y = Tk (uo).

2.3 First properties

In the sequel we use the following notations: for any function J € W1°°(R), nondecreasing with J(0) = 0,
we set ” ,
J(r) :/ J(r)dr, J(r) :/ J'(T)rdr. (2.11)
0 0
It is easy to verify that J(r) > 0,

J(r)+J(r)=J(r)r, and J(r)—=T(s)>s(J(r)=J(s)  Vr,s€R. (2.12)



In particular we define, for any k£ > 0, and any r € R,

Ti(r) = /OT Ty (7)dr, Ti(r) = /OT Ty (7)rdT, (2.13)

and we use several times a truncature used in [14]:

2m — |s|

Hop(r) = X[—m,m) (1) + Xm<|s|<2m(T), H,(r) = /OT H,, (1)dr. (2.14)

The next Lemma allows to extend the range of the test functions in (2.2).

Lemma 2.7 Let u be a R-solution of problem (1.1). Let J € W'*°(R) be nondecreasing with J(0) = 0, and
J defined by (2.11). Then,

/Q S'(U)A(w,t, Vu).V (£J(SU))) + /Q S"(U)A(w, t, V). VUEI(S(U))

1émwwwmawmwlfﬁﬁw»sésﬂ%ﬂﬂmmw, (2.15)

for any S € W2%>(R) such that S’ has compact support on R and S(0) = 0, and for any € € C1(Q) N
Whe(Q),& > 0.

Proof. Let J be defined by (2.11). Let ¢ € CL([0,T)) with values in [0,1], such that ¢; < 0, and
¢ = CE[H(SU)));. Clearly, ¢ € X N L>*(Q); we choose the pair of functions (p, S) as test function in (2.2).
From the convergence properties of Steklov time-averages, we easily will obtain (2.15) if we prove that

Jgﬂ&é@ﬂ( /&

We can write — [, (¢§[i(S(U))],),S(U) = F + G, with
F=— [ QHISONSO).  6== [ &SW)] (St +1) - J(SE)a.0).
Q Q

Using (2.12) and integrating by parts we have

G2 - [ 67 (TSNt +D-TSON ) = - [ 5 (TEON)
Q Q

:/@&wam+/a%@UWWM@mz/@&wam
Q Q Q

since J(S(U)) > 0. Hence,
*/ (€SN, SWU) 2/ (§§>t[j(S(U))]l+F:/ (€& (TS, = (SW)],SW)) -
Q Q Q

Otherwise, 7(S(U)) and J(S(U)) € C([0,T] s LY(92)), thus {(¢€): ([T (S(w))); — [J(S(w))];S(u))} converges
to —(¢€)eJ(S(u)) in LY(Q) as I — 0. Therefore,

m%ﬁké@wwwmmmngxjém ) /@



which achieves the proof.

Next we give estimates of the function and its gradient, following the first ones of [11], inspired by the
estimates of the elliptic case of [4]. In particular we extend and make more precise the a priori estimates of

[22, Proposition 4] given for solutions with smooth data; see also [15, 18].

Proposition 2.8 If u is a R-solution of problem (1.1), then there exists C1 = C1(p, A1, A2) such that, for

any k>1 and ¢ >0,

/ VulP+ / VU < CukM,

e<|UT<e+k e<|U]<t+k
U oo (0,121 (02)) < C1(M + [€2]),

where M = |Juolly o + s (Q)+ [fll1,q + N9l o + P15 + Hlally o
As a consequence, for any k > 1,

meas {|U| > k} < CoMik™Pe, meas {|VU| > k} < CoMak™™,

meas {|u| > k} < CoMok™Pe, meas {|Vu| > k} < CoMak™™¢,

where Co = Co(N,p, A1, A2), and M, = (M—|—|Q|)%M and Ms = M, + M.
Proof. Set for any r € R, and m, k, ¢ > 0,
Ty o(r) = max{min{r — ¢, k},0} + min{max{r + ¢, —k},0}.

For m > k + £, we can choose (J,S,€&) = (Tx.s, Hm, &) as test functions in (2.15
(2.14) and & € C'([0,77]) with values in [0, 1], independent on x. Since Ty o(H, (1))
we obtain

— Jo §(0) Tk (o) Ho (w0) daz — [y & T o (Fon (U)

+ S/ EA(z,t,Vu).VU — £ f EA(x,t, Vu).VU < [ Hn(U)ETke(U)dfio.

{e<|U|<t+k} {m<|U|<2m}

k
/H U)ETy,e(U dﬂof/H U)Tye(U) f+ / §VU-9*E / §VU.g.
{e<|Ul<e+k) {m<|U]<2m}

Let m — oo; then, for any k > 1, since U € L(Q) and from (2.3), (2.4), and (2.10), we find

(2.16)

(2.17)

(2.18)
(2.19)

), where H,, is defined at
= T o(r) for all r € R,

- /Q &Toe(U) + / EA(r,t, Vu) VU < / V0.9 + k(lwoll o+ sl @)+ 1 ]1,0)- (2:20)

{e<|U|<t+k} {e<|U|<t+k}

Next, we take £ = 1. We verify that

A / /
Ala,t,Vu).VU = VU.g >2L(9ul? + [VUP) = er(lg” + |V + )

for some ¢; = ¢1(p, A1, A2) > 0. Hence (2.16) follows. Thus, from (2.20) and the Hoélder inequality, we get,

for any & € C'*([0,T]) with values in [0, 1],

- / Tra(U) < cakM
Q



for some ¢z = ca(p, A1, Az) > 0.Thus [, Tr,e(U)(t)dz < cokM, for a.e. t € (0,T). We deduce (2.17) by taking
k=1,0=0, since Ty o(r) = T1(r) > |r| — 1, for any r € R.

Next, from the Gagliardo-Nirenberg embedding Theorem, see [13, Proposition 3.1], we have

pP(N+1) P
/Q @)% < s 101 ompzncany /Q VTP,

where ¢35 = ¢3(N, p). Then, from (2.16) and (2.17), we get, for any k > 1,

_ p(N+1) p(l\]fv+1) % _p(N+1) P —pe
meas {|[U] > k} < k™% Q|Tk(U)| < e Ul R orryiian K5 N Q|VTk(U)| < caMyk P,

with ¢4 = ¢4(N,p, A1, A2). We obtain

I
meas {|VU| > k} < ﬁ meas ({|VU|P > s})ds
0

1
§meas{|U|>kNL+l}+E/ meas({|VU|p>s,|U|§kN]il}) ds
0

1
< C4]\411€_7nC + ﬁ / |VU|p < C5M2]€_mc,
N

U|<k N1

with ¢5 = ¢5(NV, p, A1, A2). Furthermore, for any k > 1,
meas {|h| > k} + meas {|Vh| > k} < csk™P R ,
where ¢g = cg(N, p). Therefore, we easily get (2.19). |

Remark 2.9 If p € LY(Q) and a =0 in (1.2), then (2.16) holds for all k > 0 and the term |Q| in inequality
(2.17) can be removed, where M = ||uo||1,0 + |u|(Q). Furthermore, (2.19) is stated as follows:

p+N

meas {|u| > k} < CoM ™~ k7P, meas{|Vu| >k} < CoM ~+1k~™ Yk > 0. (2.21)

with Cy = Co(N,p, A1, As). To see last inequality, we do in the following way:

1 N

meas {|VU| > k} < meas {|U| > M N+ N+T

1 ¥
}+E/ meas{|VU|p>S,|U|SMNEAkNlil}dS
0
< CQM%_ﬁ]{;fmC_
Proposition 2.10 Let {11} C My(Q), and {uo,n} C L'(Q), such that

sup |pin] (Q) < 00, and sup||ugn||10 < co.
n n

Let uy, be a R-solution of (1.1) with data pin, = pin,o + fin,s and ug n, relative to a decomposition (fr, gn,hn)

of tino, and U, = t, — hy. Assume that {f,} is bounded in L'(Q), {gn} bounded in (L? (Q))N and {hy}
bounded in X .

