Turing degree spectra of minimal subshifts - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Turing degree spectra of minimal subshifts

Michael Hochman
  • Fonction : Auteur
  • PersonId : 959811

Résumé

Subshifts are shift invariant closed subsets of $\Sigma^{\mathbb{Z}^d}$ , minimal subshifts are subshifts in which all points contain the same patterns. It has been proved by Jeandel and Vanier that the Turing degree spectra of non-periodic minimal subshifts always contain the cone of Turing degrees above any of its degree. It was however not known whether each minimal subshift's spectrum was formed of exactly one cone or not. We construct inductively a minimal subshift whose spectrum consists of an uncountable number of cones with disjoint base.
Fichier principal
Vignette du fichier
minimalturdeg-arxiv.pdf (121.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01058198 , version 1 (26-08-2014)
hal-01058198 , version 2 (27-08-2014)
hal-01058198 , version 3 (06-09-2014)
hal-01058198 , version 4 (17-09-2014)

Identifiants

Citer

Michael Hochman, Pascal Vanier. Turing degree spectra of minimal subshifts. Computer Science - Theory and Applications - 12th International Computer Science Symposium in Russia, Jun 2017, Kazan, Russia. ⟨10.1007/978-3-319-58747-9_15⟩. ⟨hal-01058198v4⟩

Collections

LACL UPEC TDS-MACS
384 Consultations
355 Téléchargements

Altmetric

Partager

More