A note on Turing degree spectra of minimal subshifts - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

A note on Turing degree spectra of minimal subshifts

Résumé

Subshifts are shift invariant closed subsets of $\Sigma^{\mathbb{Z}^d}$ , minimal subshifts are subshifts in which all points contain the same patterns. It has been proved by Jeandel and Vanier that the Turing degree spectra of non-periodic minimal subshifts always contain the cone of Turing degrees above any of its degree. It was however not known whether each minimal subshift's spectrum was formed of exactly one cone or not. We construct inductively a minimal subshift whose spectrum consists of an uncountable number of cones with disjoint base.
Fichier principal
Vignette du fichier
minimalturdeg.pdf (112.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01058198 , version 1 (26-08-2014)
hal-01058198 , version 2 (27-08-2014)
hal-01058198 , version 3 (06-09-2014)
hal-01058198 , version 4 (17-09-2014)

Identifiants

Citer

Mike Hochman, Pascal Vanier. A note on Turing degree spectra of minimal subshifts. 2014. ⟨hal-01058198v1⟩
384 Consultations
355 Téléchargements

Altmetric

Partager

More