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Stability properties for quasilinear parabolic equations with

measure data

Marie-Françoise BIDAUT-VERON∗ Quoc-Hung NGUYEN†

.

Abstract

Let Ω be a bounded domain of RN , and Q = Ω× (0, T ). We study problems of the model type







ut −∆pu = µ in Q,

u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

where p > 1, µ ∈ Mb(Q) and u0 ∈ L1(Ω). Our main result is a stability theorem extending the re-
sults of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators u 7−→

A(u) =div(A(x, t,∇u)).

1 Introduction

Let Ω be a bounded domain of RN , and Q = Ω× (0, T ), T > 0. We denote by Mb(Ω) and Mb(Q) the sets
of bounded Radon measures on Ω and Q respectively. We are concerned with the problem





ut − div(A(x, t,∇u)) = µ in Q,
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω,

(1.1)

where µ ∈ Mb(Q), u0 ∈ L1(Ω) and A is a Caratheodory function on Q × R
N , such that for a.e. (x, t) ∈ Q,

and any ξ, ζ ∈ R
N ,

A(x, t, ξ).ξ ≥ Λ1 |ξ|
p , |A(x, t, ξ)| ≤ a(x, t) + Λ2 |ξ|

p−1 , Λ1,Λ2 > 0, a ∈ Lp
′

(Q), (1.2)

(A(x, t, ξ) −A(x, t, ζ)). (ξ − ζ) > 0 if ξ 6= ζ, (1.3)

for p > 1.This includes the model problem where div(A(x, t,∇u)) = ∆pu, where ∆p is the p-Laplacian.

The corresponding elliptic problem:

−∆pu = µ in Ω, u = 0 on ∂Ω,
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with µ ∈ Mb(Ω), was studied in [9, 10] for p > 2− 1/N, leading to the existence of solutions in the sense of
distributions. For any p > 1, and µ ∈ L1(Ω), existence and uniqueness are proved in [4] in the class of entropy
solutions. For any µ ∈ Mb(Ω) the main work is done in [14, Theorems 3.1, 3.2], where not only existence is
proved in the class of renormalized solutions, but also a stability result, fundamental for applications.

Concerning problem (1.1), the first studies concern the case µ ∈ Lp
′

(Q) and u0 ∈ L2(Ω), where existence
and uniqueness are obtained by variational methods, see [19]. In the general case µ ∈ Mb(Q) and u0 ∈
Mb(Ω), the pionner results come from [9], proving the existence of solutions in the sense of distributions for

p > p1 = 2−
1

N + 1
, (1.4)

see also [11]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces u ∈ Lpc,∞ (Q) and |∇u| ∈
Lmc,∞ (Q) , where

pc = p− 1 +
p

N
, mc = p−

N

N + 1
. (1.5)

This condition (1.4) ensures that u and |∇u| belong to L1 (Q), since mc > 1 means p > p1 and pc > 1 means
p > 2N/(N + 1). Uniqueness follows in the case p = 2, A(x, t,∇u) = ∇u, by duality methods, see [21].

For µ ∈ L1(Q), uniqueness is obtained in new classes of entropy solutions, and renormalized solutions,
see [5, 26, 27].

A larger set of measures is studied in [15]. They introduce a notion of parabolic capacity initiated and
inspired by [24], used after in [22, 23], defined by

cQp (E) = inf( inf
E⊂U open⊂Q

{||u||W : u ∈W,u ≥ χU a.e. in Q}),

for any Borel set E ⊂ Q, where setting X = Lp((0, T );W 1,p
0 (Ω) ∩ L2(Ω)),

W =
{
z : z ∈X, zt ∈ X ′

}
, embedded with the norm ||u||W = ||u||X + ||ut||X′ .

Let M0(Q) be the set of Radon measures µ on Q that do not charge the sets of zero cQp -capacity:

∀E Borel set ⊂ Q, cQp (E) = 0 =⇒ |µ| (E) = 0.

Then existence and uniqueness of renormalized solutions of (1.1) hold for any measure µ ∈ Mb(Q)∩M0(Q),
called soft (or diffuse, or regular) measure, and u0 ∈ L1(Ω), and p > 1. The equivalence with the notion of
entropy solutions is shown in [16]. For such a soft measure, an extension to equations of type (b(u))t−∆pu = µ
is given in [6]; another formulation is used in [23] for solving a perturbed problem from (1.1) by an absorption
term.

Next consider an arbitrary measure µ ∈ Mb(Q). Let Ms(Q) be the set of all bounded Radon measures
on Q with support on a set of zero cQp -capacity, also called singular. Let M+

b (Q),M+
0 (Q),M+

s (Q) be the
positive cones of Mb(Q),M0(Q),Ms(Q). From [15], µ can be written (in a unique way) under the form

µ = µ0 + µs, µ0 ∈ M0(Q), µs = µ+
s − µ−

s , µ+
s , µ

−
s ∈ M+

s (Q), (1.6)

and µ0 ∈ M0(Q) admits (at least) a decomposition under the form

µ0 = f − div g + ht, f ∈ L1(Q), g ∈ (Lp
′

(Q))N , h ∈ X, (1.7)

and we write µ0 = (f, g, h). Conversely, any measure of this form, such that h ∈ L∞(Q), lies in M0(Q),
see [23, Proposition 3.1]. The solutions of (1.1) are searched in a renormalized sense linked to this decom-
position, introduced in [15, 22]. In the range (1.4) the existence of a renormalized solution relative to the
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decomposition (1.7) is proved in [22], using suitable approximations of µ0 and µs. Uniqueness is still open,
as well as in the elliptic case.

In all the sequel we suppose that p satisfies (1.4). Then the embedding W 1,p
0 (Ω) ⊂ L2(Ω) is valid, that

means
X = Lp((0, T );W 1,p

0 (Ω)), X
′
= Lp

′

((0, T );W−1,p′(Ω)).

In Section 2 we recall the definition of renormalized solutions, given in [22], that we call R-solutions of
(1.1), relative to the decomposition (1.7) of µ0, and study some of their properties. Our main result is a
stability theorem for problem (1.1), proved in Section 3, extending to the parabolic case the stability result
of [14, Theorem 3.4]. In order to state it, we recall that a sequence of measures µn ∈ Mb(Q) converges to a
measure µ ∈ Mb(Q) in the narrow topology of measures if

lim
n→∞

∫

Q

ϕdµn =

∫

Q

ϕdµ ∀ϕ ∈ C(Q) ∩ L∞(Q).

Theorem 1.1 Let A : Q× R
N → R

N satisfy (1.2),(1.3). Let u0 ∈ L1(Ω), and

µ = f − div g + ht + µ+
s − µ−

s ∈ Mb(Q),

with f ∈ L1(Q), g ∈ (Lp
′

(Q))N , h ∈ X and µ+
s , µ

−
s ∈ M+

s (Q). Let u0,n ∈ L1(Ω),

µn = fn − div gn + (hn)t + ρn − ηn ∈ Mb(Q),

with fn ∈ L1(Q), gn ∈ (Lp
′

(Q))N , hn ∈ X, and ρn, ηn ∈ M+
b (Q), such that

ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − divη2n + ηn,s,

with ρ1n, η
1
n ∈ L1(Q), ρ2n, η

2
n ∈ (Lp

′

(Q))N and ρn,s, ηn,s ∈ M+
s (Q). Assume that

sup
n

|µn| (Q) <∞,

and {u0,n} converges to u0 strongly in L1(Ω), {fn} converges to f weakly in L1(Q), {gn} converges to g

strongly in (Lp
′

(Q))N , {hn} converges to h strongly in X, {ρn} converges to µ+
s and {ηn} converges to µ−

s

in the narrow topology; and
{
ρ1n

}
,
{
η1n

}
are bounded in L1(Q), and

{
ρ2n

}
,
{
η2n

}
bounded in (Lp

′

(Q))N .

Let {un} be a sequence of R-solutions of





un,t − div(A(x, t,∇un)) = µn in Q,
un = 0 on ∂Ω× (0, T ),
un(0) = u0,n in Ω.

(1.8)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let Un = un − hn.

Then up to a subsequence, {un} converges a.e. in Q to a R-solution u of (1.1), and {Un} converges a.e.
in Q to U = u − h. Moreover, {∇un} , {∇Un} converge respectively to ∇u,∇U a.e. in Q, and {Tk(Un)}
converge to Tk(U) strongly in X for any k > 0.

In Section 4 we check that any measure µ ∈ Mb(Q) can be approximated in the sense of the stability
Theorem, hence we find again the existence result of [22]:
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Corollary 1.2 Let u0 ∈ L1(Ω) and µ ∈ Mb(Q). Then there exists a R-solution u to the problem (1.1) with
data (µ, u0).

Moreover we give more precise properties of approximations of µ ∈ Mb(Q), fundamental for applications,
see Propositions 4.1 and 4.2. As in the elliptic case, Theorem 1.1 is a key point for obtaining existence results
for more general problems, and we give some of them in [2, 3, 20], for measures µ satisfying suitable capacitary
conditions. In [2] we study perturbed problems of order 0, of type

ut −∆pu+ G(u) = µ in Q, (1.9)

where G(u) is an absorption or a source term with a growth of power or exponential type, and µ is a good
in time measure. In [3] we use potential estimates to give other existence results in case of absorption with
p > 2. In [20], one considers equations of the form

ut − div(A(x, t,∇u)) + G(u,∇u) = µ

under (1.2),(1.3) with p = 2, and extend in particular the results of [1] to nonlinear operators.

2 Renormalized solutions of problem (1.1)

2.1 Notations and Definition

For any function f ∈ L1(Q), we write
∫
Q
f instead of

∫
Q
fdxdt, and for any measurable set E ⊂Q,

∫
E
f

instead of
∫
E fdxdt. For any open set ̟ of Rm and F ∈ (Lk(̟))ν , k ∈ [1,∞] ,m, ν ∈ N

∗, we set ‖F‖k,̟ =
‖F‖(Lk(̟))ν

We set Tk(r) = max{min{r, k},−k}, for any k > 0 and r ∈ R. We recall that if u is a measurable function
defined and finite a.e. in Q, such that Tk(u) ∈ X for any k > 0, there exists a measurable function w from
Q into R

N such that ∇Tk(u) = χ|u|≤kw, a.e. in Q, and for any k > 0. We define the gradient ∇u of u by
w = ∇u.

Let µ = µ0+µs ∈ Mb(Q), and (f, g, h) be a decomposition of µ0 given by (1.7), and µ̂0 = µ0−ht = f−div g.
In the general case µ̂0 /∈ M(Q), but we write, for convenience,

∫

Q

wdµ̂0 :=

∫

Q

(fw + g.∇w), ∀w ∈ X∩L∞(Q).

