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Abstract

Two adaptive nonparametric procedures are proposed to estimate the density of the
random effects in a mixed-effect Ornstein-Uhlenbeck model. First a kernel estimator is
introduced with a new bandwidth selection method developed recently by Goldenshluger
and Lepski (2011). Then, we adapt an estimator from Comte et al. (2013) and we propose
an estimator that uses deconvolution tools and depends on two tuning parameters to be
chosen in a data-driven way. The selection of these two parameters is achieved through
a two-dimensional penalized criterion. For both adaptive estimators, risk bounds are pro-
vided in terms of integrated L2-error. The estimators are evaluated on simulations and
show good results. Finally, these non-parametric estimators are applied to neuronal data
and are compared with previous parametric estimations.
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1 Introduction

Stochastic differential models have been intensively surveyed in the theoretical literature with
either continuous observations (e.g. Kutoyants, 2004) or discrete observations, both in the para-
metric field (e.g. Genon-Catalot and Jacod, 1993) or in the nonparametric field (e.g. Hoffmann,
1999; Comte et al., 2007). More recently, stochastic differential equations with random effects
have been introduced with various applications such as neuronal modelling or pharmacokinetics
(e.g. Picchini et al., 2008; Delattre and Lavielle, 2013; Donnet and Samson, 2013). Mixed-effects
models are used to analyse repeated measurements with similar functional form but with some
variability between experiments (see Davidian and Giltinan, 1995; Pinheiro and Bates, 2000;
Diggle et al., 2002). The advantage is that a single estimation procedure is used to fit the overall
data simultaneously.

Estimation methods in stochastic differential models with random effects have been pro-
posed, especially in the parametric framework (e.g. Donnet and Samson, 2008; Donnet et al.,
2010; Picchini et al., 2010; Picchini and Ditlevsen, 2011; Delattre and Lavielle, 2013; Genon-
Catalot and Larédo, 2013; Donnet and Samson, 2014; Delattre et al., 2014). All these parametric
estimation methods of the density of the random effects are developed assuming a known model
on the density, which is often Gaussian. However, one can wonder if this assumption is reason-
able depending on the application context. We focus here on the nonparametric estimation of
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the density of the independent identically distributed random effects. To the best of our knowl-
edge, the only references in this context are Comte et al. (2013) and Dion and Genon-Catalot
(2015). The first one provides a nonparametric estimator of the density under restrictive as-
sumptions on the drift and diffusion coefficients. The second one studies the more general case
of two linear random effects in the drift. It provides a kernel estimator of the bivariate density
of the couple of random parameters. Assuming that the process is at its stationary regime, the
authors obtain L2-convergence results.

The present work proposes two nonparametric estimation methods in the simpler model,
i.e. an Ornstein-Uhlenbeck stochastic differential model with one additive random effect, X,
the time scale parameter being assumed known. More precisely, we consider N real valued
stochastic processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N , with dynamics ruled by the following
SDEs: {

dXj(t) =
(
φj − Xj(t)

α

)
dt+ σdWj(t)

Xj(0) = xj
(1)

where (Wj)1≤j≤N are N independent Wiener processes, and (φj)1≤j≤N are N unobserved inde-
pendent and identically distributed (i.i.d.) random variables taking values in R, with a common
density f . The sequences (φj)1≤j≤N and (Wj)1≤j≤N are independent. Here (x1, . . . , xN ) are
known values. The positive constants σ and α are supposed to be known; in practice they
are estimated from experimental data. The estimation of σ can be done using the quadratic
variation of the process. The constant α is a physical quantity. Picchini et al. (2010) give an es-
timator of α for the Ornstein-Uhlenbeck model (1) where the likelihood function is explicit and
one can compute maximum likelihood estimators. Each process (Xj(t), 0 ≤ t ≤ T ) represents
an individual and the variable φj is the random effect of individual j. Due to the independence
of the φj and the Wj , the Xj(t), for j = 1, . . . , N are i.i.d. random variables when t is fixed,
also the N trajectories (Xj(t), 0 ≤ t ≤ T ), j = 1, . . . , N are i.i.d. Nevertheless, differences
between observations are due to the realization of both Wj and φj . The Orsntein-Uhlenbeck
model is very useful in practice: at first in physics to describe the movement of a particle, then
in the econometric field, or for example in neuroscience to describe the membrane potential of
a neuron.