Then, up to a subsequence, {U,} converges a.e. to a function U € L>((0,T); L*()), such that T,(U) € X
for any k > 0and U € L((0,T); Wy (Q)) for any o € [1,m,). And



(i) {Un} converges to U strongly in L°(Q) for any o € [1,mc), and sup ||Un |l 1o (0,721 (02)) < 20

(ii) supy~ sup,, %H fQ VT (U,)|P < oo,
(iii) {Ti(Upn)} converges to T (U) weakly in X, for any k > 0,
() {A (2,8, V (Ti(Uyp) + hn))} converges to some Fy, weakly in (LP (Q))N.

Proof. Take S € W?2°°°(R) such that S’ has compact support on R and S(0) = 0. We combine (2.6) with
(2.16), and deduce that {S(U,):} is bounded in X’ + L*(Q) and {S(U,)} bounded in X. Hence, {S(U,)}
is relatively compact in L*(Q). On the other hand, we choose S = Sj such that Si(z) = 2, if |2 | <k and
S(z) = 2k signz, if |z| > 2k. From (2.17), we obtain

meas {|U,, — Upn| > 0} < meas{|U,| > k} + meas {|Uy,| > k} + meas {|Sx(U,) — Sk (Un)| > o}
< % + meas {|Sk(Un) — Su(Un)| > o},
where ¢ does not depend of n, m. Thus, up to a subsequence {u,} is a Cauchy sequence in measure, and
converges a.e. in @ to a function w. Thus, {T%(U,)} converges to T} (U) weakly in X, since sup,, [|T%(Un)|| x <

oo for any k > 0. And {|V (Tx(U,) + hy) [P72V (T1(Un) + hy) } converges to some Fj, weakly in (LP (Q)N.
Furthermore, from (2.18), {U,} strongly converges to U in L?(Q), for any o < p.. [ ]

3 The convergence theorem

We first recall some properties of the measures, see [22, Lemma 5], [14].

Proposition 3.1 Let ps = pf — puy € Myp(Q), where pt and ps are concentrated, respectively, on two
disjoint sets ET and E~ of zero cg—capacity. Then, for any § > 0, there exist two compact sets Kgr C ET

and K5 C E~ such that
pi(EN\KS) <6,  ps(BE7\Kjy) <34,

and there exist 1/1;,1/)(; € CHQ) with values in [0,1], such that 1/1;,1/)(; = 1 respectively on K;,K(;, and
supp(Vy ) N supp(py ) =0, and

195 11x + 1)l lx sz <6 1Y llx + 11 )ellxrszr@) < 6.

There exist decompositions (Y3 ) = (1/1;)1 + (¥3 d (5 ) = (1/)6) (1/)(;)? in X"+ LY(Q), such that

lennl, <5 el

Both {1/1(‘;"} and {1/15_} converge to 0, weak-* in L>°(Q), and strongly in L*(Q) and up to subsequences, a.e.
in @, as 6 tends to 0.
Moreover if p, and 1, are as in Theorem 1.1, we have, for any §,d1,2 > 0,

5
<3 HW RS I (A S

“dpn, Ftdn, =w(n,?), dut <o, Ydu; <6, 3.2
/Q¢5P+/Q7/)577 w(n) /<21/}6M< /Q¢5H< ()
/ (1 — 0 0 )dpn = w(n,b1,6), / (1= g )dud < 6+ 6. (3.3)
Q Q
/ (1 — 5.5, ) = w(n, 51, 62), / (1= 5 5, )y < 61+ bs. (3.4)
Q Q

10



Hereafter, if n,e, ..., are real numbers, and a function ¢ depends on n,¢,...,v and eventual other pa-
rameters «, f3,..,7, and n — ng,e — £g,.., ¥ — vy, we write ¢ = w(n,e,..,v), then this means that, for
fixed «, 3, ..,7, there holds lim,_,,,..lim. ., lim, ., |¢| = 0. In the same way, ¢ < w(n,¢,d,...,r) means
lim,, .. Jime 2, limy, 5,0 < 0, and ¢ > w(n, ¢, ..,v) means —¢ < w(n, &, .., v).

Remark 3.2 In the sequel we recall a convergence property still used in [14]: If {bi1n} is a sequence in
LY(Q) converging to by weakly in L'(Q) and {bsn} a bounded sequence in L>=(Q) converging to ba, a.e. in
Q, then limn_mo fQ b17nb27n = fQ blbg.

Next we prove Thorem 1.1.

Scheme of the proof. Let {pn,},{uon} and {u,} satisfy the assumptions of Theorem 1.1. Then
we can apply Proposition 2.10. Setting U, = u, — hy, up to subsequences, {u,} converges a.e. in @
to some function u, and {U,} converges a.e. to U = w — h, such that T(U) € X for any & > 0, and
U e L7((0,T); Wy 7 () N L®((0,T); LY(Q)) for every o € [1,m.). And {U,} satisfies the conclusions (i) to
(iv) of Proposition 2.10. We have

i = (frn — div gn + (hn)e) + (p}z —div p%) - (77711 —div 77721) + Pnys = Nnys
= HUn,0 + (pn,s - nn,s)+ - (pn,s - nn,s)_;

where
Hn,0 = )\n,O +pn,0 — 1,0, with )\n,O = fn —div gn+ (hn)ta Pn,0 = p711 —div p72u Mn,0 = 77711 —div 77721 (35)

Hence
Pn,05 In,0 S M:(Q) N MO(Q)a and Pn Z Pn,0, Tin Z Mn,0- (36)

Let E*, E~ be the sets where, respectively, uf and u; are concentrated. For any d1,d2 > 0, let 1/13’1 , 1/1(‘;"2 and
s, Y5, as in Proposition 3.1 and set

(1)61,62 = w;’;w;; + 1/}(;11/)(;2'

Suppose that we can prove the two estimates, near E

I = / B, 5 A, Vi)V (Un—(To(U))y) < w(n, v, 61, 2), (3.7)
{lUn|<k}
and far from F,
Iy = / (1= @5, 5,) A, t, Vu,). VU, —(T(U))) < w(n,v,di,d2). (3.8)
{lUn|<k}