Definition 2.1 Let u0 ∈ L1(Ω), µ = µ0 + µs ∈ Mb(Q). A measurable function u is a renormalized

solution, called R-solution of (1.1) if there exists a decompostion (f, g, h) of µ0 such that

U = u− h ∈ Lσ((0, T );W 1,σ
0 (Ω)) ∩ L∞((0, T );L1(Ω)), ∀σ ∈ [1,mc) ; Tk(U) ∈ X, ∀k > 0, (2.1)

and:

(i) for any S ∈W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−

∫

Ω

S(u0)ϕ(0)dx −

∫

Q

ϕtS(U) +

∫

Q

S′(U)A(x, t,∇u).∇ϕ +

∫

Q

S′′(U)ϕA(x, t,∇u).∇U =

∫

Q

S′(U)ϕdµ̂0,

(2.2)
for any ϕ ∈ X ∩ L∞(Q) such that ϕt ∈ X ′ + L1(Q) and ϕ(., T ) = 0;
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(ii) for any φ ∈ C(Q),

lim
m→∞

1

m

∫

{m≤U<2m}

φA(x, t,∇u).∇U =

∫

Q

φdµ+
s (2.3)

lim
m→∞

1

m

∫

{−m≥U>−2m}

φA(x, t,∇u).∇U =

∫

Q

φdµ−
s . (2.4)

Remark 2.2 As a consequence, S(U) ∈ C([0, T ];L1(Ω)) and S(U)(., 0) = S(u0) in Ω; and u satisfies the
equation

(S(U))t − div(S′(U)A(x, t,∇u)) + S′′(U)A(x, t,∇u).∇U= fS′(U)− div(gS′(U)) + S′′(U)g.∇U, (2.5)

in the sense of distributions in Q, see [22, Remark 3]. Moreover assume that [−k, k] ⊃ suppS′. then from
(1.2) and the Hölder inequality, we find easily that

‖S(U)t‖X′+L1(Q) ≤ C ‖S‖W 2,∞(R) (
∥∥|∇u|pχ|U|≤k

∥∥1/p′
1,Q

+
∥∥|∇u|pχ|U|≤k

∥∥
1,Q

+ ‖|∇Tk(U)|‖pp,Q

+ ‖a‖p′,Q + ‖a‖p
′

p′,Q + ‖f‖1,Q + ‖g‖p′,Q
∥∥|∇u|p χ|U|≤k

∥∥1/p
1,Q

+ ‖g‖p′,Q ) , (2.6)

where C = C(p,Λ2). We also deduce that, for any ϕ ∈ X ∩ L∞(Q), such that ϕt∈ X ′ + L1(Q),

∫

Ω

S(U(T ))ϕ(T )dx−

∫

Ω

S(u0)ϕ(0)dx −

∫

Q

ϕtS(U) +

∫

Q

S′(U)A(x, t,∇u).∇ϕ

+

∫

Q

S′′(U)A(x, t,∇u).∇Uϕ =

∫

Q

S′(U)ϕdµ̂0. (2.7)

Remark 2.3 Let u, U satisfy (2.1). It is easy to see that the condition (2.3) ( resp. (2.4) ) is equivalent to

lim
m→∞

1

m

∫

{m≤U<2m}

φA(x, t,∇u).∇u =

∫

Q

φdµ+
s (2.8)

resp.

lim
m→∞

1

m

∫

{m≥U>−2m}

φA(x, t,∇u).∇u =

∫

Q

φdµ−
s . (2.9)

In particular, for any ϕ ∈ Lp
′

(Q) there holds

lim
m→∞

1

m

∫

m≤|U|<2m

|∇u|ϕ = 0, lim
m→∞

1

m

∫

m≤|U|<2m

|∇U |ϕ = 0. (2.10)

Remark 2.4 (i) Any function U ∈ X such that Ut ∈ X ′ + L1(Q) admits a unique cQp -quasi continuous

representative, defined cQp -quasi a.e. in Q, still denoted U. Furthermore, if U ∈ L∞(Q), then for any µ0 ∈
M0(Q), there holds U ∈ L∞(Q, dµ0), see [22, Theorem 3 and Corollary 1].

(ii) Let u be any R- solution of problem (1.1). Then, U = u− h admits a cQp -quasi continuous functions

representative which is finite cQp -quasi a.e. in Q, and u satisfies definition 2.1 for every decomposition (f̃ , g̃, h̃)

such that h− h̃ ∈ L∞(Q), see [22, Proposition 3 and Theorem 4 ].
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2.2 Steklov and Landes approximations

A main difficulty for proving Theorem 1.1 is the choice of admissible test functions (S, ϕ) in (2.2), valid for
any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted
to parabolic equations:

Definition 2.5 Let ε ∈ (0, T ) and z ∈ L1
loc(Q). For any l ∈ (0, ε) we define the Steklov time-averages

[z]l, [z]−l of z by

[z]l(x, t) =
1

l

t+l∫

t

z(x, s)ds for a.e. (x, t) ∈ Ω× (0, T − ε),

[z]−l(x, t) =
1

l

t∫

t−l

z(x, s)ds for a.e. (x, t) ∈ Ω× (ε, T ).

The idea to use this approximation for R-solutions can be found in [7]. Recall some properties, given in [23].
Let ε ∈ (0, T ), and ϕ1 ∈ C∞

c (Ω × [0, T )), ϕ2 ∈ C∞
c (Ω × (0, T ]) with Suppϕ1 ⊂ Ω × [0, T − ε], Suppϕ2 ⊂

Ω× [ε, T ]. There holds:

(i) If z ∈ X , then ϕ1[z]l and ϕ2[z]−l ∈ W.

(ii) If z ∈ X and zt ∈ X ′ + L1(Q), then, as l → 0, (ϕ1[z]l) and (ϕ2[z]−l) converge respectively to ϕ1z and
ϕ2z in X, and a.e. in Q; and (ϕ1[z]l)t, (ϕ2[z]−l)t converge to (ϕ1z)t, (ϕ2z)t in X

′ + L1(Q).

(iii) If moreover z ∈ L∞(Q), then from any sequence {ln} → 0, there exists a subsequence {lν} such that
{[z]lν} , {[z]−lν} converge to z, cQp -quasi everywhere in Q.

Next we recall the approximation used in several articles [8, 12, 11], first introduced in [17].

Definition 2.6 Let k > 0, and y ∈ L∞(Ω) and Y ∈ X such that ||y||L∞(Ω) ≤ k and ||Y ||L∞(Q) ≤ k. For
any ν ∈ N, a Landes-time approximation 〈Y 〉ν of the function Y is defined as follows:

〈Y 〉ν(x, t) = ν

∫ t

0

Y (x, s)eν(s−t)ds+ e−νtzν(x), ∀(x, t) ∈ Q.

where {zν} is a sequence of functions in W 1,p
0 (Ω) ∩ L∞(Ω), such that ||zν ||L∞(Ω) ≤ k, {zν} converges to y

a.e. in Ω, and ν−1||zν ||
p

W 1,p
0 (Ω)

converges to 0.

Therefore, we can verify that (〈Y 〉ν)t ∈ X , 〈Y 〉ν ∈ X ∩ L∞(Q), ||〈Y 〉ν ||∞,Q ≤ k and {〈Y 〉ν} converges
to Y strongly in X and a.e. in Q. Moreover, 〈Y 〉ν satisfies the equation (〈Y 〉ν)t = ν (Y − 〈Y 〉ν) in the sense
of distributions in Q, and 〈Y 〉ν(0) = zν in Ω. In this paper, we only use the Landes-time approximation

of the function Y = Tk(U), where y = Tk(u0).

2.3 First properties

In the sequel we use the following notations: for any function J ∈ W 1,∞(R), nondecreasing with J(0) = 0,
we set

J(r) =

∫ r

0

J(τ)dτ, J (r) =

∫ r

0

J ′(τ)τdτ. (2.11)

It is easy to verify that J (r) ≥ 0,

J (r) + J(r) = J(r)r, and J (r) − J (s) ≥ s (J(r) − J(s)) ∀r, s ∈ R. (2.12)
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In particular we define, for any k > 0, and any r ∈ R,

Tk(r) =

∫ r

0

Tk(τ)dτ, Tk(r) =

∫ r

0

T ′
k(τ)τdτ, (2.13)

and we use several times a truncature used in [14]:

Hm(r) = χ[−m,m](r) +
2m− |s|

m
χm<|s|≤2m(r), Hm(r) =

∫ r

0

Hm(τ)dτ. (2.14)

The next Lemma allows to extend the range of the test functions in (2.2).

Lemma 2.7 Let u be a R-solution of problem (1.1). Let J ∈W 1,∞(R) be nondecreasing with J(0) = 0, and
J defined by (2.11). Then,

∫

Q

S′(U)A(x, t,∇u).∇ (ξJ(S(U))) +

∫

Q

S′′(U)A(x, t,∇u).∇UξJ(S(U))

−

∫

Ω

ξ(0)J(S(u0))S(u0)dx−

∫

Q

ξtJ(S(U)) ≤

∫

Q

S′(U)ξJ(S(U))dµ̂0, (2.15)

for any S ∈ W 2,∞(R) such that S′ has compact support on R and S(0) = 0, and for any ξ ∈ C1(Q) ∩
W 1,∞(Q), ξ ≥ 0.

Proof. Let J be defined by (2.11). Let ζ ∈ C1
c ([0, T )) with values in [0, 1], such that ζt ≤ 0, and

ϕ = ζξ[j(S(U))]l. Clearly, ϕ ∈ X ∩ L∞(Q); we choose the pair of functions (ϕ, S) as test function in (2.2).
From the convergence properties of Steklov time-averages, we easily will obtain (2.15) if we prove that

lim
l→0,ζ→1

(−

∫

Q

(ζξ[j(S(U))]l)tS(U)) ≥ −

∫

Q

ξtJ(S(U)).

We can write −
∫
Q (ζξ[j(S(U))]l)tS(U) = F +G, with

F = −

∫

Q

(ζξ)t[j(S(U))]lS(U), G = −

∫

Q

ζξS(U)
1

l
(j(S(U))(x, t + l)− j(S(U))(x, t)) .

Using (2.12) and integrating by parts we have

G ≥ −

∫

Q

ζξ
1

l
(J (S(U))(x, t + l)−J (S(U))(x, t)) = −

∫

Q

ζξ
∂

∂t
([J (S(U))]l)

=

∫

Q

(ζξ)t[J (S(U))]l +

∫

Ω

ζ(0)ξ(0)[J (S(U))]l(0)dx ≥

∫

Q

(ζξ)t[J (S(U))]l,

since J (S(U)) ≥ 0. Hence,

−

∫

Q

(ζξ[j(S(U))]l)tS(U) ≥

∫

Q

(ζξ)t[J (S(U))]l + F =

∫

Q

(ζξ)t ([J (S(U))]l − [J(S(U))]lS(U)) .

Otherwise, J (S(U)) and J(S(U)) ∈ C([0, T ] ;L1(Ω)), thus {(ζξ)t ([J (S(u))]l − [J(S(u))]lS(u))} converges
to −(ζξ)tJ(S(u)) in L

1(Q) as l → 0. Therefore,

lim
l→0,ζ→1

(−

∫

Q

(ζξ[J(S(U))]l)tS(U)) ≥ lim
ζ→1

(
−

∫

Q

(ζξ)tJ(S(U))

)
≥ −

∫

Q

ξtJ(S(U)),

7



which achieves the proof.

Next we give estimates of the function and its gradient, following the first ones of [11], inspired by the
estimates of the elliptic case of [4]. In particular we extend and make more precise the a priori estimates of
[22, Proposition 4] given for solutions with smooth data; see also [15, 18].

Proposition 2.8 If u is a R-solution of problem (1.1), then there exists C1 = C1(p,Λ1,Λ2) such that, for
any k ≥ 1 and ℓ ≥ 0, ∫

ℓ≤|U|≤ℓ+k

|∇u|p+

∫

ℓ≤|U|≤ℓ+k

|∇U |p ≤ C1kM, (2.16)

‖U‖L∞(((0,T ));L1(Ω)) ≤ C1(M + |Ω|), (2.17)

where M = ‖u0‖1,Ω + |µs| (Q)+ ‖f‖1,Q + ‖g‖p
′

p′,Q + ‖h‖pX + ||a||p
′

p′,Q.
As a consequence, for any k ≥ 1,

meas {|U | > k} ≤ C2M1k
−pc , meas {|∇U | > k} ≤ C2M2k

−mc , (2.18)

meas {|u| > k} ≤ C2M2k
−pc , meas {|∇u| > k} ≤ C2M2k

−mc , (2.19)

where C2 = C2(N, p,Λ1,Λ2), and M1 = (M+|Ω|)
p
NM and M2 =M1 +M.