The purpose of the present work is to build nonparametric estimators of the random effect
density f , considering that only the processes are observed on [0, T ] with T > 0 given. In
practice we consider discrete observations of the Xj ’s with a very small time step δ. We are
able to evaluate the error made by this discretization. The main difficulty is that we do not
observe the φj ’s but only the Xj(kδ)’s. Thus the first step is to find an estimator of the random
effects φj and then to estimate f , taking into account the approximation introduced by the
estimation of the φj .

In the context of stochastic differential equations with random effects, Comte et al. (2013)
propose different nonparametric estimators with good theoretical properties for large T and
N . Here we adopt two different approaches. First we assume that T is large and we propose
a direct estimation method of the density from the estimator of the φj ’s. This is the kernel
estimator. Then, assuming that T may be small (due to the chosen units for example but still
with high frequency data) we focus on the deconvolution estimator.

The kernel estimator depends on a bandwidth to be chosen from the data. Several selection
methods of the bandwidth of kernel estimators are known. The originality here is that we use a
method, proposed by Goldenshluger and Lepski (2011), which provides an adaptive estimator.
This kind of non-asymptotic result is new in this context.
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Then we study an estimator built by a deconvolution method (see Butucea and Tsybakov,
2007; Comte et al., 2013, for example). The novelty lies in the introduction of an additional
tuning parameter to control the variance of the noise. The value of T is then allowed to be
small but we still need high frequency observation meaning a small time step. We obtain a
collection of estimators depending on two parameters. To select the final estimator among
this collection, we extend the Goldenshluger and Lepski method for a two-dimensional model
selection (Goldenshluger and Lepski, 2011). Finally we have a consistent estimator satisfying
an oracle inequality, for any value of T . This estimator is likely to be applied to experimental
data with small T .

We illustrate the properties of the proposed estimators with a simulation study. Especially,
we compare them with standard bandwidth selection method of cross-validation type. Then, the
estimators are applied to neuronal data. They are intracellular measurements of the neuronal
membrane potential between two spikes which can be modelled with an Ornstein-Uhlenbeck
model with one random effect as in (1). The potential being reset at a fixed initial value after
a spike, we consider that the measure between two spikes is an independent experimental unit
with a different realization of the random effect. This assumption has already been considered
with parametric strategies in Picchini et al. (2008) and Picchini et al. (2010), where it is assumed
that the random effect is Gaussian and proven that the Ornstein-Uhlenbeck model with one
random effect fits better the data than the model without them. Our goal is to estimate
nonparametrically the density of the random effect. This estimated density could be used in
further works to model this phenomenon (instead of using the Gaussian density systematically.)

The paper is organized as follows. Section 2 is dedicated to giving definitions and presenting
the estimators investigated in this work. Then in Section 3 we set up a method of bandwidth
selection for the kernel estimator. In Section 4 we define and study the final data-driven
estimator built by deconvolution. In Section 5 we calibrate the selection methods and illustrate
the good performances of both estimators on simulated data. In Section 6 we experiment the
procedures on real data. We conclude this article with a discussion in Section 7. All proofs
are gathered in Section 8, and the computation of the error made by discretization is done in
Appendix A.

2 Presentation of the strategies

2.1 Notation and assumptions

Let us introduce some notations. For two functions g1 and g2 in L1(R)∩L2(R), the convolution
product of g1 and g2 for all x ∈ R, is g1 ? g2(x) =

∫
R g1(x− y)g2(y)dy and the scalar product is:

< g1, g2 >=
∫
R g1(x)g2(x)dx. Then the Fourier transform of g1 is g∗1(x) =

∫
R e

iuxg1(u)du for
all x ∈ R and the L2-norm is ‖g1‖2 =

∫
R |g1(x)|2dx. Finally we recall the Plancherel-Parseval’s

formula: 2π‖g1‖2 = ‖g∗1‖2.

