Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model

Charlotte Dion

Résumé

Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The selection of these two parameters is achieved with a Goldenshluger and Lepski's method, extended to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel estimator of the density of the random effect, with a new bandwidth selection method. For both data driven estimators, risk bounds are provided in term of integrated $\mathbb{L}^2$-error. The estimators are evaluated on simulations and show good results. Finally, these non-parametric estimators are applied to a neuronal database of interspike intervals, and are compared with a previous parametric estimation.
Fichier principal
Vignette du fichier
Dion_NPOU.pdf (958 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01023300 , version 1 (11-07-2014)
hal-01023300 , version 2 (21-11-2014)
hal-01023300 , version 3 (05-12-2014)
hal-01023300 , version 4 (22-05-2015)
hal-01023300 , version 5 (07-02-2016)

Identifiants

  • HAL Id : hal-01023300 , version 1

Citer

Charlotte Dion. Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model. 2014. ⟨hal-01023300v1⟩
764 Consultations
533 Téléchargements

Partager

More