Proof. Set for any r ∈ R, and m, k, ℓ > 0,

Tk,ℓ(r) = max{min{r − ℓ, k}, 0}+min{max{r + ℓ,−k}, 0}.

For m > k + ℓ, we can choose (J, S, ξ) = (Tk,ℓ, Hm, ξ) as test functions in (2.15), where Hm is defined at
(2.14) and ξ ∈ C1([0, T ]) with values in [0, 1], independent on x. Since Tk,ℓ(Hm(r)) = Tk,ℓ(r) for all r ∈ R,
we obtain

−
∫
Ω ξ(0)Tk,ℓ(u0)Hm(u0)dx−

∫
Q ξtTk,ℓ(Hm(U))

+
∫

{ℓ≤|U|<ℓ+k}

ξA(x, t,∇u).∇U − k
m

∫
{m≤|U|<2m}

ξA(x, t,∇u).∇U ≤
∫
Q
Hm(U)ξTk,ℓ(U)dµ̂0.

And ∫

Q

Hm(U)ξTk,ℓ(U)dµ̂0 =

∫

Q

Hm(U)ξTk,ℓ(U)f+

∫

{ℓ≤|U|<ℓ+k}

ξ∇U.g−
k

m

∫

{m≤|U|<2m}

ξ∇U.g.

Let m→ ∞; then, for any k ≥ 1, since U ∈ L1(Q) and from (2.3), (2.4), and (2.10), we find

−

∫

Q

ξtTk,ℓ(U) +

∫

{ℓ≤|U|<ℓ+k}

ξA(x, t,∇u).∇U ≤

∫

{ℓ≤|U|<ℓ+k}

ξ∇U.g + k(‖u0‖1,Ω+ |µs| (Q)+ ‖f‖1,Q). (2.20)

Next, we take ξ ≡ 1. We verify that

A(x, t,∇u).∇U −∇U.g ≥
Λ1

4
(|∇u|p + |∇U |p)− c1(|g|

p′
+ |∇h|p + |a|p

′

)

for some c1 = c1(p,Λ1,Λ2) > 0. Hence (2.16) follows. Thus, from (2.20) and the Hölder inequality, we get,
for any ξ ∈ C1([0, T ]) with values in [0, 1],

−

∫

Q

ξtTk,ℓ(U) ≤ c2kM
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for some c2 = c2(p,Λ1,Λ2) > 0.Thus
∫
Ω
Tk,ℓ(U)(t)dx ≤ c2kM, for a.e. t ∈ (0, T ).We deduce (2.17) by taking

k = 1, ℓ = 0, since T1,0(r) = T1(r) ≥ |r| − 1, for any r ∈ R.

Next, from the Gagliardo-Nirenberg embedding Theorem, see [13, Proposition 3.1], we have

∫

Q

|Tk(U)|
p(N+1)

N ≤ c3 ‖U‖
p
N

L∞(((0,T ));L1(Ω))

∫

Q

|∇Tk(U)|p,

where c3 = c3(N, p). Then, from (2.16) and (2.17), we get, for any k ≥ 1,

meas {|U | > k} ≤ k−
p(N+1)

N

∫

Q

|Tk(U)|
p(N+1)

N ≤ c3 ‖U‖
p
N

L∞((0,T );L1(Ω)) k
− p(N+1)

N

∫

Q

|∇Tk(U)|p ≤ c4M1k
−pc ,

with c4 = c4(N, p,Λ1,Λ2). We obtain

meas {|∇U | > k} ≤
1

kp

∫ kp

0

meas ({|∇U |p > s}) ds

≤ meas
{
|U | > k

N
N+1

}
+

1

kp

∫ kp

0

meas
({

|∇U |p > s, |U | ≤ k
N

N+1

})
ds

≤ c4M1k
−mc +

1

kp

∫

|U|≤k
N

N+1

|∇U |p ≤ c5M2k
−mc ,

with c5 = c5(N, p,Λ1,Λ2). Furthermore, for any k ≥ 1,

meas {|h| > k}+meas {|∇h| > k} ≤ c6k
−p ‖h‖pX ,

where c6 = c6(N, p). Therefore, we easily get (2.19).

Remark 2.9 If µ ∈ L1(Q) and a ≡ 0 in (1.2), then (2.16) holds for all k > 0 and the term |Ω| in inequality
(2.17) can be removed, where M = ||u0||1,Ω + |µ|(Q). Furthermore, (2.19) is stated as follows:

meas {|u| > k} ≤ C2M
p+N
N k−pc , meas {|∇u| > k} ≤ C2M

N+2
N+1k−mc , ∀k > 0. (2.21)

with C2 = C2(N, p,Λ1,Λ2).To see last inequality, we do in the following way:

meas {|∇U | > k} ≤ meas
{
|U | > M

1
N+1k

N
N+1

}
+

1

kp

∫ kp

0

meas
{
|∇U |p > s, |U | ≤M

1
N+1k

N
N+1

}
ds

≤ C2M
N+2
N+1k−mc .

Proposition 2.10 Let {µn} ⊂ Mb(Q), and {u0,n} ⊂ L1(Ω), such that

sup
n

|µn| (Q) <∞, and sup
n

||u0,n||1,Ω <∞.

Let un be a R-solution of (1.1) with data µn = µn,0 + µn,s and u0,n, relative to a decomposition (fn, gn, hn)

of µn,0, and Un = un − hn. Assume that {fn} is bounded in L1(Q), {gn} bounded in (Lp
′

(Q))N and {hn}
bounded in X.

Then, up to a subsequence, {Un} converges a.e. to a function U ∈ L∞((0, T );L1(Ω)), such that Tk(U) ∈ X
for any k > 0and U ∈ Lσ((0, T );W 1,σ

0 (Ω)) for any σ ∈ [1,mc). And
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(i) {Un} converges to U strongly in Lσ(Q) for any σ ∈ [1,mc), and sup ‖Un‖L∞((0,T );L1(Ω)) <∞,

(ii) supk>0 supn
1

k+1

∫
Q
|∇Tk(Un)|p <∞,

(iii) {Tk(Un)} converges to Tk(U) weakly in X, for any k > 0,

(iv) {A (x, t,∇ (Tk(Un) + hn))} converges to some Fk weakly in (Lp
′

(Q))N .

Proof. Take S ∈W 2,∞(R) such that S′ has compact support on R and S(0) = 0. We combine (2.6) with
(2.16), and deduce that {S(Un)t} is bounded in X ′ + L1(Q) and {S(Un)} bounded in X . Hence, {S(Un)}
is relatively compact in L1(Q). On the other hand, we choose S = Sk such that Sk(z) = z, if |z| < k and
S(z) = 2k signz, if |z| > 2k. From (2.17), we obtain

meas {|Un − Um| > σ} ≤ meas {|Un| > k}+meas {|Um| > k}+meas {|Sk(Un)− Sk(Um)| > σ}

≤
c

k
+meas {|Sk(Un)− Sk(Um)| > σ} ,

where c does not depend of n,m. Thus, up to a subsequence {un} is a Cauchy sequence in measure, and
converges a.e. in Q to a function u. Thus, {Tk(Un)} converges to Tk(U) weakly inX , since supn ‖Tk(Un)‖X <

∞ for any k > 0. And
{
|∇ (Tk(Un) + hn) |

p−2∇ (Tk(Un) + hn)
}
converges to some Fk weakly in (Lp

′

(Q))N .
Furthermore, from (2.18), {Un} strongly converges to U in Lσ(Q), for any σ < pc.

3 The convergence theorem

We first recall some properties of the measures, see [22, Lemma 5], [14].

Proposition 3.1 Let µs = µ+
s − µ−

s ∈ Mb(Q), where µ+
s and µ−

s are concentrated, respectively, on two
disjoint sets E+ and E− of zero cQp -capacity. Then, for any δ > 0, there exist two compact sets K+

δ ⊆ E+

and K−
δ ⊆ E− such that

µ+
s (E

+\K+
δ ) ≤ δ, µ−

s (E
−\K−

δ ) ≤ δ,

and there exist ψ+
δ , ψ

−
δ ∈ C1

c (Q) with values in [0, 1] , such that ψ+
δ , ψ

−
δ = 1 respectively on K+

δ ,K
−
δ , and

supp(ψ+
δ ) ∩ supp(ψ−

δ ) = ∅, and

||ψ+
δ ||X + ||(ψ+

δ )t||X′+L1(Q) ≤ δ, ||ψ−
δ ||X + ||(ψ−

δ )t||X′+L1(Q) ≤ δ.

There exist decompositions (ψ+
δ )t =

(
ψ+
δ

)1
t
+
(
ψ+
δ

)2
t
and (ψ−

δ )t =
(
ψ−
δ

)1
t
+
(
ψ−
δ

)2
t
in X ′ + L1(Q), such that

∥∥∥
(
ψ+
δ

)1
t

∥∥∥
X′

≤
δ

3
,

∥∥∥
(
ψ+
δ

)2
t

∥∥∥
1,Q

≤
δ

3
,

∥∥∥
(
ψ−
δ

)1
t

∥∥∥
X′

≤
δ

3
,

∥∥∥
(
ψ−
δ

)2
t

∥∥∥
1,Q

≤
δ

3
. (3.1)

Both
{
ψ+
δ

}
and

{
ψ−
δ

}
converge to 0, weak-∗ in L∞(Q), and strongly in L1(Q) and up to subsequences, a.e.

in Q, as δ tends to 0.
Moreover if ρn and ηn are as in Theorem 1.1, we have, for any δ, δ1, δ2 > 0,

∫

Q

ψ−
δ dρn +

∫

Q

ψ+
δ dηn = ω(n, δ),

∫

Q

ψ−
δ dµ

+
s ≤ δ,

∫

Q

ψ+
δ dµ

−
s ≤ δ, (3.2)

∫

Q

(1− ψ+
δ1
ψ+
δ2
)dρn = ω(n, δ1, δ2),

∫

Q

(1 − ψ+
δ1
ψ+
δ2
)dµ+

s ≤ δ1 + δ2, (3.3)

∫

Q

(1 − ψ−
δ1
ψ−
δ2
)dηn = ω(n, δ1, δ2),

∫

Q

(1− ψ−
δ1
ψ−
δ2
)dµ−

s ≤ δ1 + δ2. (3.4)
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Hereafter, if n, ε, ..., ν are real numbers, and a function φ depends on n, ε, ..., ν and eventual other pa-
rameters α, β, .., γ, and n → n0, ε → ε0, .., ν → ν0, we write φ = ω(n, ε, .., ν), then this means that, for
fixed α, β, .., γ, there holds limν→ν0 ..limε→ε0 limn→n0 |φ| = 0. In the same way, φ ≤ ω(n, ε, δ, ..., ν) means
limν→ν0 ..limε→ε0 limn→n0φ ≤ 0, and φ ≥ ω(n, ε, .., ν) means −φ ≤ ω(n, ε, .., ν).

Remark 3.2 In the sequel we recall a convergence property still used in [14]: If {b1,n} is a sequence in
L1(Q) converging to b1 weakly in L1(Q) and {b2,n} a bounded sequence in L∞(Q) converging to b2, a.e. in
Q, then limn→∞

∫
Q b1,nb2,n =

∫
Q b1b2.