We assume (A) f ∈ L2(R), f∗ ∈ L1(R) ∩ L2(R).

2.2 Initial idea

As previously mentioned, the first step of the procedure is to estimate the random effect φj
which are not observed, in order to recover their density, in a second time.
For this purpose, we introduce the following random variables for j = 1, . . . , N and τ ∈]0, T ],

Zj,τ :=
Xj(τ)−Xj(0)−

∫ τ
0 (−Xj(s)

α ds)

τ
= φj +

σ

τ
Wj(τ). (2)
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The (Zj,τ )τ are estimators of the φj based on the trajectory (Xj(t)). They correspond to the
maximum in ϕ of the conditional likelihood of (1) given φj = ϕ. Moreover random variables
E[Zj,τ ] = E[φj ] and when τ goes to infinity, the noise σWj(τ)/τ goes to zero. This attests the
goodness of the estimator. Notice that the (Zj,τ )j=1,...,N are i.i.d. when τ is fixed, with density
fZτ , due to the independence of (φj)j=1,...,N and (Wj)j=1,...,N . These new random variables
are available, depending only on the observations and known parameters. Nevertheless, we

only have discrete observations of the process. Thus we discretize the integral:
∫ τ

0
Xsds ≈

δ

bτ/δc∑
k=1

X(k−1)δ. The error dues to this approximation is studied in Section A.3. At this point,

two strategies materialize which we explain in the following Section.

2.3 Estimation strategies

Let us present the two investigated methods.
Kernel strategy
The first idea is to reduce the noise which appears in formula (2). Indeed, Var(σWj(τ)/τ) =
σ2/τ leads to focus on the largest τ : τ = T . Moreover, when T is large Zj,T clearly approximates
φj without needing to remove the noise. Then we are able to build a kernel estimator of the
density f of the φj ’s based on the Zj,T using directly the Zj,T as an approximation of the
non-observed random effects φj . These N random variables are i.i.d. and the resulting kernel
estimator is given for all x ∈ R, by

f̂h(x) =
1

N

N∑
j=1

Kh(x− Zj,T ) (3)

where h > 0 is a bandwidth, and K : R→ R is a C2 kernel such that∫
K(u)du = 1, ‖K‖2 =

∫
K2(u)du < +∞,

∫
(K ′′(u))2du < +∞, Kh(x) =

1

h
K
(x
h

)
. (4)

This natural estimator is studied in detail in Section 3.

Deconvolution strategy
The other idea is to build an estimator of f using all variables Zj,τ for different τ ∈ [0, T ].
Recovering f from the observations (X1(t), . . . , XN (t))t∈[0,T ] is called the deconvolution problem
because the common density of (Zj,τ )j=1,...,N is a convolution product between two densities.
Indeed, the two members of the sum (2) are independent when τ is fixed, which implies for all
j = 1, . . . , N ,

fZτ (u) = f ? fσ
τ
W1(τ)(u).

Then the characteristic function of φj is recoverable from that of Zτ . Taking the Fourier
transform under assumption (A) gives the simple product

f∗Zτ (u) = f∗(u)f∗σ
τ
W1(τ)

(u),

with f∗σ
τ
W1(τ)

(u) = e−
u2σ2

2τ . In this particular case the noise is Gaussian and this convolution
problem has been investigated in the literature, see Fan (1991); Butucea and Tsybakov (2007)
for example. However it has been proven in Carroll and Hall (1988) that the best rates of
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convergence obtained in this case are logarithmic. This suggests to improve the deconvolution
procedure and this is the reason why we choose not to use previous estimators but to propose
a new method, based on repeated observations and new parameters chosen carefully.