Then it follows that

T, / A, t, Vin).V (Un—(Tu(U)),) < 0, (3.9)
{|Un| <k}
which implies
Timy, oo / A(x,t,Vu,).V (U, — Tx(U)) <0, (3.10)
{|Un| <k}
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since {(T%(U)),} converges to T3(U) in X. On the other hand, from the weak convergence of {1} (U,)} to
T,(U) in X, we verify that

A, V(T(U) + 7).V (Te(Un) — Tu(U)) = w(n).
{1Un|<k}
Thus we get
(A(z,t, Vuy) — A(z, t, V(Tr(U) + hy))) .V (un, — (Tk(U) + hy)) = w(n).
{lUn|<k}
Then, it is easy to show that, up to a subsequence,
{Vuy,} converges to Vu, a.e. in Q. (3.11)
Therefore, {A(z,t, Vu,)} converges to A(x,t, Vu) weakly in (L” (Q))" ; and from (3.10) we find

M,HOO/ A(:C,t,Vun).VTk(Un)g/ Az, t, Vu)VT(U).
Q Q

Otherwise, {A(z, t,V (Tx(Up) + hn))} converges weakly in (L? (Q))"N to some F},, from Proposition 2.10, and
we obtain that Fy, = A(x,t,V (T, (U) + h)). Hence

mw,o/ A, £,V (Te(Un) + b))V (T (U) + h)
Q
gmﬁw/ A(m,t,Vun).VTk(Un)—i—mn_m/ Az, t, V(T (Uy) + hy)).Vhy,
Q Q
g/ A, £, (T (U) + b))V (Th(U) + h).
Q

As a consequence
{T,(U,)} converges to T (U), strongly in X, Yk > 0. (3.12)

Then to finish the proof we have to check that u is a solution of (1.1). ]

In order to prove (3.7) we need a first Lemma, inspired of [14, Lemma 6.1]. Tt extends the results of [22,
Lemma 6 and Lemma 7] relative to sequences of solutions with smooth data:

Lemma 3.3 Let ¥y 5,925 € CH(Q) be uniformly bounded in W1>°(Q) with values in [0,1], and such that
Jot1,5dpy <6 and fQ o sdpt < 6. Let {uy,} satisfying the assumptions of Theorem 1.1, and Uy, = ty — hy,.
Then

1 1
— |Vt |Pha.s = w(n,m,d), ~ VU, [Pa.5 = w(n,m,d), (3.13)
{m<U,<2m} {m<U,<2m}
1 1
— |V |Pi1 5 = w(n,m,d), ~ VU, [P1.6 = w(n,m,d), (3.14)
—2m<U,<—-m —2m<U,<—m
and for any k > 0,
Vit [Ps.5 = w(n,m, 5), / VU a5 = w(n,m, ), (3.15)

{m<U, <m+k} {m<U, <m+k}
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|V, P15 = w(n,m,d), / VUL [P1 5 = w(n,m, ). (3.16)

{—-m—-k<Up,<—m} {—-m—-k<Up,<—m}

Proof. (i) Proof of (3.13), (3.14). Set for any r € R and any m, ¢ > 1

"(—m+T dm+2h — 1
— - d
Sme(r) /0 < " X[m.2m] (7) + X(2m,2m+q(T) + o g X(2m-+4m-+2h) (7)) 7,

T—m4+T
Sm (T):/ < X[m,2m] (T> + X (2m,00) (7_)) dr.
0

m

Note that S}, /= X{m,2m]/ M~ X[2m+t,22m+0))/ (2m~+£). We choose (&, J, S) = (¥2,5, T1, Sim,¢) as test functions
in (2.15) for u,, and observe that, from (3.5),

M/"?) = Un,0 — (hn)t = >\n,0 + Pno —Mno = frn —divg, + Pn,0 — Tn,0- (317)

Thus we can write Zl 14 < Zl +A;, where

A= - / V5(0) T4 (S (100 S vt )z, Ag = — / (2.5), T (St (Un),
Q Q

Ao = [ 83, MUDT (S aUn) AotV T, Aa = [ (85Un)) 2T (Sma(Un) Al t, T VU,
Q Q
1
As = E 1/12,6T1(Sm,€(Un))A(‘T’ta Vun)VUn,
{m<U,<2m}
Ag = ——1 Vo5 A, t, Vun) VU
6 = 2m+£ 2,9 T, T, VUnp no

{2m+<U, <2(2m+20)}

Ay = /Smg T3 (S e(Un)) g fur s = /Smg T3 (St (Un)) g Vs,
1

Ag :/ (St o (Un)) Ty (S e(Un)) 02,590 VU, Arg = - / T4 (St (Un) 2.6 G-V U,
Q
m<U,<2m

1

An = e / Y2,59n.-VUy, Az :/ 10 (Un)T1 (S e (Un))h2,5d (Pn0 = o) -

{2m+L<U,<2(2m+£)}

Since [|Sme(uon)li,0 < [ wondz, we find Ay = w(f,n,m). Otherwise
{m<uo,n}

Al < Wesllyrmigy [ U Adl < Wailinmigy [ (lal+ AalVual™).

{m<U,} {m<U,}

which imply As = w(¢,n,m) and Az = w(¢,n,m). Using (2.3) for u,, we have

f/ Yo.5d(pn,s — nn75)+ +wl) =w(,n,m,d).
Q

13



Hence A = w(¢,n,m,d), since (pn,s fnn75)+ converges to uf as n — oo in the narrow topology, and
Jo ¥2.6dus < 0. We also obtain Ay = w(¢) from (2.10).
Now { ;m,l(U")Tl(val(U"))}l converges to S, (Un)T1(Sm(Un)), {51, (Un)T1(Sm(Un))},, converges to Sy, (U)

T1(Sm(U)), {S5,(U)T1(Sm(U))},, converges to 0, weak-* in L>°(Q) and { f,, } converges to f weakly in L(Q),
{gn} converges to g strongly in (L? (Q))". From Remark 3.2, we obtain

Ar = / S (U )T (S (U o254+ 0(6) = / 8 (U)Ty (S (U)W 5] + (s ) = w(t, m,m),
Q Q

Ag = / S (U1 (S (Un)) g Viin 5 + (£) = / S (U)Ty (S (U))g Vs + (£, m) = w(lym, m).
Q Q

Otherwise, A3 < fQ ¥ sdpy, and {fQ wg,gdpn} converges to fQ o sdut, thus Ayp < w(l,n,m,d).
Using Holder inequality and the condition (1.2), we have

9n.VU, — A(z,t,Vu,)VU, < ¢ (Ignl”/ + [Vhn|P + Ialp/)

with ¢; = ¢1(p, A1, A2), which implies

2

/ ’ ’
Ag — A4 S Cl/ (S’:«mé(Un)) Tl (Sm,Z(Un))'l/J275 (|gn|p + |hn|p —|— |a|p ) = w(f,n,m).
Q

Similarly we also show that A9 — As5/2 < w(¢,n,m). Combining the estimates, we get As/2 < w(f,n,m,?).
Using Holder inequality we have