Next we prove Thorem 1.1.
Scheme of the proof. Let {µn}, {u0,n} and {un} satisfy the assumptions of Theorem 1.1. Then

we can apply Proposition 2.10. Setting Un = un − hn, up to subsequences, {un} converges a.e. in Q
to some function u, and {Un} converges a.e. to U = u − h, such that Tk(U) ∈ X for any k > 0, and
U ∈ Lσ((0, T );W 1,σ

0 (Ω))∩L∞((0, T );L1(Ω)) for every σ ∈ [1,mc). And {Un} satisfies the conclusions (i) to
(iv) of Proposition 2.10. We have

µn = (fn − div gn + (hn)t) + (ρ1n − div ρ2n)− (η1n − div η2n) + ρn,s − ηn,s

= µn,0 + (ρn,s − ηn,s)
+ − (ρn,s − ηn,s)

−,

where

µn,0 = λn,0+ρn,0−ηn,0, with λn,0 = fn−div gn+(hn)t, ρn,0 = ρ1n−div ρ2n, ηn,0 = η1n−div η2n. (3.5)

Hence
ρn,0, ηn,0 ∈ M+

b (Q) ∩M0(Q), and ρn ≥ ρn,0, ηn ≥ ηn,0. (3.6)

Let E+, E− be the sets where, respectively, µ+
s and µ−

s are concentrated. For any δ1, δ2 > 0, let ψ+
δ1
, ψ+

δ2
and

ψ−
δ1
, ψ−

δ2
as in Proposition 3.1 and set

Φδ1,δ2 = ψ+
δ1
ψ+
δ2

+ ψ−
δ1
ψ−
δ2
.

Suppose that we can prove the two estimates, near E

I1 :=

∫

{|Un|≤k}

Φδ1,δ2A(x, t,∇un).∇ (Un−〈Tk(U)〉ν) ≤ ω(n, ν, δ1, δ2), (3.7)

and far from E,

I2 :=

∫

{|Un|≤k}

(1− Φδ1,δ2)A(x, t,∇un).∇(Un−〈Tk(U)〉ν) ≤ ω(n, ν, δ1, δ2). (3.8)

Then it follows that

limn,ν

∫

{|Un|≤k}

A(x, t,∇un).∇ (Un−〈Tk(U)〉ν) ≤ 0, (3.9)

which implies

limn→∞

∫

{|Un|≤k}

A(x, t,∇un).∇ (Un − Tk(U)) ≤ 0, (3.10)
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since {〈Tk(U)〉ν} converges to Tk(U) in X. On the other hand, from the weak convergence of {Tk(Un)} to
Tk(U) in X, we verify that

∫

{|Un|≤k}

A(x, t,∇(Tk(U) + hn)).∇ (Tk(Un)− Tk(U)) = ω(n).

Thus we get
∫

{|Un|≤k}

(A(x, t,∇un)− A(x, t,∇(Tk(U) + hn))) .∇ (un − (Tk(U) + hn)) = ω(n).

Then, it is easy to show that, up to a subsequence,

{∇un} converges to ∇u, a.e. in Q. (3.11)

Therefore, {A(x, t,∇un)} converges to A(x, t,∇u) weakly in (Lp
′

(Q))N ; and from (3.10) we find

limn→∞

∫

Q

A(x, t,∇un).∇Tk(Un) ≤

∫

Q

A(x, t,∇u)∇Tk(U).

Otherwise, {A(x, t,∇ (Tk(Un) + hn))} converges weakly in (Lp
′

(Q))N to some Fk, from Proposition 2.10, and
we obtain that Fk = A(x, t,∇ (Tk(U) + h)). Hence

limn→∞

∫

Q

A(x, t,∇(Tk(Un) + hn)).∇(Tk(Un) + hn)

≤ limn→∞

∫

Q

A(x, t,∇un).∇Tk(Un) + limn→∞

∫

Q

A(x, t,∇(Tk(Un) + hn)).∇hn

≤

∫

Q

A(x, t,∇(Tk(U) + h)).∇(Tk(U) + h).

As a consequence
{Tk(Un)} converges to Tk(U), strongly in X, ∀k > 0. (3.12)

Then to finish the proof we have to check that u is a solution of (1.1).

In order to prove (3.7) we need a first Lemma, inspired of [14, Lemma 6.1]. It extends the results of [22,
Lemma 6 and Lemma 7] relative to sequences of solutions with smooth data:

Lemma 3.3 Let ψ1,δ, ψ2,δ ∈ C1(Q) be uniformly bounded in W 1,∞(Q) with values in [0, 1], and such that∫
Q ψ1,δdµ

−
s ≤ δ and

∫
Q ψ2,δdµ

+
s ≤ δ. Let {un} satisfying the assumptions of Theorem 1.1, and Un = un−hn.

Then
1

m

∫

{m≤Un<2m}

|∇un|
p
ψ2,δ = ω(n,m, δ),

1

m

∫

{m≤Un<2m}

|∇Un|
p
ψ2,δ = ω(n,m, δ), (3.13)

1

m

∫

−2m<Un≤−m

|∇un|
p
ψ1,δ = ω(n,m, δ),

1

m

∫

−2m<Un≤−m

|∇Un|
p
ψ1,δ = ω(n,m, δ), (3.14)

and for any k > 0,
∫

{m≤Un<m+k}

|∇un|
p
ψ2,δ = ω(n,m, δ),

∫

{m≤Un<m+k}

|∇Un|
p
ψ2,δ = ω(n,m, δ), (3.15)
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∫

{−m−k<Un≤−m}

|∇un|
p
ψ1,δ = ω(n,m, δ),

∫

{−m−k<Un≤−m}

|∇Un|
p
ψ1,δ = ω(n,m, δ). (3.16)

Proof. (i) Proof of (3.13), (3.14). Set for any r ∈ R and any m, ℓ ≥ 1

Sm,ℓ(r) =

∫ r

0

(
−m+ τ

m
χ[m,2m](τ) + χ(2m,2m+ℓ](τ) +

4m+ 2h− τ

2m+ ℓ
χ(2m+ℓ,4m+2h](τ)

)
dτ,

Sm(r)=

∫ r

0

(
−m+ τ

m
χ[m,2m](τ) + χ(2m,∞)(τ)

)
dτ .

Note that S′′
m,ℓ= χ[m,2m]/m−χ[2m+ℓ,2(2m+ℓ)]/(2m+ℓ).We choose (ξ, J, S) = (ψ2,δ, T1, Sm,ℓ) as test functions

in (2.15) for un, and observe that, from (3.5),

µ̂n,0 = µn,0 − (hn)t = λ̂n,0 + ρn,0 − ηn,0 = fn − div gn + ρn,0 − ηn,0. (3.17)

Thus we can write
∑6

i=1Ai ≤
∑12

i=7Ai, where

A1 = −

∫

Ω

ψ2,δ(0)T1(Sm,ℓ(u0,n))Sm,ℓ(u0,n)dx, A2 = −

∫

Q

(ψ2,δ)tT1(Sm,ℓ(Un)),

A3 =

∫

Q

S′
m,ℓ(Un)T1(Sm,ℓ(Un))A(x, t,∇un)∇ψ2,δ, A4 =

∫

Q

(S′
m,ℓ(Un))

2ψ2,δT
′

1(Sm,ℓ(Un))A(x, t,∇un)∇Un,

A5 =
1

m

∫

{m≤Un≤2m}

ψ2,δT1(Sm,ℓ(Un))A(x, t,∇un)∇Un,

A6 = −
1

2m+ ℓ

∫

{2m+ℓ≤Un<2(2m+ℓ)}

ψ2,δA(x, t,∇un)∇Un,

A7 =

∫

Q

S′
m,ℓ(Un)T1(Sm,ℓ(Un))ψ2,δfn, A8 =

∫

Q

S′
m,ℓ(Un)T1(Sm,ℓ(Un))gn.∇ψ2,δ,

A9 =

∫

Q

(
S′
m,ℓ(Un)

)2
T

′

1(Sm,ℓ(Un))ψ2,δgn.∇Un, A10 =
1

m

∫

m≤Un≤2m

T1(Sm,ℓ(Un))ψ2,δgn.∇Un,

A11 = −
1

2m+ ℓ

∫

{2m+ℓ≤Un<2(2m+ℓ)}

ψ2,δgn.∇Un, A12 =

∫

Q

S′
m,ℓ(Un)T1(Sm,ℓ(Un))ψ2,δd (ρn,0 − ηn,0) .

Since ||Sm,ℓ(u0,n)||1,Ω ≤
∫

{m≤u0,n}

u0,ndx, we find A1 = ω(ℓ, n,m). Otherwise

|A2| ≤ ‖ψ2,δ‖W 1,∞(Q)

∫

{m≤Un}

Un, |A3| ≤ ‖ψ2,δ‖W 1,∞(Q)

∫

{m≤Un}

(
|a|+ Λ2|∇un|

p−1
)
,

which imply A2 = ω(ℓ, n,m) and A3 = ω(ℓ, n,m). Using (2.3) for un, we have

A6 = −

∫

Q

ψ2,δd(ρn,s − ηn,s)
+ + ω(ℓ) = ω(ℓ, n,m, δ).
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Hence A6 = ω(ℓ, n,m, δ), since (ρn,s − ηn,s)
+

converges to µ+
s as n → ∞ in the narrow topology, and∫

Q ψ2,δdµ
+
s ≤ δ. We also obtain A11 = ω(ℓ) from (2.10).

Now
{
S′
m,ℓ(Un)T1(Sm,ℓ(Un))

}
ℓ
converges to S′

m(Un)T1(Sm(Un)), {S′
m(Un)T1(Sm(Un))}n converges to S′

m(U)

T1(Sm(U)), {S′
m(U)T1(Sm(U))}m converges to 0, weak-∗ in L∞(Q) and {fn} converges to f weakly in L1(Q),

{gn} converges to g strongly in (Lp
′

(Q))N . From Remark 3.2, we obtain

A7 =

∫

Q

S′
m(Un)T1(Sm(Un))ψ2,δfn + ω(ℓ) =

∫

Q

S′
m(U)T1(Sm(U))ψ2,δf + ω(ℓ, n) = ω(ℓ, n,m),

A8 =

∫

Q

S′
m(Un)T1(Sm(Un))gn.∇ψ2,δ + ω(ℓ) =

∫

Q

S′
m(U)T1(Sm(U))g∇ψ2,δ + ω(ℓ, n) = ω(ℓ, n,m).

Otherwise, A12 ≤
∫
Q
ψ2,δdρn, and

{∫
Q
ψ2,δdρn

}
converges to

∫
Q
ψ2,δdµ

+
s , thus A12 ≤ ω(ℓ, n,m, δ).

Using Holder inequality and the condition (1.2), we have

gn.∇Un −A(x, t,∇un)∇Un ≤ c1

(
|gn|

p′ + |∇hn|
p + |a|p

′
)

with c1 = c1(p,Λ1,Λ2), which implies

A9 −A4 ≤ c1

∫

Q

(
S′
m,ℓ(Un)

)2
T

′

1
(Sm,ℓ(Un))ψ2,δ

(
|gn|

p′ + |hn|
p + |a|p

′
)
= ω(ℓ, n,m).

Similarly we also show that A10 −A5/2 ≤ ω(ℓ, n,m). Combining the estimates, we get A5/2 ≤ ω(ℓ, n,m, δ).
Using Holder inequality we have

A(x, t,∇un)∇Un ≥
Λ1

2
|∇un|

p − c2(|a|
p′ + |∇hn|

p).

with c2 = c2(p,Λ1,Λ2), which implies

1

m

∫

{m≤Un<2m}

|∇un|
p
ψ2,δT1(Sm,ℓ(Un)) = ω(ℓ, n,m, δ).

Note that for all m > 4, Sm,ℓ(r) ≥ 1 for any r ∈ [ 32m, 2m]; hence T1(Sm,ℓ(r)) = 1. So,

1

m

∫

{ 3
2m≤Un<2m}

|∇un|
p
ψ2,δ = ω(ℓ, n,m, δ).

