Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model - Archive ouverte HAL
Article Dans Une Revue Metrika Année : 2016

Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte Dion

Résumé

Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The selection of these two parameters is achieved with a Goldenshluger and Lepski's method, extended to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel estimator of the density of the random effect, with a new bandwidth selection method. For both data driven estimators, risk bounds are provided in term of integrated $\mathbb{L}^2$-error. The estimators are evaluated on simulations and show good results. Finally, these nonparametric estimators are applied to a neuronal database of interspike intervals, and are compared with a previous parametric estimation.
Fichier principal
Vignette du fichier
article_DION_08022016.pdf (1.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01023300 , version 1 (11-07-2014)
hal-01023300 , version 2 (21-11-2014)
hal-01023300 , version 3 (05-12-2014)
hal-01023300 , version 4 (22-05-2015)
hal-01023300 , version 5 (07-02-2016)

Identifiants

Citer

Charlotte Dion. Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model. Metrika, 2016, 79 (8), pp.919-951. ⟨10.1007/s00184-016-0583-y⟩. ⟨hal-01023300v5⟩
764 Consultations
533 Téléchargements

Altmetric

Partager

More