A /
Az, t, Vu,)VU, > 71|w,,|p — ea(|al? + |Vhn|P).

with ¢a = ea(p, A1, A2), which implies

1
— / |V P12 sT1 (Sme(Uyn)) = w(l,n,m,d).
{m<U,<2m}

Note that for all m >4, Sy, ¢(r) > 1 for any r € [3m, 2m]; hence T} (S, (7)) = 1. So,

1
— / [V, [Pha s = w(l,n,m,d).
m

{%mSUn<2m}
Since |VU,[" < 2P71|Vu,|" 4+ 2P~1|Vh,|", there also holds
1
— / VU, P25 = w(l,n,m,d).
m
{%mSUn<2m}

We deduce (3.13) by summing on each set {(3)'m < U, < (3)"*'m} for i =0,1,2. Similarly, we can choose
(€,,8) = (¥1.6,T1, S ¢) as test functions in (2.15) for u,,, where S, ¢() = Sp.o(—7), and we obtain (3.14).
(ii) Proof of (3.15), (3.16). We set, for any k,m, ¢ > 1,

(k+l4m)—1
k+m+¢

" 2
Skym,e(r) = / (Tk(T — T (7)) X[m ke + K X(k+m+e,2(k+m+e)]) dr
0
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Se,m (1) :/ T (T = T (7)) X m,00) AT
0

We choose (§,9,5) = (¢2,5,T1, Sk,m,¢) as test functions in (2.15) for u,. In the same way we also obtain

IVun "2 sT1 (Skym,e(Un)) = w(l, n,m,6).

{m<U,, <m+k}
Note that T3 (Sk,m.e(r)) =1 for any r > m + 1, thus Ik [V, |[Phs,s = w(n,m,d), which implies
{m+1<U,, <m+k}
(3.15) by changing m into m — 1. Similarly, we obtain (3.16). ]

Next we look at the behaviour near FE.
Lemma 3.4 Estimate (5.7) holds.
Proof. There holds
I = / D5, 5, Az, t, V). VT(Uy)— / D5, 5,A(z,t, Vu,). V{TR(U)) .
@ {lUn|<k}

From Proposition 2.10, (iv), {A(z,t, V (T (Uy) + hy)). V(T (U)), } converges weakly in L' (Q) to Fy V(T (U)),.
And {x{|Un|§k}} converges to X|y|<k, a-€. in @ , and P, 5, converges to 0 a.e. in Q as 63 — 0, and P, 5,
takes its values in [0,1]. From Remark 3.2, we have

D55, A(, 1, Vun ) V(T(U)),, = / X{(1Ua <k} o165, A2, 8, V (Ti (Un) + hn ). V(T3(U)),,
Q
{1Un|<k}

_ / X01<6®s1 52 B V(T (U)), + w(n) = w(n, v, 8,).
Q
Therefore, if we prove that

/ D5, 5, A(x,t, Vuy,).VTp(Uy) < w(n,dy, da), (3.18)
Q

then we deduce (3.7). As noticed in [14, 22|, it is precisely for this estimate that we need the double cut
1/);11/1;2. To do this, we set, for any m > k > 0, and any r € R,

S () = /0 " (b = T(r)) Hon (7)dr,

where H , is defined at (2.14). Hence supp Sk.m C [—2m, k] ; and S’,’c”m: —X[—kp T %X[_gm_m]. We choose
(¢,5) = (V505 Sk.m) as test functions in (2.2). From (3.17), we can write

A+ Ay — Az + Ay + As + A =0,

where
A= /Q W E) Sem(Un), Ay = /Q (k= To(Un)) Hon (Un) Az, 1, V). V (6 05,
Ao= [ AL VIV, A= [ A V).V,
Q

{-2m<U,<-m}

A5 = */ (k = To(Un) Hon (U0, 00 Vo, Ag = / (k = T (Un)) Hu (Un )5, 05, d (.0 = pro) -
Q Q
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We first estimate As. As in [22, p.585], since {Skym(Un)} converges to S, (U) weakly in X, and
Siem(U) € L™(Q), using (3.1), we find

A= —/w;)twgk@k,m((])—/ ¢;(¢£)t,§’k,m(U)+w(n) = w(n, 51).
Q Q

Next consider Asz. Notice that U,, =15, (U,) on supp (H,,(Uy)). From Proposition 2.10, (iv), the se-
quence {A(z,t,V (Tom (Un) + hn)).V(w;rl 1/1;;)} converges to FQm.V(’l/);rl 1/);;) weakly in L!(Q). From Remark
3.2 and the convergence of w;'l 1/1;2 in X to 0 as d; tends to 0, we find

4 = / (k = Th(U)) Hon(U) Fomn Y (0,0) + w(n) = w(n, 31).
Q
Then consider A4. Then for some ¢; = ¢;1(p, Aa),
2k AP
Ad e (IVunl? + [9O[P + o) v 67,
{—2m<U,<—m}

Since 1/1;1 takes its values in [0,1], from Lemma 3.3, we get in particular A4 = w(n, d1,m, d2).

Now we estimate As. The sequence {(k — Ty (Up)) Hm (Un)iy. 43 } converges to (k=T (U))Hp (U005 ¥y,
weakly in X, and {(k — Ty(Uy))Hm (Un)} converges to (k — T (U))Hp (U), weak-* in L*°(Q) and a.e. in Q.
Otherwise {f,} converges to f weakly in L' (Q) and {g,} converges to g strongly in (L (Q))". From
Remark 3.2 and the convergence of 1/132 g; to 0 in X and a.e. in @ as §; — 0, we deduce that

Ay = / (k= Th(Un) Hun (U3, 43,05 + w(n) = w(n, 81),
Q

where 7y = f —divg.
Finally Ag < 2k fQ w;rlw;gdnn; using (3.2) we also find Ag < w(n,d1, m,ds). By addition, since As does
not depend on m, we obtain

As :/ w;rlw;;A(:C,t,Vun)VTk(Un) < w(n,dy,02).
Q

Arguying as before with (5 7/)(;27Sk,m) as test function in (2.2), where Sy (1) = —Sk.m(—7), We get in the
same way

/ V5,05, A, 1, Vun )VT(Un) < w(n, 01, 02).
Q

Then, (3.18) holds. ]

Next we look at the behaviour far from FE.
Lemma 3.5 . Estimate (3.8) holds.