We have f∗(u) = f∗Zτ (u)eu
2σ2/2τ . Finally the Fourier inversion gives the closed formula, for

all x ∈ R,
f(x) =

1

2π

∫
R
e−iuxf∗Zτ (u)e

u2σ2

2τ du. (5)

Then, we estimate f∗Zτ (u) by its empirical estimator f̂∗Zτ (u) = (1/N)
∑N

j=1 e
iuZj,τ . How-

ever, plugging this in formula (5) involves integrability problems. Indeed the integrability
of f̂∗Zτ (u)eu

2σ2/2τ is not ensured. Therefore, we have to introduce a cut-off. The nonparametric
estimation using a deconvolution method in the Gaussian case commonly yields bad speeds
of convergence. To improve the rates, an idea of Comte and Samson (2012), for linear mixed
models, was to link this cut-off and the time of the process. Comte et al. (2013) link the time
of the process τ and the cut-off as follows:

f̂τ (x) =
1

2π

∫ √τ
−
√
τ
e−iux

1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du. (6)

Then the time τ is chosen by a Goldenshluger and Lepski’s method and the final estimator is
denoted f̃˜̃τ .

Nevertheless, when τ is small (which is the case for the real dataset we investigate when
we change the units), the integration domain is not large enough, and the estimators of f are
not satisfactory (cf an explicit example in Section 6). We adapt Comte et al. (2013) estimator
introducing a new parameter s in the cut-off:

f̂s,τ (x) =
1

2π

∫ s
√
τ

−s
√
τ
e−iux

1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du.

Then, in order to simplify the theoretical study, we replace s
√
τ in the integral by a new

parameter m. The resulting estimator f̃m,s is defined when m2/s2 ∈]0, T ], by

f̃m,s(x) =
1

2π

∫ m

−m
e−iux

1

N

N∑
j=1

e
iuZj,m2/s2e

u2σ2s2

2m2 du (7)

with m and s in two finite setsM and S that we will precise later.

In the following we survey in detail the two strategies.

3 Study of the kernel estimator

The kernel estimator given by (3) has been investigated in Comte et al. (2013). First we recall
the MISE bound that the kernel estimator f̂h satisfies. Then we develop the bandwidth selection
procedure we are interested in in this work.

3.1 Risk bound

Let us define fh := Kh ? f , for h > 0. We denote for all p ∈ R, ‖f‖p = (
∫
|f(x)|pdx)1/p and for

p = 2 we still use ‖f‖2 = ‖f‖. Notice that ‖Kh‖ = ‖K‖/
√
h and ‖Kh‖1 = ‖K‖1. We recall

the result proven in Comte et al. (2013) for the MISE.
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Proposition 1 Considering estimator f̂h given by (3), we have

E[‖f̂h − f‖2] ≤ 2‖f − fh‖2 +
‖K‖2

Nh
+

2σ4‖K ′′‖2

3T 2h5
. (8)

The right-hand side of (8) involves three terms, and the middle one is the integrated variance.
The integrated bias is ‖E[f̂h]− f‖2 ≤ 2‖f − fh‖2 + 2‖E[f̂h]− fh‖2, with

‖E[f̂h]− fh‖2 ≤
σ4‖K ′′‖2

3T 2h5
. (9)

Therefore, the first term ‖f−fh‖2 is a bias term, which decreases when h decreases. The second
term is the term of variance which increases when h decreases. Finally, the third term, also
given in (9), is an unusual error term due to the approximation of the φj ’s by the Zj,T also
increasing when h decreases. We see on this bound that the rate σ2/T must be small to obtain
a small risk.

3.2 Adaptation of the bandwidth

Now that we have at hand a collection of estimators depending on a bandwidth h, we focus on
the crucial matter namely how to choose the bandwidth from the data. The best choice of h
is the one which minimizes the sum of these three terms. The selection of the bandwidth can
be done for example using cross validation, see e.g. the R-function density which is commonly
used. However, the only theoretical results known for cross-validation procedure are asymp-
totic and to the best of our knowledge there is no adaptive result on the final estimator. In
the present work, we propose to adapt a selection method due to Goldenshluger and Lepski
(2011) mentioned before, which provides a data-driven bandwidth for which we provide non-
asymptotic theoretical results.

We denote HN,T the finite set of bandwidths h, to be defined later. The best theoreti-
cal choice of the bandwidth is the h which minimizes the bound on the MISE given by (8).
Nevertheless, in practice, the bias term is unknown, and this bound has to be estimated.