Since |∇Un|
p ≤ 2p−1|∇un|

p
+ 2p−1|∇hn|

p
, there also holds

1

m

∫

{ 3
2m≤Un<2m}

|∇Un|
p
ψ2,δ = ω(ℓ, n,m, δ).

We deduce (3.13) by summing on each set
{
(43 )

im ≤ Un ≤ (43 )
i+1m

}
for i = 0, 1, 2. Similarly, we can choose

(ξ, ψ, S) = (ψ1,δ, T1, S̃m,ℓ) as test functions in (2.15) for un, where S̃m,ℓ(r) = Sm,ℓ(−r), and we obtain (3.14).

(ii) Proof of (3.15), (3.16). We set, for any k,m, ℓ ≥ 1,

Sk,m,ℓ(r) =

∫ r

0

(
Tk(τ − Tm(τ))χ[m,k+m+ℓ] + k

2(k + ℓ+m)− τ

k +m+ ℓ
χ(k+m+ℓ,2(k+m+ℓ)]

)
dτ
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Sk,m(r) =

∫ r

0

Tk(τ − Tm(τ))χ[m,∞)dτ.

We choose (ξ, ψ, S) = (ψ2,δ, T1, Sk,m,ℓ) as test functions in (2.15) for un. In the same way we also obtain
∫

{m≤Un<m+k}

|∇un|
p
ψ2,δT1(Sk,m,ℓ(Un)) = ω(ℓ, n,m, δ).

Note that T1(Sk,m,ℓ(r)) = 1 for any r ≥ m+ 1, thus
∫

{m+1≤Un<m+k}

|∇un|
p
ψ2,δ = ω(n,m, δ), which implies

(3.15) by changing m into m− 1. Similarly, we obtain (3.16).

Next we look at the behaviour near E.

Lemma 3.4 Estimate (3.7) holds.

Proof. There holds

I1 =

∫

Q

Φδ1,δ2A(x, t,∇un).∇Tk(Un)−

∫

{|Un|≤k}

Φδ1,δ2A(x, t,∇un).∇〈Tk(U)〉ν .

From Proposition 2.10, (iv), {A(x, t,∇ (Tk(Un) + hn)).∇〈Tk(U)〉ν} converges weakly in L1(Q) to Fk∇〈Tk(U)〉ν .
And

{
χ{|Un|≤k}

}
converges to χ|U|≤k, a.e. in Q , and Φδ1,δ2 converges to 0 a.e. in Q as δ1 → 0, and Φδ1,δ2

takes its values in [0, 1]. From Remark 3.2, we have
∫

{|Un|≤k}

Φδ1,δ2A(x, t,∇un).∇〈Tk(U)〉ν =

∫

Q

χ{|Un|≤k}Φδ1,δ2A(x, t,∇ (Tk(Un) + hn)).∇〈Tk(U)〉
ν

=

∫

Q

χ|U|≤kΦδ1,δ2Fk.∇〈Tk(U)〉ν + ω(n) = ω(n, ν, δ1).

Therefore, if we prove that
∫

Q

Φδ1,δ2A(x, t,∇un).∇Tk(Un) ≤ ω(n, δ1, δ2), (3.18)

then we deduce (3.7). As noticed in [14, 22], it is precisely for this estimate that we need the double cut
ψ+
δ1
ψ+
δ2
. To do this, we set, for any m > k > 0, and any r ∈ R,

Ŝk,m(r) =

∫ r

0

(k − Tk(τ))Hm(τ)dτ,

where Hm is defined at (2.14). Hence supp Ŝk,m ⊂ [−2m, k] ; and Ŝ′′
k,m= −χ[−k,k]+

2k
m χ[−2m,−m]. We choose

(ϕ, S) = (ψ+
δ1
ψ+
δ2
, Ŝk,m) as test functions in (2.2). From (3.17), we can write

A1 +A2 −A3 +A4 +A5 +A6 = 0,

where

A1 = −

∫

Q

(ψ+
δ1
ψ+
δ2
)
t
Ŝk,m(Un), A2 =

∫

Q

(k − Tk(Un))Hm(Un)A(x, t,∇un).∇(ψ+
δ1
ψ+
δ2
),

A3 =

∫

Q

ψ+
δ1
ψ+
δ2
A(x, t,∇un).∇Tk(Un), A

4
=

2k

m

∫

{−2m<Un≤−m}

ψ+
δ1
ψ+
δ2
A(x, t,∇un).∇Un,

A5 = −

∫

Q

(k − Tk(Un))Hm(Un)ψ
+
δ1
ψ+
δ2
dλ̂n,0, A6 =

∫

Q

(k − Tk(Un))Hm(Un)ψ
+
δ1
ψ+
δ2
d (ηn,0 − ρn,0) .
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We first estimate A3. As in [22, p.585], since
{
Ŝk,m(Un)

}
converges to Ŝk,m(U) weakly in X, and

Ŝk,m(U) ∈ L∞(Q), using (3.1), we find

A1 = −

∫

Q

(ψ+
δ1
)
t
ψ+
δ2
Ŝk,m(U)−

∫

Q

ψ+
δ1
(ψ+
δ2
)
t
Ŝk,m(U) + ω(n) = ω(n, δ1).

Next consider A2. Notice that Un =T2m(Un) on supp (Hm(Un)). From Proposition 2.10, (iv), the se-
quence

{
A(x, t,∇ (T2m(Un) + hn)).∇(ψ+

δ1
ψ+
δ2
)
}
converges to F2m.∇(ψ+

δ1
ψ+
δ2
) weakly in L1(Q). From Remark

3.2 and the convergence of ψ+
δ1
ψ+
δ2

in X to 0 as δ1 tends to 0, we find

A2 =

∫

Q

(k − Tk(U))Hm(U)F2m.∇(ψ+
δ1
ψ+
δ2
) + ω(n) = ω(n, δ1).

Then consider A4. Then for some c1 = c1(p,Λ2),

|A4| ≤ c1
2k

m

∫

{−2m<Un≤−m}

(
|∇un|

p + |∇Un|
p + |a|p

′
)
ψ+
δ1
ψ+
δ2
.

Since ψ+
δ1

takes its values in [0, 1] , from Lemma 3.3, we get in particular A4 = ω(n, δ1,m, δ2).

Now we estimate A5. The sequence
{
(k − Tk(Un))Hm(Un)ψ

+
δ1
ψ+
δ2

}
converges to (k−Tk(U))Hm(U)ψ+

δ1
ψ+
δ2
,

weakly in X, and {(k − Tk(Un))Hm(Un)} converges to (k − Tk(U))Hm(U), weak-∗ in L∞(Q) and a.e. in Q.
Otherwise {fn} converges to f weakly in L1 (Q) and {gn} converges to g strongly in (Lp

′

(Q))N . From
Remark 3.2 and the convergence of ψ+

δ1
ψ+
δ2

to 0 in X and a.e. in Q as δ1 → 0, we deduce that

A5 = −

∫

Q

(k − Tk(Un))Hm(U)ψ+
δ1
ψ+
δ2
dν̂0 + ω(n) = ω(n, δ1),

where ν̂0 = f − div g.
Finally A6 ≤ 2k

∫
Q
ψ+
δ1
ψ+
δ2
dηn; using (3.2) we also find A6 ≤ ω(n, δ1,m, δ2). By addition, since A3 does

not depend on m, we obtain

A3 =

∫

Q

ψ+
δ1
ψ+
δ2
A(x, t,∇un)∇Tk(Un) ≤ ω(n, δ1, δ2).

Arguying as before with (ψ−
δ1
ψ−
δ2
, Šk,m) as test function in (2.2), where Šk,m(r) = −Ŝk,m(−r), we get in the

same way ∫

Q

ψ−
δ1
ψ−
δ2
A(x, t,∇un)∇Tk(Un) ≤ ω(n, δ1, δ2).

Then, (3.18) holds.

Next we look at the behaviour far from E.

Lemma 3.5 . Estimate (3.8) holds.

Proof. Here we estimate I2; we can write

I2 =

∫

{|Un|≤k}

(1− Φδ1,δ2)A(x, t,∇un)∇ (Tk(Un)−〈Tk(U)〉ν) .
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Following the ideas of [25], used also in [22], we define, for any r ∈ R and ℓ > 2k > 0,

Rn,ν,ℓ = Tℓ+k (Un−〈Tk(U)〉ν)− Tℓ−k (Un − Tk (Un)) .

Recall that ‖〈Tk(U)〉ν‖∞,Q ≤ k, and observe that

Rn,ν,ℓ = 2k sign(Un) in {|Un| ≥ ℓ+ 2k} , |Rn,ν,ℓ| ≤ 4k, Rn,ν,ℓ = ω(n, ν, ℓ) a.e. in Q, (3.19)

lim
n→∞

Rn,ν,ℓ = Tℓ+k (U − 〈Tk(U)〉ν)− Tℓ−k (U − Tk (U)) , a.e. in Q, and weakly in X. (3.20)

Next consider ξ1,n1 ∈ C∞
c ([0, T )), ξ2,n2 ∈ C∞

c ((0, T ]) with values in [0, 1], such that (ξ1,n1)t ≤ 0 and (ξ2,n2)t
≥ 0; and {ξ1,n1(t)} (resp. {ξ1,n2(t)}) converges to 1, for any t ∈ [0, T ) (resp. t ∈ (0, T ] ); and moreover,

for any a ∈ C([0, T ];L1(Ω)),
{∫

Q
a(ξ1,n1)t

}
and

∫
Q
a(ξ2,n2)t converge respectively to −

∫
Ω
a(., T )dx and∫

Ω
a(., 0)dx. We set

ϕ = ϕn,n1,n2,l1,l2,ℓ = ξ1,n1(1− Φδ1,δ2)[Tℓ+k (Un−〈Tk(U)〉ν)]l1 − ξ2,n2(1− Φδ1,δ2)[Tℓ−k (Un − Tk(Un))]−l2 .

We observe that

ϕ− (1− Φδ1,δ2)Rn,ν,ℓ = ω(l1, l2, n1, n2) in norm in X and a.e. in Q. (3.21)

We can choose (ϕ, S) = (ϕn,n1,n2,l1,l2,ℓ, Hm) as test functions in (2.7) for un, where Hm is defined at (2.14),
with m > ℓ+ 2k. We obtain

A1 +A2 +A3 +A4 +A5 = A6 +A7,

with

A1 =

∫

Ω

ϕ(T )Hm(Un(T ))dx, A2 = −

∫

Ω

ϕ(0)Hm(u0,n)dx, A3 = −

∫

Q

ϕtHm(Un),

A4 =

∫

Q

Hm(Un)A(x, t,∇un).∇ϕ, A5 =

∫

Q

ϕH ′
m(Un)A(x, t,∇un).∇Un,

A6 =

∫

Q

Hm(Un)ϕdλ̂n,0, A7 =

∫

Q

Hm(Un)ϕd (ρn,0 − ηn,0) .