Proof. Here we estimate I5; we can write

I = / (1= @5, 5,) Az, t, Vun)V (T (Un)—(Tx(U)),) -

{IUn|<k}
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Following the ideas of [25], used also in [22], we define, for any r € R and ¢ > 2k > 0,
Rn,v,é - TeJrk (Un*<Tk(U>>U) - Téfk (Un - Tk (Un)) .
Recall that ||[(Tk(U))v,, o < k, and observe that

Ry =2ksign(Uy,) in {|Up| > €+2k}, |Rpuel <4k, Rpue=w(n,v,f) ae. in Q, (3.19)
ILm Rpve =T (U—-{TxU)),) —Ti—x (U —-T5 (U)), a.e.in @, and weakly in X. (3.20)

Next consider &1, € C([0,T)),82.n, € C°((0,T]) with values in [0, 1], such that (&1,,,): < 0 and (€20, ):
> 0; and {&1.0, (1)} (vesp. {&1,n,(t)}) converges to 1,for any ¢ € [0,7) (resp. ¢t € (0,7] ); and moreover,

for any a € C([0,T]; L*(2)), {fQ a(flﬁnl)t} and [, a(€2,n,), converge respectively to — [, a(.,7)dz and
Jo al(.,0)dz. We set
© = Pnnrnadiat = §1,n0 (1= Poy 62) [ Lot (Un—(Tk(U))0)]), — 2,00 (1 = Po,,65) [To—k (Un — Tk (Un))]_y, -
We observe that
o —(1=®s, 5,)Rnve =w(l1,l2,n1,m2) innormin X and a.e. in Q. (3.21)

We can choose (©,S) = (Pn.ny ns.iy 1.6y Hm) as test functions in (2.7) for u,, where H,, is defined at (2.14),
with m > ¢+ 2k. We obtain
A+ A+ A+ Ay + A5 = Ag + Az,

with
A= [ OO, Ar == [ O w0, As= - /Q et Hn (Un),

Ay = H,,(Up)A(x,t, Vu,).Ve, Ag :/ oH! (U,)A(z,t, Vuy,).VU,,
Q Q

As= [ HoU)edimo,  Ar = / Ho (Un)od (00 — o) -
Q Q

Estimate of A,. This term allows to study I. Indeed, {H,,(U,)} converges to 1, a.e. in @; From (3.21),
(3.19) (3.20), we have

Ay :/ (1 —®s, 5,)A(x,t,Vuy).VRy 1e —/ Ry eA(z,t, Vuy,). Vs, s5,+w(l1,l2,n1,n2,m)
Q Q
:/ (1 — @5, 5,) Az, t, Vy).VRy pot+w(ly, l2,n1,n2, m,n, 1, £)
Q

=1, + / (1= ®s,.5,)A(x,t, V). VR, v o+w(ln, l2, n1, n2, m,n, v, 0)
{|Un|>k}
- IQ + Bl + BQ +w(115127n17n27m7n5 v, 6)7

where

Bl = / (1 - (I)éaﬁ)(xlUn,—(Tk(U)}U|§é+k - X\\Un|fk\§€7k)A($a ta vun)VUna
{lUn|>k}

By = — / (1 - (I)él,52)X|Un_<Tk(U)>U|§e+kA(-Tata vun)-v<Tk(U)>y'
{lUn|>k}
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Now {A(z,t,V (Tys21(Un) + hy)). V(T (U)),} converges to Fypp2,V{(Ti(U)),, weakly in L'(Q). Otherwise

{X‘Un‘>kX|Un7<Tk(U)>U|SZ+k} converges to X|UI>EX |0 (T (), | <4 ks @€ in Q. And {(T(U)),} converges to
Tr(U) strongly in X. From Remark 3.2 we get

By = - /Q (1= ®s1.60) Xjvi>k X|v— (1, (v, |<ernFer2e- VL)), +w(n)
= - /Q (1 = ®@5,.5,) X|U|>k XjU=T3 ()| <tk F o426 VTR(U) + w(n,v) = w(n,v),
since VT (U) x>k = 0. Besides, we see that, for some ¢; = ¢1(p, Az),
Bl<a [ Q- Sam)(Vul + VU + ).
{0—2k<|U,, |<t+2k}
Using (3.3) and (3.4) and applying (3.15) and (3.16) to 1 — @5, 5,, we obtain, for k > 0,
(|Vun|” + VUL )1 — @5, 5,) = w(n, m, 51, 52). (3.22)
{m<|Un|<me+4k}
Thus, By = w(n,v,£,01,02), hence By + Bs = w(n, v, ¥, 61, 062). Then
A4 :12+w(115127n17n27m7n5 vav 51ﬂ52)' (323)

Estimate of As. For m > ¢+ 2k, since |p| < 2¢, and (3.21) holds, we get, from the dominated convergence
Theorem,

A5 = / (1 — @51752)RH1V74H;”(U71)A($,t, Vun)VUn + w(ll, lQ, ni, TLQ)
Q

2k
- / (1= @5, 5,) Az, t, Vuy,) VU 4w(ly, l2,n1,n2);
{mglUn|<2m}

here, the final equality followed from the relation, since m > ¢ + 2k,

2k .
RuwH,,(Uy,) = T XmE|Uy|<2ms €. 1D Q. (3.24)

Next we go to the limit in m, by using (2.3), (2.4) for wu,, with ¢ = (1 — @4, 5,). There holds
A5 - _Qk/ (1 - (1)51,62)d ((pn,s - nn,s)+ + (pn,s - nn,s)_) +W(l1, lQanlan%m)-
Q

Then, from (3.3) and (3.4), we get A5 = w(ly,la,n1,ne, m,n,v,£,01,0d2).
Estimate of Ag. Again, from (3.21),

Ay = /Q Ho(Un)of . + /Q 0V (Hon(U)0)

= / Hm(Un)(l - (1)51,62)Rn,1/,€fn + / gnv(Hm(Un)(l - ¢51,62)Rn,v,€)+w(lla 12,77,1,7’1,2).
Q Q
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Thus we can write Ag = D1 + Dy + D3 + D4 + w(l1,l2,n1,n2), where
Dl = Hm(Un>(1 - @61,§2>Rn,u,lfn; D2 = / (1 - @61752)Rn,U,ZH’,/n(Un>gn-VUn7

Q
D3 = Hm(Un>(1 - @51,52)gn-VRn,V,€7 D4 = 7/ Hm(Un)Rn,V,Egn-vq)Sl,Jg-
Q Q

Since {f,} converges to f weakly in L'(Q), and (3.19)-(3.20) hold, we get, from Remark 3.2,
Dy = / (1= ®5,,8,) (T (U—=(Tk(U)),) = To—e (U = T (U))) fHw(m,n) = w(m,n,v,£).
Q

We deduce from (2.10) that Dy = w(m). Next consider D3. Note that H,,,(U,) =14 w(m), and (3.20)
holds, and {g,,} converges to g strongly in (L (Q))", and (T} (U)), converges to T}(U) strongly in X. Then
we obtain successively that

Dy = /Q (1= ®5,.5,)9.V (Trer (U — (Tu(U)),) — Tomi (U — Tic(U))) +(m, )

= / (1= ®5,,6,)9-V (Toqr (U = Ty (U)) = Tk (U = Tix (U))) +w(m, n,v)
Q
=w(m,n,v,f).
Similarly we also get Dy = w(m,n,v,£). Thus Ag = w(ly,la,n1,n2, m,n, v, £, 61, d2).
Estimate of A;. We have
|A7| = }/ S (Un) (1 = ®s,,5,) R ed (pn,o — Mny0) | + w(ln, l2,n1,n2)
Q
< 4k/ (1= ®5,.5,)d(pn + 1) + w(l1,l2,n1,n2).
Q
From (3.3) and (3.4) we get A7 = w(ly,l2,n1,n2,m,n, v, ¢, 81,92).
Estimate of A; + A5 + A3. We set
J(r) =Tk (r=Tg (1)), Vr € R,

and use the notations J andJ of (2.11). From the definitions of &1 1, ,&1,n,, We can see that