To choose h adequately, we use a Goldenshluger and Lepski’s criterion introduced in Gold-
enshluger and Lepski (2011). The idea is to estimate ‖f − fh‖2 by the L2-distance between two
estimators defined in (3). But this induces an error which has to be corrected by the variance
term. Then the estimator of the bias term is

A(h) = sup
h′∈HN,T

(
‖f̂h,h′ − f̂h′‖2 − V (h′)

)
+

(10)

where

f̂h,h′(x) := Kh′ ? f̂h(x) =
1

N

N∑
j=1

Kh′ ? Kh(x− Zj,T )

and V correspond to the two terms of variance

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ4‖K‖21‖K ′′‖2

T 2h5
(11)

with κ1 and κ2 two numerical positive constants. We will prove that A(h) has the order of the
bias term (see equation (24)). Finally the bandwidth is selected as follows:

ĥ = argmin
h∈HN,T

{A(h) + V (h)} (12)
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with HN,T a finite discrete set of bandwidths h such that h > 0,
1

Nh
≤ 1,

1

h5T 2
≤ 1 and

Card(HN,T ) ≤ N . It must be chosen such that when N goes to infinity, for all c ∈ C∑
h∈HN,T h

−1/2e−c/
√
h ≤ S(c) with S(c) a positive constant depending on c. For example no-

tice that taking HN,T = {1/k2, k = 1, . . . ,
√
N}, the sum

∑
h∈HN,T h

−1/2e−c/
√
h ≤

∑
k≥1 ke

−ck

converges, which is a necessary condition for the proof.
Then we can prove the following Theorem.

Theorem 2 Consider estimator f̂h given by (3) with h ∈ HN,T . Then, there exist two penalty
constants κ1, κ2 such that

E[‖f̂
ĥ
− f‖2] ≤ C1 inf

h∈HN,T

{
‖f − fh‖2 + V (h)

}
+
C2

N

where C1, C2 are two positive constants such that C1 = max(7, 30‖K‖21 + 6) and C2 depends on
‖f‖, ‖K‖, ‖K‖1, ‖K‖4/3.

The theoretical study gives κ1 ≥ max(40/‖K‖21, 40) and κ2 ≥ max(10/3, 10/(3‖K‖21)). But
in practice these two constants are calibrated from a simulation study (and always smaller
than the theoretical ones). Theorem 2 is an oracle inequality: the bias variance compromise is
automatically obtained and in a data-driven and non-asymptotic way.

This strategy requires large T as we assume 1/h5 ≤ T 2. The error implied by the discrete
observations and the use of Riemann sums to compute the Zj,T are detailed in Comte et al.
(2013).

4 Study of the deconvolution estimator

4.1 Risk bound

Let us emphasize that the estimator f̃m,s given by (7) depends on two parameters which have
to be selected from the data. This is not usual in the deconvolution setting, where only one
cut-off parameter is often introduced. The selection of these two parameters (m, s) among the
finite setsM, S is thus more difficult. It is even more challenging here because the cut-off m
appears both in the integral and in the integrand. But this will induce gains in the rates of the
estimators. Before proposing a selection method of (m, s) we start by evaluating the quality of
the estimator with the mean integrated squared error (MISE):

E
[
‖f̃m,s − f‖2

]
= ‖f − E[f̃m,s]‖2 + E

[
‖f̃m,s − E[f̃m,s]‖2

]
.

In Proposition 3 we prove that E[f̃m,s] = fm where fm is defined by its Fourier transform

f∗m := f∗1[−m,m].

It means that the bias does not depend on s. We obtain the following bound on the MISE of
f̃m,s.

Proposition 3 Under (A), the estimator f̃m,s given by (7) is an unbiased estimator of fm and
we have

E
[
‖f̃m,s − f‖2

]
≤ ‖fm − f‖2 +

m

πN

∫ 1

0
eσ

2s2v2dv. (13)
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The proofs are relegated to Section 8. Let us look at the risk bound. The first term of the
bound (13) is the bias term. It represents the error resulting from estimating f by fm and it
decreases when m increases, indeed:

‖fm − f‖2 =
1

2π

∫
|u|≥m

|f∗(u)|2du.