Estimate of A4. This term allows to study I2. Indeed, {Hm(Un)} converges to 1, a.e. in Q; From (3.21),
(3.19) (3.20), we have

A4 =

∫

Q

(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ −

∫

Q

Rn,ν,ℓA(x, t,∇un).∇Φδ1,δ2+ω(l1, l2, n1, n2,m)

=

∫

Q

(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ+ω(l1, l2, n1, n2,m, n, ν, ℓ)

= I2 +

∫

{|Un|>k}

(1− Φδ1,δ2)A(x, t,∇un).∇Rn,ν,ℓ+ω(l1, l2, n1, n2,m, n, ν, ℓ)

= I2 +B1 +B2 + ω(l1, l2, n1, n2,m, n, ν, ℓ),

where

B1 =

∫

{|Un|>k}

(1 − Φδ,η)(χ|Un−〈Tk(U)〉ν |≤ℓ+k
− χ||Un|−k|≤ℓ−k)A(x, t,∇un).∇Un,

B2 = −

∫

{|Un|>k}

(1− Φδ1,δ2)χ|Un−〈Tk(U)〉ν |≤ℓ+k
A(x, t,∇un).∇〈Tk(U)〉ν .
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Now {A(x, t,∇ (Tℓ+2k(Un) + hn)).∇〈Tk(U)〉ν} converges to Fℓ+2k∇〈Tk(U)〉ν , weakly in L1(Q). Otherwise{
χ|Un|>kχ|Un−〈Tk(U)〉

ν|≤ℓ+k

}
converges to χ|U|>kχ|U−〈Tk(U)〉

ν |≤ℓ+k
, a.e. in Q. And {〈Tk(U)〉ν} converges to

Tk(U) strongly in X . From Remark 3.2 we get

B2 = −

∫

Q

(1 − Φδ1,δ2) χ|U|>k χ|U−〈Tk(U)〉
ν|≤ℓ+k

Fℓ+2k.∇〈Tk(U)〉ν + ω(n)

= −

∫

Q

(1 − Φδ1,δ2) χ|U|>k χ|U−Tk(U)|≤ℓ+kFℓ+2k.∇Tk(U) + ω(n, ν) = ω(n, ν),

since ∇Tk(U) χ|U|>k = 0. Besides, we see that, for some c1 = c1(p,Λ2),

|B1| ≤ c1

∫

{ℓ−2k≤|Un|<ℓ+2k}

(1− Φδ1,δ2)(|∇un|
p + |∇Un|

p + |a|p′).

Using (3.3) and (3.4) and applying (3.15) and (3.16) to 1− Φδ1,δ2 , we obtain, for k > 0,

∫

{m≤|Un|<m+4k}

(|∇un|
p
+ |∇Un|

p
)(1 − Φδ1,δ2) = ω(n,m, δ1, δ2). (3.22)

Thus, B1 = ω(n, ν, ℓ, δ1, δ2), hence B1 +B2 = ω(n, ν, ℓ, δ1, δ2). Then

A4 = I2 + ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2). (3.23)

Estimate of A5. For m > ℓ+2k, since |ϕ| ≤ 2ℓ, and (3.21) holds, we get, from the dominated convergence
Theorem,

A5 =

∫

Q

(1− Φδ1,δ2)Rn,ν,ℓH
′
m(Un)A(x, t,∇un).∇Un + ω(l1, l2, n1, n2)

= −
2k

m

∫

{m≤|Un|<2m}

(1− Φδ1,δ2)A(x, t,∇un).∇Un+ω(l1, l2, n1, n2);

here, the final equality followed from the relation, since m > ℓ+ 2k,

Rn,ν,ℓH
′
m(Un) = −

2k

m
χm≤|Un|≤2m, a.e. in Q. (3.24)

Next we go to the limit in m, by using (2.3), (2.4) for un, with φ = (1− Φδ1,δ2). There holds

A5 = −2k

∫

Q

(1− Φδ1,δ2)d
(
(ρn,s − ηn,s)

+ + (ρn,s − ηn,s)
−
)
+ω(l1, l2, n1, n2,m).

Then, from (3.3) and (3.4), we get A5 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A6. Again, from (3.21),

A6 =

∫

Q

Hm(Un)ϕfn +

∫

Q

gn.∇(Hm(Un)ϕ)

=

∫

Q

Hm(Un)(1 − Φδ1,δ2)Rn,ν,ℓfn +

∫

Q

gn.∇(Hm(Un)(1− Φδ1,δ2)Rn,ν,ℓ)+ω(l1, l2, n1, n2).
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Thus we can write A6 = D1 +D2 +D3 +D4 + ω(l1, l2, n1, n2), where

D1 =

∫

Q

Hm(Un)(1− Φδ1,δ2)Rn,ν,ℓfn, D2 =

∫

Q

(1− Φδ1,δ2)Rn,ν,ℓH
′
m(Un)gn.∇Un,

D3 =

∫

Q

Hm(Un)(1− Φδ1,δ2)gn.∇Rn,ν,ℓ, D4 = −

∫

Q

Hm(Un)Rn,ν,ℓgn.∇Φδ1,δ2 .

Since {fn} converges to f weakly in L1(Q), and (3.19)-(3.20) hold, we get, from Remark 3.2,

D1 =

∫

Q

(1 − Φδ1,δ2) (Tℓ+k (U−〈Tk(U)〉ν)− Tℓ−k (U − Tk (U))) f+ω(m,n) = ω(m,n, ν, ℓ).

We deduce from (2.10) that D2 = ω(m). Next consider D3. Note that Hm(Un) = 1 + ω(m), and (3.20)
holds, and {gn} converges to g strongly in (Lp

′

(Q))N , and 〈Tk(U)〉ν converges to Tk(U) strongly in X. Then
we obtain successively that

D3 =

∫

Q

(1− Φδ1,δ2)g.∇ (Tℓ+k (U − 〈Tk(U)〉ν)− Tℓ−k (U − Tk (U)))+ω(m,n)

=

∫

Q

(1− Φδ1,δ2)g.∇ (Tℓ+k (U − Tk(U))− Tℓ−k (U − Tk (U)))+ω(m,n, ν)

= ω(m,n, ν, ℓ).

Similarly we also get D4 = ω(m,n, ν, ℓ). Thus A6 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A7. We have

|A7| =

∣∣∣∣
∫

Q

S′
m(Un) (1− Φδ1,δ2)Rn,ν,ℓd (ρn,0 − ηn,0)

∣∣∣∣+ ω(l1, l2, n1, n2)

≤ 4k

∫

Q

(1− Φδ1,δ2) d (ρn + ηn) + ω(l1, l2, n1, n2).

From (3.3) and (3.4) we get A7 = ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2).

Estimate of A1 +A2 +A3. We set

J(r) = Tℓ−k (r−Tk (r)) , ∀r ∈ R,

and use the notations J andJ of (2.11). From the definitions of ξ1,n1 , ξ1,n2 , we can see that

A1 +A2 = −

∫

Ω

J(Un(T ))Hm(Un(T ))dx−

∫

Ω

Tℓ+k(u0,n − zν)Hm(u0,n)dx+ ω(l1, l2, n1, n2)

= −

∫

Ω

J(Un(T ))Un(T )dx−

∫

Ω

Tℓ+k(u0,n − zν)u0,ndx+ ω(l1, l2, n1, n2,m), (3.25)

where zν = 〈Tk(U)〉ν(0). We can write A3 = F1 + F2, where

F1 = −

∫

Q

(
ξn1(1− Φδ1,δ2)[Tℓ+k (Un − 〈Tk(U)〉ν)]l1

)
t
Hm(Un),

F2 =

∫

Q

(
ξn2(1− Φδ1,δ2)[Tℓ−k (Un − Tk (Un)))]−l2

)
t
Hm(Un).
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Estimate of F2. We write F2 = G1 +G2 +G3, with

G1 = −

∫

Q

(Φδ1,δ2)tξn2 [Tℓ−k (Un − Tk (Un))]−l2Hm(Un),

G2 =

∫

Q

(1− Φδ1,δ2)(ξn2)t[Tℓ−k (Un − Tk (Un))]−l2Hm(Un),

G3 =

∫

Q

ξn2(1− Φδ1,δ2)
(
[Tℓ−k (Un − Tk (Un))]−l2

)
t
Hm(Un).

We find easily that

G1 = −

∫

Q

(Φδ1,δ2)tJ(Un)Un+ω(l1, l2, n1, n2,m),

G2 =

∫

Q

(1− Φδ1,δ2)(ξn2)tJ(Un)Hm(Un)+ω(l1, l2) =

∫

Ω

J(u0,n)u0,ndx+ω(l1, l2, n1, n2,m).

Next consider G3. Setting b = Hm(Un), there holds from (2.13) and (2.12),

(([J(b)]−l2)tb)(., t) =
b(., t)

l2
(J(b)(., t)−J(b)(., t− l2)).

Hence (
[Tℓ−k (Un − Tk (Un))]−l2

)
t
Hm(Un) ≥

([
J (Hm(Un))

]
−l2

)
t
=

(
[J (Un)]−l2

)
t
,

since J is constant in {|r| ≥ m+ ℓ+ 2k} . Integrating by parts in G3, we find

G3 ≥

∫

Q

ξ2,n2(1 − Φδ1,δ2)
(
[J (Un)]−l2

)
t
= −

∫

Q

(ξ2,n2(1 − Φδ1,δ2))t[J (Un)]−l2 +

∫

Ω

ξ2,n2(T )[J (Un)]−l2(T )dx

= −

∫

Q

(ξ2,n2)t(1− Φδ1,δ2)J (Un) +

∫

Q

ξ2,n2(Φδ1,δ2)tJ (Un) +

∫

Ω

ξ2,n2(T )J (Un(T ))dx+ω(l1, l2)

= −

∫

Ω

J (u0,n)dx+

∫

Q

(Φδ1,δ2)tJ (Un)+

∫

Ω

J (Un(T ))dx+ω(l1, l2, n1, n2).

Therefore, since J (Un)− J(Un)Un = −J(Un) and J(u0,n) =J(u0,n)u0,n−J (u0,n), we obtain

F2 ≥

∫

Ω

J(u0,n)dx −

∫

Q

(Φδ1,δ2)tJ(Un) +

∫

Ω

J (Un(T ))dx+ω(l1, l2, n1, n2,m). (3.26)

Estimate of F1. Since m > ℓ + 2k, there holds Tℓ+k (Un−〈Tk(U)〉ν) = Tℓ+k
(
Hm(Un)−〈Tk(Hm(U))〉ν

)
on

suppHm(Un). Hence we can write F1 = L1 + L2, with

L1 = −

∫

Q

(
ξ1,n1(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

)
t

(
Hm(Un)−〈Tk(Hm(U)〉ν

)

L2 = −

∫

Q

(
ξ1,n1(1− Φδ1,δ2)

[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

)
t
〈Tk(Hm(U))〉ν .
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Integrating by parts we have, by definition of the Landes-time approximation,

L2 =

∫

Q

ξ1,n1(1− Φδ1,δ2)
[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

(
〈Tk(Hm(U))〉ν

)
t

+

∫

Ω

ξ1,n1(0)
[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1
(0)〈Tk(Hm(U))〉ν(0)dx

= ν

∫

Q

(1− Φδ1,δ2)Tℓ+k (Un−〈Tk(U)〉ν) (Tk(U)−〈Tk(U)〉ν) +

∫

Ω

Tℓ+k (u0,n − zν) zνdx+ω(l1, l2, n1, n2).

(3.27)

We decompose L1 into L1 = K1 +K2 +K3, where

K1 = −

∫

Q

(ξ1,n1)t(1 − Φδ1,δ2)
[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

(
Hm(Un)−〈Tk(Hm(U))〉ν

)

K2 =

∫

Q

ξ1,n1(Φδ1,δ2)t
[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

(
Hm(Un)−〈Tk(Hm(U))〉ν

)

K3 = −

∫

Q

ξ1,n1(1− Φδ1,δ2)
([
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1

)
t

(
Hm(Un)−〈Tk(Hm(U)〉ν

)
.

Then we check easily that

K1 =

∫

Ω

Tℓ+k (Un−〈Tk(U)〉ν) (T ) (Un−〈Tk(U)〉ν) (T )dx+ω(l1, l2, n1, n2,m),

K2 =

∫

Q

(Φδ1,δ2)tTℓ+k (Un−〈Tk(U)〉ν) (Un−〈Tk(U)〉ν)+ω(l1, l2, n1, n2,m).