Al + AQ = 7/ J(Un(T))H—m(Un(T))dZL' — / Tngk(uO,n — ZU)H—m(onn)dSC + w(ll, lQ,?’Ll,TLQ)
Q Q

= —/ J(U,(T)Upn(T)dx — / Tork(vwon — 2v)uonde + w(ly,la,n1, n2,m), (3.25)
Q Q

where z, = (T(U)),(0). We can write A = F} + F5, where
Fr= = [ (6= 5 0) T (V= B0, ) ) ),

t

Fy, = / (fnz(l - @51,52)[77@46 (Un — T (Un)))]—lg)tH—m(Un)~
Q
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Estimate of Fy. We write Fy = G1 + G2 + G3, with
G = /Q (P52 gons [To e (U — Ty (Un))]_, Frn(Ur),
Gy — / (1= Bs,.5) (€ ) [Tor (U — T (U)]_, T (U,
Gy = /@2 = ®5,5) ([Tt (U — T (U))]_,) Hon(U).

We find easily that
Gr =~ [ (@,5) UVl by na,m),
Q

Gy = / (1= 5, 5,)(En ), T (U o (Un)+0(l, ) = / T (10,0 )1t n oLy, I, m1, mz, m).
Q Q

Next consider G. Setting b = H,,(U,), there holds from (2.13) and (2.12),

Hence

([Tomt (Un = T (U)]_y,), Hn(Us) = ([J (H(Un))] _zz)t = ([TW)) 1), »

since J is constant in {|r| > m + ¢ + 2k} . Integrating by parts in G5, we find
G52 | 0l = 20,50 (TW) 1), = = [ (a1~ #35) / o (D)
_/ (52,712)15( - (1)51 (52 / 52 n2 (1)51 52 / 62 712 )d$+w(l1’12)
Q

T (o )da + / (@500 T W)+ | TWD) ol Lo, s

Q Q

Therefore, since J(U,) — J(Up)Uy, = —J(Uy) and J(ug.p) =J (uo.n)to.n—T (Uo.n), we obtain
FQ Z / j(U07n)d$ 7/ @51 52 / j derw 11,12,77,1,7’),2, ) (326)
Q

Estimate of F}. Since m > € + 2k, there holds Ty4i (Un—(Tk(U)),) = Tor (Hm(Un)—(Tx(Hin(U))),) on
suppH,,(U,). Hence we can write F} = L; + Lo, with

L= —/Q (ELm(l — ®5,.5,) [Tesn (H—m(Un)_<Tk(H—m(U))>V)]ll) (Hin(Un)—(Ti(Hn(U)),)

Ly = /Q (él,m(l — ®s,.6,) [Tosr (H—m(Un)%Tk(H—m(U))h)]h) (T(Hm(U))),-
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Integrating by parts we have, by definition of the Landes-time approximation,

= V/ (1 — @51,52)Tg+k (Un_<Tk(U)>V) (Tk(U)—<Tk(U +/ Tg+k Uo,n — )zudx—i—w(ll lo,n1, ng)
Q Q
(3.27)
We decompose L; into L1 = K1 + Ko + K3, where

K, = —/Q(&,m)t(l = ®5,,0,) [Te (Hin (Un) =Tk (Hin (U))),)], (Hin (Un)—(Ti(H (U))),,)

Ky = / Erm (05,.5,), [Tesn (H—m<Un>f<Tk<H—m<U>>>u)Ll (Hon (Us)~ (T (T (U))),)

/ E1m, (1 — @5,.5,) Té—i—k (H—m(Un)—<Tk(H_m(U))>V)LI)t (Hm (Up)—(Ti(H (U)),) -

Then we check easily that

Ky = /Q Lok (Un—(Tk(U)),) (T) (Un—(Tk(U)),,) (T)da+w(ly, 2, n1, 02, ),

Ky = /Q ((1)51,52)tTf+k (Uﬂ7<Tk(U)>u) (Uﬂ7<Tk(U)>u) +w(llv lQa ni, N2, m)

Next consider K3. Here we use the function 7y, defined at (2.13). We set b = H,,(U,,)—(Tx(H,,(U))),. Hence
from (2.12),

(s )0 0) = ETr @)t +10) = Ten0)1)

simﬂc(b)((.,w W) = Tex®)(8) = ((Tear Oy, e
Thus

(Toax (H—m(Un)f<Tk(H—m(U>>>u)]ll)t (Hom (Un)—(Tx(H (U))),) < (Ter(Un—(Te(U)),];,),-
Then

Ko 2= [ €m0 = @0) (Tea War T,
= /Q (617711 )t(l - (I)51752)[T€+k (U <Tk(U / 61 ni (I)51 (52) [TZ-HC( <Tk(U)>V)]l1
+ / €1 (O)[ Tk (Un—(Ti(U)), )], (0)d
Q
[ Toas W) = (), () d - /Q (B5,.5.),Tesx (Un—(TH(U)),)

/Te+k Uo,n — 2v) dztw(ly,l2, n1, n2).
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We find by addition, since Tyyx(r) — Te4k(r) = Teqp(r) for any r € R,
Ly > /QTHk (wo,n — 2v) dx + /QTg_H€ (Un(T) — (T3(U)) (T)) da
+ /Q (®51,6:), Lok (Un—(Ti(V)),) +w(ls, l2,n1, na, m). (3.28)
We deduce from (3.28), (3.27), (3.26),

Az > / J(uop)dz + [ Togr (von — 20) dz + / Lotk (wo,n — 20) zudx (3.29)
Q Q Q

n /Q T (Un(T)—(Te(U)),(T)) dz + | T(UN(T))de + / (®s,.52), Tk Un—(Te(U)),) — T(U))

Q
+ V/Q (1 - (1)51,52)T€+k (Un7<Tk(U)>u> (Tk(U)7<Tk(U)>l/) +w(lla lQa ny,na, m)

Q

Next we add (3.25) and (3.29). Note that J (U, (T)) — J(Un(T))Un(T) = —J(U,(T)), and also
TéJrk (uO,n - Zl/) - TlJrk (UO,n - ZV) (ZV - UO,n) = *TéJrk (uO,n - Zl/) .

Then we find

A1+A2+A32/

[ (Fl0,) =T (o = 2)) do+ | Tops WoT) = L)), (T) = T (7)) do

Q
+ / (®5,.52), (T (Un—(T(U)),) — T(U))
Q
+ V/Q (1 - @51752>T4+k (Un7<Tk(U)>y) (Tk(U)7<Tk(U)>u) +w(llv 127n17n27m)'

Notice that Ty, (r—s) — J(r)>0 for any , s € R such that |s| < k; thus

[ T Oa0)~ B0, (1)) = T () ds > 0.