The second term is the variance term, and it increases with m and s. One can notice that it is
bounded as soon as s is bounded and m ≤ N .

We specify the two sets M and S. We notice that the quality of the estimate in the Fourier
domain is good on an interval around zero with length related with σ. The chosen set for s is

S := {sl =
1

2l
2

σ
, l = 0, . . . , P}.

Notice that for sl ∈ S, 1/2P−1 ≤ σsl ≤ 2. Moreover with this chosen collection S, the order of
the variance term is m/N . With the idea that m2/s2 is homogeneous to a time, we choose m
in the finite collection:

M := {m =

√
k∆

σ
, k ∈ N∗, 0 < m ≤ N}

with 0 < ∆ < 1 a small step to be fixed. The collection of couples of parameters is

C := {(m, s) ∈M× S, m2/s2 ≤ T}.

The final estimator is the estimator from the collection C which achieves the bias-variance
compromise. Choosing the final estimator is not an easy task except if we know the regularity
of f . Indeed, let us assume that f is in the Sobolev ball with regularity parameter b, i.e. f
belongs to the set defined by

Ab(L) = {f ∈ L1(R) ∩ L2(R),

∫
R
|f∗(x)|2(1 + x2)bdx ≤ L}

with b > 0, L > 0. For example the standard normal distribution is in a space Ab(L) for some
L and for all b > 0, an exponential distribution is in some Ab(L) for b < 1/2 or more generally
a Gamma distribution with shape parameter k is in some Ab(L) for b < (k − 1/2). Thus when
f ∈ Ab(L), the bias term satisfies:

‖fm − f‖2 =
1

2π

∫
|u|≥m

|f∗(u)|2du ≤ L

2π
m−2b.

Consequently, the L2-risk of f̃m,s is bounded by

E[‖f̃m,s − f‖2] ≤
L

2π
m−2b +

m

πN
eσ

2s2 .

Therefore, the best theoretical choice of s is sP the smallest s in our collection, and

m = m∗ = KbN
1

(2b+1)

with Kb = (bL exp(−1/(22(P−1))))1/(2b+1). Then we obtain the following asymptotic result.
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Corollary 4 If f ∈ Ab(L), and if we choose s = sP and m = m∗, there exists a constant K
depending on b, L, P , such that

E[‖f̃m∗,sP − f‖
2] ≤ KN−

2b
2b+1 .

The order of the risk in this case is N−2b/(2b+1) for a large N , and it is the nonparametric
estimation rate of convergence obtained when the observations are N realizations of the variable
of interest. Nevertheless, it is not easy to see that (m, s) ∈ C and this choice is theoretical
because it depends on the regularity b of f , which is unknown. The next section provides a
data-driven method to select (m, s).

4.2 Selection of the final estimator

In this Section we deal with the choice of the best estimator among the available collection
of f̃m,s. In the previous work Comte et al. (2013), s was fixed to s = 1 and m was selected.
But we saw empirically that it did not work in the setting corresponding to the data. This is
why we experimented different values for s. But then we did not find any reliable criterion to
select m for any given s. On the contrary, if we look at the bound and try to select s first, we
just get s = 0, which is not of interest if we are looking to improve the estimator through s
in particular. This implies to select the couple (m, s) minimizing the MISE and realizing the
compromise between the two terms, in a data-driven way. This is a crucial issue. Indeed, the
role of the two parameters is not the same. Thus we propose a new criterion adapted from the
Goldenshluger and Lepski (2011) method.

The idea is to select the couple which minimizes the MISE: E
[
‖f̃m,s − f‖2

]
. As it is un-

known, we have to find a computable approximation of this quantity. We define the best couple
(m, s) as the one minimizing a criterion defined as the sum of a squared bias term and a variance
term called penalty. We define the penalty function, which has the same order as the bound on
the variance term:

pen(m, s) = κ
m

N
eσ

2s2 ,

where κ is a numerical constant to be calibrated. Note that for m ∈M and s ∈ S, the penalty
function is bounded.