Next consider K3. Here we use the function Tk defined at (2.13). We set b = Hm(Un)−〈Tk(Hm(U))〉ν . Hence
from (2.12),

(([Tℓ+k(b)]l1)tb)(., t) =
b(., t)

l1
(Tℓ+k(b)(., t+ l1)− Tℓ+k(b)(., t))

≤
1

l1
(Tℓ+k(b)((., t+ l1))− Tℓ+k(b)(., t)) = ([Tℓ+k(b)]l1)t.

Thus

(
[
Tℓ+k

(
Hm(Un)−〈Tk(Hm(U))〉ν

)]
l1
)
t

(
Hm(Un)−〈Tk(Hm(U))〉ν

)
≤ ([Tℓ+k(Un−〈Tk(U)〉ν ]l1)t.

Then

K3 ≥ −

∫

Q

ξ1,n1(1 − Φδ1,δ2)([T ℓ+k (Un−〈Tk(U)〉ν)]l1)t

=

∫

Q

(ξ1,n1)t(1− Φδ1,δ2)[T ℓ+k (Un−〈Tk(U)〉ν)]l1 −

∫

Q

ξ1,n1(Φδ1,δ2)t[T ℓ+k (Un−〈Tk(U)〉ν)]l1

+

∫

Ω

ξ1,n1(0)[T ℓ+k (Un−〈Tk(U)〉ν)]l1(0)dx

= −

∫

Ω

T ℓ+k (Un(T )− 〈Tk(U)〉ν(T )) dx−

∫

Q

(Φδ1,δ2)tT ℓ+k (Un−〈Tk(U)〉ν)

+

∫

Ω

T ℓ+k (u0,n − zν) dx+ω(l1, l2, n1, n2).
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We find by addition, since Tℓ+k(r) − T ℓ+k(r) = T ℓ+k(r) for any r ∈ R,

L1 ≥

∫

Ω

T ℓ+k (u0,n − zν) dx+

∫

Ω

T ℓ+k (Un(T )− 〈Tk(U)〉ν(T )) dx

+

∫

Q

(Φδ1,δ2)tT ℓ+k (Un−〈Tk(U)〉ν) +ω(l1, l2, n1, n2,m). (3.28)

We deduce from (3.28), (3.27), (3.26),

A3 ≥

∫

Ω

J(u0,n)dx+

∫

Ω

T ℓ+k (u0,n − zν) dx+

∫

Ω

Tℓ+k (u0,n − zν) zνdx (3.29)

+

∫

Ω

T ℓ+k (Un(T )−〈Tk(U)〉ν(T )) dx+

∫

Ω

J (Un(T ))dx+

∫

Q

(Φδ1,δ2)t
(
T ℓ+k (Un−〈Tk(U)〉ν)− J(Un)

)

+ ν

∫

Q

(1− Φδ1,δ2)Tℓ+k (Un−〈Tk(U)〉ν) (Tk(U)−〈Tk(U)〉ν)+ω(l1, l2, n1, n2,m).

Next we add (3.25) and (3.29). Note that J (Un(T ))− J(Un(T ))Un(T ) = −J(Un(T )), and also

T ℓ+k (u0,n − zν)− Tℓ+k (u0,n − zν) (zν − u0,n) = −T ℓ+k (u0,n − zν) .

Then we find

A1 +A2 +A3 ≥

∫

Ω

(
J(u0,n)− T ℓ+k (u0,n − zν)

)
dx+

∫

Ω

(
T ℓ+k (Un(T )− 〈Tk(U)〉ν(T ))− J(Un(T ))

)
dx

+

∫

Q

(Φδ1,δ2)t
(
T ℓ+k (Un−〈Tk(U)〉ν)− J(Un)

)

+ ν

∫

Q

(1− Φδ1,δ2)Tℓ+k (Un−〈Tk(U)〉ν) (Tk(U)−〈Tk(U)〉ν)+ω(l1, l2, n1, n2,m).

Notice that T ℓ+k (r−s)− J(r)≥0 for any r, s ∈ R such that |s| ≤ k; thus

∫

Ω

(
T ℓ+k (Un(T )−〈Tk(U)〉ν(T ))− J(Un(T ))

)
dx ≥ 0.

And {u0,n} converges to u0 in L1(Ω) and {Un} converges to U in L1(Q) from Proposition 2.10. Thus we
obtain

A1 +A2 +A3 ≥
∫
Ω

(
J(u0)− T ℓ+k (u0 − zν)

)
dx+

∫
Q
(Φδ1,δ2)t

(
T ℓ+k (U−〈Tk(U)〉ν)− J(U)

)

+ν
∫
Q (1 − Φδ1,δ2)Tℓ+k (U−〈Tk(U)〉ν) (Tk(U)−〈Tk(U)〉ν)+ω(l1, l2, n1, n2,m, n).

Moreover Tℓ+k (r−s) (Tk(r) − s)≥0 for any r, s ∈ R such that |s| ≤ k, hence

A1 +A2 +A3 ≥

∫

Ω

(
J(u0)− T ℓ+k (u0 − zν)

)
dx+

∫

Q

(Φδ1,δ2)t
(
T ℓ+k (U−〈Tk(U)〉ν)− J(U)

)

+ω(l1, l2, n1, n2,m, n).
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As ν → ∞, {zν} converges to Tk(u0), a.e. in Ω, thus we get

A1 +A2 +A3 ≥

∫

Ω

(
J(u0)− T ℓ+k (u0 − Tk(u0))

)
dx+

∫

Q

(Φδ1,δ2)t
(
T ℓ+k (U − Tk(U))− J(U)

)

+ ω(l1, l2, n1, n2,m, n, ν).

Finally
∣∣T ℓ+k (r−Tk(r))− J(r)

∣∣ ≤ 2k|r|χ{|r|≥ℓ} for any r ∈ R, thus

A1 +A2 +A3 ≥ ω(l1, l2, n1, n2,m, n, ν, ℓ).

Combining all the estimates, we obtain I2 ≤ ω(l1, l2, n1, n2,m, n, ν, ℓ, δ1, δ2), which implies (3.8), since I2
does not depend on l1, l2, n1, n2,m, ℓ.

Next we conclude the proof of Theorem 1.1:

Lemma 3.6 The function u is a R-solution of (1.1).

Proof. (i) First show that u satisfies (2.2). Here we proceed as in [22]. Let ϕ ∈ X ∩ L∞(Q) such
ϕt ∈ X ′ + L1(Q), ϕ(., T ) = 0, and S ∈ W 2,∞(R), such that S′ has compact support on R, S(0) = 0. Let
M > 0 such that suppS′ ⊂ [−M,M ]. Taking successively (ϕ, S) and (ϕψ±

δ , S) as test functions in (2.2)
applied to un, we can write

A1 +A2 +A3 +A4 = A5 +A6 +A7, A2,δ,± +A3,δ,± +A4,δ,± = A5,δ,± +A6,δ,± +A7,δ,±,

where

A1 = −

∫

Ω

ϕ(0)S(u0,n)dx, A2 = −

∫

Q

ϕtS(Un), A2,δ,± = −

∫

Q

(ϕψ±
δ )tS(Un),

A3 =

∫

Q

S′(Un)A(x, t,∇un).∇ϕ, A3,δ,± =

∫

Q

S′(Un)A(x, t,∇un).∇(ϕψ±
δ ),

A4 =

∫

Q

S′′(Un)ϕA(x, t,∇un).∇Un, A4,δ,± =

∫

Q

S′′(Un)ϕψ
±
δ A(x, t,∇un).∇Un,

A5 =

∫

Q

S′(Un)ϕdλ̂n,0, A6 =

∫

Q

S′(Un)ϕdρn,0, A7 = −

∫

Q

S′(Un)ϕdηn,0,

A5,δ,± =

∫

Q

S′(Un)ϕψ
±
δ dλ̂n,0, A6,δ,± =

∫

Q

S′(Un)ϕψ
±
δ dρn,0, A7,δ,± = −

∫

Q

S′(Un)ϕψ
±
δ dηn,0.

Since {u0,n} converges to u0 in L
1(Ω), and {S(Un)} converges to S(U), strongly in X and weak-∗ in L∞(Q),

there holds, from (3.2),

A1 = −

∫

Ω

ϕ(0)S(u0)dx + ω(n), A2 = −

∫

Q

ϕtS(U) + ω(n), A2,δ,ψ±

δ
= ω(n, δ).

Moreover TM (Un) converges to TM (U), then TM (Un) + hn converges to Tk(U) + h strongly in X , thus

A3 =

∫

Q

S′(Un)A(x, t,∇ (TM (Un) + hn)).∇ϕ =

∫

Q

S′(U)A(x, t,∇ (TM (U) + h)).∇ϕ+ ω(n)

=

∫

Q

S′(U)A(x, t,∇u).∇ϕ + ω(n);
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and

A4 =

∫

Q

S′′(Un)ϕA(x, t,∇ (TM (Un) + hn)).∇TM (Un)

=

∫

Q

S′′(U)ϕA(x, t,∇ (TM (U) + h)).∇TM (U) + ω(n) =

∫

Q

S′′(U)ϕA(x, t,∇u).∇U + ω(n).

In the same way, since ψ±
δ converges to 0 in X,

A3,δ,± =

∫

Q

S′(U)A(x, t,∇u).∇(ϕψ±
δ ) + ω(n) = ω(n, δ),

A4,δ,± =

∫

Q

S′′(U)ϕψ±
δ A(x, t,∇u).∇U + ω(n) = ω(n, δ).

And {gn} strongly converges to g in (Lp
′

(Ω))N , thus

A5 =

∫

Q

S′(Un)ϕfn+

∫

Q

S′(Un)gn.∇ϕ+

∫

Q

S′′(Un)ϕgn.∇TM (Un)

=

∫

Q

S′(U)ϕf+

∫

Q

S′(U)g.∇ϕ+

∫

Q

S′′(U)ϕg.∇TM (U) + ω(n)

=

∫

Q

S′(U)ϕdµ̂0 + ω(n).

Now A5,δ,±=
∫
Q
S′(U)ϕψ±

δ dλ̂n,0 + ω(n) =ω(n, δ). Then A6,δ,± +A7,δ,± = ω(n, δ). From (3.2) we verify that

A7,δ,+ = ω(n, δ) and A6,δ,− = ω(n, δ). Moreover, from (3.6) and (3.2), we find

|A6 −A6,δ,+| ≤

∫

Q

|S′(Un)ϕ| (1− ψ+
δ )dρn,0 ≤ ‖S‖W 2,∞(R)‖ϕ‖L∞(Q)

∫

Q

(1− ψ+
δ )dρn = ω(n, δ).

Similarly we also have |A7 −A7,δ,−| ≤ ω(n, δ). Hence A6 = ω(n) and A7 = ω(n). Therefore, we finally
obtain (2.2):

−

∫

Ω

ϕ(0)S(u0)dx−

∫

Q

ϕtS(U)+

∫

Q

S′(U)A(x, t,∇u).∇ϕ+

∫

Q

S′′(U)ϕA(x, t,∇u).∇U =

∫

Q

S′(U)ϕdµ̂0.

(3.30)

(ii) Next, we prove (2.3) and (2.4). We take ϕ ∈ C∞
c (Q) and take ((1− ψ−

δ )ϕ,Hm) as test functions in
(3.30), with Hm as in (2.14). We can write D1,m +D2,m = D3,m +D4,m +D5,m, where

D1,m = −
∫
Q

(
(1− ψ−

δ )ϕ
)
t
Hm(U), D2,m =

∫
Q

Hm(U)A(x, t,∇u).∇
(
(1− ψ−

δ )ϕ
)
,

D3,m =
∫
Q

Hm(U)(1− ψ−
δ )ϕdµ̂0, D4,m = 1

m

∫
m≤U≤2m

(1− ψ−
δ )ϕA(x, t,∇u).∇U,

D5,m = − 1
m

∫
−2m≤U≤−m

(1− ψ−
δ )ϕA(x, t,∇u)∇U.