And {ug,,} converges to ug in L*(Q) and {U,} converges to U in L*(Q) from Proposition 2.10. Thus we
obtain

Ay + Ao+ Az > [o (T(uo) = Ttk (uo — 20)) dz + [ (®5,,5,), (Tesr (U—(T3(U)),) — J(U))
+v fQ (1 - (1)51752)Tf+k (U7<Tk(U)>u) (Tk(U)7<Tk(U)>u) +w(llv la,n1,m2,m, TL)

Moreover Typi, (r—s) (Ti(r) — $)>0 for any r, s € R such that |s| < k, hence

A1+A2+A32/

[ (Tu0) = Teoi o =) da+ [ (@55, (Tra (U~(TLO,) = TO))

Q

+w(li,la, N1, n2, m,n).
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As v — o0, {z,} converges to Ti(ug), a.e. in Q, thus we get

Ayt A+ A > /Q (T(uo) — Tk (o — Ta(uo))) da + /Q (Bs,.50), T (U — Th(U)) — T(1))
+ w(ly,la,n1,n2, m,n, V).
Finally |T ek (r=Te(r)) — J(r)| < 2k|r|x(jrj>e for any r € R, thus
A+ As + Az > w(ly,lz,n1,ne, m,n, v, £).

Combining all the estimates, we obtain I < w(ly,l2,n1,n9,m,n,v, ¢, 51,02), which implies (3.8), since I»
does not depend on Iy, 12,11, 12, m, L. [ |

Next we conclude the proof of Theorem 1.1:
Lemma 3.6 The function u is a R-solution of (1.1).

Proof. (i) First show that u satisfies (2.2). Here we proceed as in [22]. Let ¢ € X N L>®°(Q) such
0r € X'+ LYQ), ¢(.,T) = 0, and S € W*>(R), such that S’ has compact support on R, S(0) = 0. Let
M > 0 such that suppS’ C [~M, M]. Taking successively (¢, S) and (pvi,S) as test functions in (2.2)
applied to u,, we can write

A+ Ay + Az + Ay = As + A + Ar, Ao s+ + Ass+ + Ass+ = Ass+ + As s+ + A7.5.+,

where

A= / p(0)S(uon)dz, Ay =— /Q oS (Un),  Agsx == /Q (P05):S(Un),

Az = /S' A(z,t,Vu,).Ve, Ass i —/ S (Up)A(w, t, Vun).V(gong),

A4f/S”( n)PA(z, t, Vuy,).VU,, A4157i:/8”( )501/15 Az, t,Vuy,).VUy,,
Ay = /S’ Dedhmo, A —/S’ Dedpno, Ar = /S’ )odno,

As,&,i/QS/(Un)W/Ja d/\mO’ Ag 51 = /

S (Un)pttdpno, Args = - / S (U)o dnn .
Q Q

Since {ug., } converges to ug in L*(Q), and {S(U,,)} converges to S(U), strongly in X and weak-* in L>°(Q),
there holds, from (3.2),

A =— /Q ©(0)S(ug)dr + w(n), Az =-— /Q 0eS(U) + w(n), A276’w§c = w(n,d).

Moreover Tas(U,,) converges to Tar(U), then Tas(U,) + hy, converges to Ty (U) + h strongly in X, thus
Ay = / S (U A2,V (Tag (Un) + ). Vi = / S'(U)A(z,t,V (Tag (U) + h)).Vep + w(n)

- /Q S"(U)A(x,t, Vu).Vo + wn);
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and
Ay / S" (U Az, t,V (Tar (Upn) + hp)). VT (Up)
Q
= / S"(U)pA(x,t,V (Tar (U) + h)).VT (U) +w(n) = / S"(U)pA(x,t,Vu).VU + w(n).
Q Q
In the same way, since z/Jgt converges to 0 in X,
Awiz/sumaauwmvwﬁw+mm=wmﬁ%
Q
mﬁi:/S%mwﬁA@¢vmvu+mm:wmjy
Q
And {g,} strongly converges to g in (L? ()Y, thus
As = / S’(Un)wfnJr/ S’(Un)gn-VsoJr/ S"(Un)gn-VTr(Un)
Q Q Q
:/ S’(U)@f-i-/ S”(U)g.V(p—i—/ S"(U)pg.VTr(U) + w(n)
Q Q Q
:/ S"(U)pdiig + w(n).
Q

Now As 5 += fQ S’(U)gpz/;(sid/\/,;) +w(n) =w(n,d). Then Ag s+ + A75,+ = w(n,d). From (3.2) we verify that
Az54 =w(n,d) and Ags_ = w(n,d). Moreover, from (3.6) and (3.2), we find

Ag — Agsi| < / 18" (U2l (1 = 0 )0 < 1S o ey 12l 1) / (1= & )dpn = win, 8).

Similarly we also have |47 — A75_| < w(n,d). Hence Ag = w(n) and A7 = w(n). Therefore, we finally
obtain (2.2):

—/Q<p(0)8’(u0)dx—/ weS(U /S' Az t,Vu).th—l—/QS”(U)goA(x,t, Vu).VU:/QS’(U)goci?éO)

(i) Next, we prove (2.3) and (2.4). We take ¢ € C°(Q) and take ((1 — ¢y )¢,H,,) as test functions in
(3.30), with H,, as in (2.14). We can write D1 ,, + D2 = D3 + Dam + Ds m, where

=~ [ (0 =95)9) Hn(V): = [ Hn(U)A: V-9 (= 95)%).

Q m<U<2m

Dspm=—= [ (1 — 5 )pA(x,t, Vu)VU.

—2m<U<—m
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Taking the same test functions in (2.2) applied to u,, there holds D"m +D3y,, =Dy, + D}, +Dg,,, where

= f( (1= v5)e) Ha(U ), fH Az, t, Vun).V (1= 95)9) ,
fH 1 =5 )edMno + poo = o)y Dim =2 [ (1—97)pAl@,t,Vu,).VU,,
m<U<2m

Dip==m [  (1=47)pA(,t,Vun) VU,
—2m<U,<—-m
(3.32)
In (3.32), we go to the limit as m — oo. Since {H,,(U,)} converges to U,, and {H,,(Uy,)} converges to 1,
a.e. in Q, and {VH,,(U,)} converges to 0, weakly in (L?(Q))Y , we obtain the relation D} + D% = D%+ D",
where

DI = /Q (1—v5)e),U, . Dy= /QA(:c,t, Vu,)V (1= 5)p), Di= /Q (1 =5 )pdAn o
D" = / (1 - wg)@d(Pn,o - 77n,0)+/ (1 - wg)(pd((pn,s - nn,s)Jr - (pn,s - nn,s)i)
Q Q

- / (1= 5 od(pn — mn)-
Q

Clearly, D; , — D} = w(n,m) for i = 1,2, 3. From Lemma (3.3) and (3.2)-(3.4), we obtain Ds ,,, = w(n,m,?),
and

% / s pA(x,t, Vu). VU = w(n,m,d),
{m<U<2m}
thus,
Dy = L pA(z,t, Vu).VU + w(n,m,d).
m{m§U<2m}

Since ’fQ (1 =5 )pdnn| < ¢l Jo (1 =5 )dny, it follows that [, (1 — 15 )edn, = w(n,m,d) from (3.4).