To estimate the bias term, we generalize Goldenshluger and Lepski’s criterion for a two-
dimensional index. The method is inspired by the ideas developed for kernel estimators by
Goldenshluger and Lepski (2011) and adapted to model selection in one dimension in Comte
and Johannes (2012) and in two dimensions by Chagny (2013). The idea is to estimate ‖f−fm‖2
by the L2-distance between two estimators defined in (7). But this induces a bias which has
to be corrected by the penalty function. We consider the following estimator of the bias, with
(m′, s′) ∧ (m, s) := (m′ ∧m, s′ ∧ s),

Γm,s = max
(m′,s′)∈C

(
‖f̃m′,s′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+

(14)

for (m, s) ∈ C. Finally the selected couple is:

(m̃, s̃) = arg min
(m,s)∈C

{Γm,s + pen(m, s)}. (15)

We are now able to obtain the following result.
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Theorem 5 Under (A), consider the estimator f̃m̃,s̃ given by (7) and (15). There exists κ0 a
numerical constant such that, for all penalty constants κ ≥ κ0,

E[‖f̃m̃,s̃ − f‖2] ≤ C inf
(m,s)∈C

{
‖f − fm‖2 + pen(m, s)

}
+
C ′(P + 1)

N
(16)

where C > 0 is a numerical constant and C ′ is a constant depending on ‖f‖, σ, ∆, and P + 1
the cardinality of S.

The key of the proof is to prove that

E[Γm,s] ≤ 18‖f − fm‖2 +
C ′(P + 1)

N

(see the proof in Section 8.3.) Inequality (16) means that f̃m̃,s̃ automatically makes the bias-
variance trade-off. Moreover, our result is of non asymptotic nature w.r.t. N .

One should notice that this new parameter s generalizes the results of Comte et al. (2013)
even if T is large. We choose the two parameters in an adaptive way, thus this gives more
flexibility in the choice of the estimator.

It follows from the proof that κ0 = 24 would suit. But in practice, values obtained from
the theory are generally too large and the constant is calibrated by simulations. Once chosen,
it remains fixed for all simulation experiments. Besides the cardinality P of the set S is chosen
small in practice (P = 3 or 10 for example).

In Appendix A.3 we investigate the error implied by the discrete observations and thus of
the discretization of Zj,τ given by (2).

5 Simulation study

In the following section we compare on simulations the two procedures we compute f̂
ĥ
and f̃m̃,s̃,

the estimator of Comte et al. (2013) f̃˜̃τ and we compare our bandwidth selection method with
the estimator from the R-function density with the cross-validation option "bw=ucv", on the
Zj,T , j = 1, . . . , N , we denote it f̂cv.

We simulate data by computing the exact solutions of (1) given by Itô’s formula,

Xj(t) = Xj(0)e−t/α + φjα(1− e−t/α) + σe−t/α
∫ t

0
es/αdWj(s) (17)

at discrete times tk ∈ T := {kδ, k ∈ {0, . . . , J}, Jδ = T}. For the simulation study, we have to
fix N, δ, T, σ, α, and the density f . We take σ = 0.0135, 0.05, 1 and σ = 0.05, α = 0.039, 1, 39.
For the time T , we choose T = 0.3, 10, 50, 100, 300 with different values of δ the discrete time
step at which observations are recorded. The value of J , the number of observations for one
trajectory ranges from 150 to 5000 for Table 1 and is fixed to J = 2000 for Table 2. All these
parameter values are chosen in relation with the parameters of the real dataset. In this study
we hope to highlight the influence of each one. For f , we investigate four different distributions:

• Gaussian distribution N (0.278, (0.041)2)
• Gamma distribution Γ(1.88, 0.148)
• mixed Gaussian distribution 0.3N (0, (0.02)2) + 0.7N (1, (0.02)2)
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• mixed Gamma distribution 0.4Γ(3, 0.08) + 0.6Γ(30, 0.035)
where we write Γ(k, θ) with k the scale parameter and θ the shape.