(3.31)
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Taking the same test functions in (2.2) applied to un, there holds D
n
1,m+Dn

2,m = Dn
3,m+Dn

4,m+Dn
5,m, where

Dn
1,m = −

∫
Q

(
(1− ψ−

δ )ϕ
)
t
Hm(U

n
), Dn

2,m =
∫
Q

Hm(Un)A(x, t,∇un).∇
(
(1− ψ−

δ )ϕ
)
,

Dn
3,m =

∫
Q

Hm(Un)(1 − ψ−
δ )ϕd(λ̂n,0 + ρn,0 − ηn,0), Dn

4,m = 1
m

∫
m≤U≤2m

(1− ψ−
δ )ϕA(x, t,∇un).∇Un,

Dn
5,m = − 1

m

∫
−2m≤Un≤−m

(1− ψ−
δ )ϕA(x, t,∇un).∇Un

(3.32)
In (3.32), we go to the limit as m → ∞. Since

{
Hm(Un)

}
converges to Un and {Hm(Un)} converges to 1,

a.e. in Q, and {∇Hm(Un)} converges to 0, weakly in (Lp(Q))N , we obtain the relation Dn
1 +D

n
2 = Dn

3 +D
n,

where

Dn
1 = −

∫

Q

(
(1− ψ−

δ )ϕ
)
t
U
n
, Dn

2 =

∫

Q

A(x, t,∇un)∇
(
(1 − ψ−

δ )ϕ
)
, Dn

3 =

∫

Q

(1 − ψ−
δ )ϕdλ̂n,0

Dn =

∫

Q

(1 − ψ−
δ )ϕd(ρn,0 − ηn,0)+

∫

Q

(1− ψ−
δ )ϕd((ρn,s − ηn,s)

+
− (ρn,s − ηn,s)

−)

=

∫

Q

(1 − ψ−
δ )ϕd(ρn − ηn).

Clearly, Di,m−Dn
i = ω(n,m) for i = 1, 2, 3. From Lemma (3.3) and (3.2)-(3.4), we obtain D5,m = ω(n,m, δ),

and
1

m

∫

{m≤U<2m}

ψ−
δ ϕA(x, t,∇u).∇U = ω(n,m, δ),

thus,

D4,m =
1

m

∫

{m≤U<2m}

ϕA(x, t,∇u).∇U + ω(n,m, δ).

Since
∣∣∣
∫
Q
(1− ψ−

δ )ϕdηn

∣∣∣ ≤ ‖ϕ‖L∞

∫
Q
(1− ψ−

δ )dηn, it follows that
∫
Q
(1− ψ−

δ )ϕdηn = ω(n,m, δ) from (3.4).

And
∣∣∣
∫
Q ψ

−
δ ϕdρn

∣∣∣ ≤ ‖ϕ‖L∞

∫
Q ψ

−
δ dρn, thus, from (3.2),

∫
Q (1− ψ−

δ )ϕdρn =
∫
Q ϕdµ

+
s + ω(n,m, δ). Then

Dn =
∫
Q
ϕdµ+

s + ω(n,m, δ). Therefore by subtraction, we get successively

1

m

∫

{m≤U<2m}

ϕA(x, t,∇u).∇U =

∫

Q

ϕdµ+
s + ω(n,m, δ),

lim
m→∞

1

m

∫

{m≤U<2m}

ϕA(x, t,∇u).∇U =

∫

Q

ϕdµ+
s , (3.33)

which proves (2.3) when ϕ ∈ C∞
c (Q). Next assume only ϕ ∈ C∞(Q). Then

limm→∞
1
m

∫
{m≤U<2m}

ϕA(x, t,∇u).∇U

= limm→∞
1
m

∫
{m≤U<2m}

ϕψ+
δ A(x, t,∇u)∇U + limm→∞

1
m

∫
{m≤U<2m}

ϕ(1− ψ+
δ )A(x, t,∇u).∇U

=
∫
Q ϕψ

+
δ dµ

+
s + limm→∞

1
m

∫
{m≤U<2m}

ϕ(1 − ψ+
δ )A(x, t,∇u).∇U =

∫
Q ϕdµ

+
s +D,
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where

D =

∫

Q

ϕ(1 − ψ+
δ )dµ

+
s + lim

n→∞

1

m

∫

{m≤U<2m}

ϕ(1 − ψ+
δ )A(x, t,∇u).∇U = ω(δ).

Therefore, (3.33) still holds for ϕ ∈ C∞(Q), and we deduce (2.3) by density, and similarly, (2.4). This
completes the proof of Theorem 1.1.

4 Approximations of measures

Corollary 1.2 is a direct consequence of Theorem 1.1 and the following approximation property:

Proposition 4.1 Let µ = µ0 + µs ∈ M+
b (Q) with µ0 ∈ M+

0 (Q) and µs ∈ M+
s (Q).

(i) Then, we can find a decomposition µ0 = (f, g, h) with f ∈ L1(Q), g ∈ (Lp
′

(Q))N , h ∈ X such that

||f ||1,Q + ‖g‖p′,Q + ||h||X + µs(Ω) ≤ 2µ(Q) (4.1)

(ii) Furthermore, there exists sequences of measures µ0,n = (fn, gn, hn), µs,n such that fn, gn, hn ∈ C∞
c (Q)

strongly converge to f, g, h in L1(Q), (Lp
′

(Q))N and X respectively, and µs,n ∈ (C∞
c (Q))+ converges to µs

and µn := µ0,n + µs,n converges to µ in the narrow topology, and satisfying |µn|(Q) ≤ µ(Q),

||fn||1,Q + ‖gn‖p′,Q + ||hn||X + µs,n(Q) ≤ 2µ(Q). (4.2)

Proof. (i) Step 1. Case where µ has a compact support in Q. By [15], we can find a decomposition
µ0 = (f, g, h) with f, g, h have a compact support in Q. Let {ϕn} be sequence of mollifiers in R

N+1.
Then µ0,n = ϕn ∗ µ0 ∈ C∞

c (Q) for n large enough. We see that µ0,n(Q) = µ0(Q) and µ0,n admits the
decomposition µ0,n = (fn, gn, hn) = (ϕn ∗ f, ϕn ∗ g, ϕn ∗ h). Since {fn} , {gn} , {hn} strongly converge to

f, g, h in L1(Q), (Lp
′

(Q))N and X respectively, we have for n0 large enough,

||f − fn0 ||1,Q + ||g − gn0 ||p′,Q + ||h− hn0 ||Lp((0,T );W 1,p
0 (Ω)) ≤

1

2
µ0(Q).

Then we obtain a decomposition µ = (f̂ , ĝ, ĥ) = (µn0 + f − fn0 , g − gn0 , h− hn0), such that

||f̂ ||1,Q + ||ĝ||p′,Q + ||ĥ||X + µs(Q) ≤
3

2
µ(Q) (4.3)

Step 2. General case. Let {θn} be a nonnegative, nondecreasing sequence in C∞
c (Q) which converges to 1,

a.e. in Q. Set µ̃0 = θ0µ, and µ̃n = (θn − θn−1)µ, for any n ≥ 1. Since µ̃n = µ̃0,n + µ̃s,n ∈ M0(Q) ∩M+
b (Q)

has compact support with µ̃0,n ∈ M0(Q), µ̃s,n ∈ Ms(Q), by Step 1, we can find a decomposition µ̃0,n =

(f̃n, g̃n, h̃n) such that

||f̃n||1,Q + ‖g̃n‖p′,Q + ||h̃n||X + µ̃s,n(Ω) ≤
3

2
µ̃n(Q).

Let fn =
n∑
k=0

f̃k, gn =
n∑
k=0

g̃k, h̄n =
n∑
k=0

h̃k and µ̄s,n =
∑n

k=0 µ̃s,k. Clearly, θnµ0 = (fn, gn, h̄n), θnµs = µ̄s,n

and
{
fn

}
, {gn} ,

{
h̄n

}
and {µ̄s,n} converge strongly to some f, g, h, and µs respectively in L1(Q),(Lp

′

(Q))N ,

X and M+
b (Q), and

||fn||1,Q + ||gn||p′,Q + ||h̄n||X + µ̄s,n(Q) ≤
3

2
µ(Q).

Therefore, µ0 = (f, g, h), and (4.1) holds.
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(ii) We take a sequence {mn} in N such that fn = ϕmn
∗ fn, gn = ϕmn

∗ gn, hn = ϕmn
∗ h̄n, ϕmn

∗ µ̄s,n ∈
(C∞

c (Q))+,
∫
Q ϕmn

∗ µ̄s,ndxdt = µ̄s,n(Q) and

||fn − fn||1,Q + ||gn − gn||p′,Q + ||hn − h̄n||X ≤
1

n+ 2
µ(Q).

Let µ0,n = ϕmn
∗ (θnµ0) = (fn, gn, hn), µs,n = ϕmn

∗ µ̄s,n and µn = µ0,n+µs,n. Therefore, {fn} , {gn} , {hn}

strongly converge to f, g, h in L1(Q), (Lp
′

(Q))N andX respectively. And (4.2) holds. Furthermore, {µs,n} , {µn}
converge to µs, µ in the weak topology of measures, and µs,n(Q) =

∫
Q θndµs, µn(Q) =

∫
Q θndµ converges to

µs(Q), µ(Q), thus {µs,n} , {µn} converges to µs, µ in the narrow topology and |µn|(Q) ≤ µ(Q).

Observe that part (i) of Proposition 4.1 was used in [22], even if there was no explicit proof. Otherwise
part (ii) is a key point for finding applications to the stability Theorem. Note also a very useful consequence
for approximations by nondecreasing sequences:

Proposition 4.2 Let µ ∈ M+
b (Q) and ε > 0. Let {µn} be a nondecreasing sequence in M+

b (Q) converging

to µ in Mb(Q). Then, there exist fn, f ∈ L1(Q), gn, g ∈ (Lp
′

(Q))N and hn, h ∈ X, µn,s, µs ∈ M+
s (Q) such

that
µ = f − div g + ht + µs, µn = fn − div gn + (hn)t + µn,s,

and {fn} , {gn} , {hn} strongly converge to f, g, h in L1(Q), (Lp
′

(Q))N and X respectively, and {µn,s} con-
verges to µs (strongly) in Mb(Q) and

||fn||1,Q + ||gn||p′,Q + ||hn||X + µn,s(Ω) ≤ 2µ(Q). (4.4)

Proof. Since {µn} is nondecreasing, then {µn,0}, {µn,s} are nondecreasing too. Clearly, ‖µ− µn‖Mb(Q) =

‖µ0 − µn,0‖Mb(Q) + ‖µs − µn,s‖Mb(Q). Hence, {µn,s} converges to µs and {µn,0} converges to µ0 (strongly)

in Mb(Q). Set µ̃0,0 = µ0,0, and µ̃n,0 = µn,0 − µn−1,0 for any n ≥ 1. By Proposition 4.1, (i), we can find

f̃n ∈ L1(Q), g̃n ∈ (Lp
′

(Q))N and h̃n ∈ X such that µ̃n,0 = (f̃n, g̃n, h̃n) and

||f̃n||1,Q + ||g̃n||p′,Q + ||h̃n||X ≤ 2µ̃n,0(Q)

Let fn =
n∑
k=0

f̃k, Gn =
n∑
k=0

g̃k and hn =
n∑
k=0

h̃k. Clearly, µn,0 = (fn, gn, hn) and the convergence properties

hold with (4.4), since
||fn||1,Q + ||gn||p′,Q + ||hn||X ≤ 2µ0(Q).
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