And ’fQ z/fgsadpn’ < el po Jo ¥5 dpn, thus, from (3.2), [, (1 =45 )edpn = [, edpd + w(n,m,d). Then
=/ 0 wdut + w(n,m,d). Therefore by subtraction, we get successively

1
— / pA(x,t, Vu).VU :/ edpt + w(n,m,9),
m Q

{m<U<2m}

1
liﬁm — / pA(z,t, Vu).VU:/ wdu?, (3.33)
m—oo M Q
{m<U<2m}

which proves (2.3) when ¢ € C°(Q). Next assume only ¢ € C*(Q). Then

limy, 00 = S/ PA(z,t, Vu).VU
{m<U<2m}

=limmoe = [ of A2, t, Vu)VU +limmoee = [ @1 =) A(z,t, Vu).VU

{m<U<2m} {m<U<2m}

= Jo ety dud +limpos o [ 01 =) Az, t, Vu).VU = [, pduf + D,
{m<U<2m}
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where

D= / (1 —of)dut + nhm 1 / (1 — ) Az, t, Vu).VU = w(9).

—oo m
{m<U<2m}

Therefore, (3.33) still holds for ¢ € C*®(Q), and we deduce (2.3) by density, and similarly, (2.4). This
completes the proof of Theorem 1.1. [

4 Approximations of measures
Corollary 1.2 is a direct consequence of Theorem 1.1 and the following approximation property:

Proposition 4.1 Let = po + ps € M; (Q) with g € M (Q) and ps € MH(Q).
(i) Then, we can find a decomposition o = (f,g,h) with f € L*(Q),g € (L? (Q))N,h € X such that

1@ + gl g + [1h1lx + 1s () < 20(Q) (4.1)

(i1) Furthermore, there exists sequences of measures pion = (fn, gns n)s s such that fr, gn, hn € C°(Q)
strongly converge to f,g,h in L*(Q), (L” (Q))N and X respectively, and psn € (C(Q)NT converges to s
and iy, = lon + Psn converges to p in the narrow topology, and satisfying |u.|(Q) < p(Q),

||fn||1,Q + Hgn”p/,Q + ||hn||X + Ms,n(Q) < 2#(@) (42)

Proof. (i) Step 1. Case where p has a compact support in Q. By [15], we can find a decomposition
wo = (f,g,h) with f,g,h have a compact support in Q. Let {p,} be sequence of mollifiers in RN*1
Then pon = @n * o € C°(Q) for n large enough. We see that po,(Q) = po(Q) and po,, admits the
decomposition o, = (fn,gn, ") = (On * fyn * g, n * h). Since {fn},{gn},{hn} strongly converge to
f,9,h in LY(Q), (Lpl (Q))N and X respectively, we have for ng large enough,

po(Q)-

1
1f = Frollr@ + 119 = gnollpr.@ + 1P = haoll Lo 0,y 7 () < 5

Then we obtain a decomposition = (f,§,h) = (tng + f — fros 9 — Gngs b — hng ), such that

) A 3
11l +119ll.@ + [1Allx + ps(@) < (@) (4.3)

Step 2. General case. Let {6,} be a nonnegative, nondecreasing sequence in C2°(Q) which converges to 1,
a.e. in Q. Set fig = o, and fip, = (0, — Op—1)p, for any n > 1. Since i, = fio,n + fis,n € Mo(Q) N M;(Q)
has compact support with fig, € Mo(Q), fis,n, € Ms(Q), by Step 1, we can find a decomposition fig , =
(fn, Gns ﬁn) such that

) i - i 3
1falln@ + 1gnlly,q + [1nllx + fsn(2) < 57 (Q)-

Let T Z fkv I = Z gk7 n = Z hk and fisn = Zk oﬂs k- Clearly, 0,0 = (fmgm )7 Ontis = fisn
k=0 =0

and {f } {gn {h } and {fis,n} converge strongly to some f, g, h, and ps respectively in Ll(Q),(LPl(Q))N,
X and M; (Q), and

- _ = _ 3
IfnllrQ +1gnlly @ + [[hnllx + s (@) < SH(Q).

Therefore, uo = (f, g, h), and (4.1) holds.
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(11) We take a sequence {mn} in N such that fn = Pmn *7715 In = Pm, *Gn, hn = Pm,, * an Pm, * ,L_Ls,n €
(@), fQ Pm,, * [isndrdt = fisn(Q) and

_ B , 1
U= Folli +1lon = Tl + [l = Fullx < ——4(Q).

Let Ho,n = Pm, * (enMO) = (fna 9n, hn)a Hsn = Pm, * ﬂs,n and Hn = Ho,n +Ms,n- Therefore, {fn} ) {gn} ; {hn}
strongly converge to f, g, hin L}(Q), (L? (Q))" and X respectively. And (4.2) holds. Furthermore, {ts .}, {tn}
converge to ps,  in the weak topology of measures, and ps ,(Q) = fQ Ondiis, pn(Q) = fQ 0, dp converges to
1s(Q), 1(Q), thus {55}, {pn} converges to s, pu in the narrow topology and |u,[(Q) < u(@). n

Observe that part (i) of Proposition 4.1 was used in [22], even if there was no explicit proof. Otherwise
part (ii) is a key point for finding applications to the stability Theorem. Note also a very useful consequence
for approximations by mondecreasing sequences:

Proposition 4.2 Let y € M, (Q) and e > 0. Let {u,} be a nondecreasing sequence in My (Q) converging

to p in My(Q). Then, there exist fr, f € LY(Q), gn,g € (L* (Q)N and hp,h € X, fin s, pts € MF(Q) such
that
M:ffdng+ht+,Ufs; ,un:fn*divgn+(hn)t+ﬂn,sa

and {fn},{gn}, {hn} strongly converge to f,g,h in LY(Q),(L” (Q))N and X respectively, and {f, .} con-
verges to ps (strongly) in My(Q) and

falli@ + lgnllp.@ + [hnllx + pin,s(2) < 20(Q)- (4.4)

Proof. Since {1} is nondecreasing, then {/in,0}, {#tn,s } are nondecreasing too. Clearly, |1 — finl| g, () =

llo — M"’OHMb(Q) + s — ,umsHMb(Q). Hence, {{in,s} converges to ps and {un 0} converges to uo (strongly)
in My(Q). Set fip,0 = 0,0, and fin,0 = fn,0 — tn—1,0 for any n > 1. By Proposition 4.1, (i), we can find

fn € LYQ), gn € (Lp/ (Q))N and h, € X such that fin0 = (fn,gn, hy) and
Fallt.@ + 1Fnlly @ + [1hnllx < 2fin0(Q)

Let fo =Y fi, Gn = > gr and h, = 3 hg. Clearly, tn,0 = (fn, gn, hn) and the convergence properties
k=0 k=0 k=0
hold with (4.4), since

fnll1.@ + llgnller.@ + l1hnllx < 200(Q)-
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