First, we implement the two collections of estimators: f̂
ĥ
and f̃m̃,s̃. We begin by computing

the random variables used by both estimators: Zj,τ given by (2), with Riemann sums approx-
imations (see Appendix A.3 for details). For the deconvolution estimator given by (7) we also
use Riemann sums to compute the integral. For the collection of m, we choose ∆ = 0.08 and
δ changes. Furthermore, for the kernel estimator given by (3), we choose a Gaussian kernel:
K(u) = (1/

√
2π)e−u

2/2. In this case ‖K‖1 = 1, ‖K‖22 = 1/(2
√
π), ‖K ′′‖22 = (1 + 1/

√
2)/(
√

2π).
Then, the selected bandwidth ĥ is given by Equation (12). Note that for all (h, h′) ∈ H2,

Kh′ ? Kh(x) =
1√

2π
√
h′2 + h2

e−x
2/[2(h′2+h2)].

We use this relation to compute the f̂h,h′ .
Secondly, we have to calibrate the penalty constants: κ1, κ2 for the kernel estimator and

κ for the deconvolution estimator. Classically, the constants are fixed thanks to preliminary
simulation experiments. Different functions f have been investigated with different parameter
values, and a large number of replications. Comparing the MISE obtained as functions of the
constants κ1, κ2 and κ yield to select values making a good compromise over all experiments.
Finally we choose κ1 = 1, κ2 = 0.0001 and κ = 0.3. A recent work Lacour and Massart (2015)
proposes to change the calibration constants in the variance term V (h): taking κ in the term
Γ(m,s) (14) and 2κ for the second V (h) in the selection criterion (12). It has been done in
practice for the kernel estimator. We notice that this strategy produces very good results in
practice, better than choosing the same κ for the two apparitions of term V (h). On Figure 1
25 estimators f̂

ĥ
are plotted and on Figure 2 25 estimators f̃m̃,s̃, for the 4 investigated densities

f . The batch of estimators is close to the estimated density.
In order to evaluate the performances of each estimator on the different designs, we compare

their empirical MISE computed from 100 simulated data sets.
Table 1 summarises the results for different parameters values. It shows the bad perfor-

mances of the estimator of Comte et al. (2013) f̃˜̃τ when T is small compared to f̃m̃,s̃. It
performs clearly better when T is increasing. Besides we notice that both kernel estimators
have good results. Nevertheless these results are satisfying because it appears that our esti-
mator f̂

ĥ
fits slightly better the true density than f̂cv. The computation time is close for both

selection method. We show the results for different values of α do not seem to influence the
quality of estimators (while the selected h,m, s are very different). During the simulation study,
we noticed that the parameter α is important is the sense that when the value of α does not
have the same order as the values of φ, the estimation is harder. Except when T = 300 the
ratio signal noise which is the standard deviation of the random effect divided by σ is larger
than one thus the settings are favourables. But for both gamma and mixed gamma cases, the
standard deviations are respectively 0.2 and 0.15, which is not small compared to σ or to their
mean. The mixed gamma case is difficult for the nonparametric estimation: Figure 3 illustrates
the performances of estimators for this choice. Finally, it is interesting to note that when the
standard deviation of the random effect of interest has a larger variance, the density estima-
tion is easier, which is the case of the chosen gamma density for example compared with the
Gaussian case.

In the following as the two kernel estimators seem very close, we only show the results for
f̂
ĥ
which is of interest here. Besides we no longer investigate the previous estimator f̃˜̃τ in light

of Table 1 for T < N .
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Table 1: Empirical MISE computed from 100 simulated data sets, with N = 200, with various
T , δ, σ and α for two kernel estimators f̂cv, f̂ĥ and two deconvolution estimators f̂˜̃τ and f̃m̃,s̃

f̂cv f̂
ĥ

f̃˜̃τ f̃m̃,s̃

Case f Gamma
T = 0.3 δ = 0.0005 σ = 0.0135 α = 0.039 0.043 0.037 1.547 0.071

T = 300 δ = 0.5 σ = 0.5 α = 39 0.048 0.039 0.049 0.055
T = 50 δ = 0.1 σ = 0.05 α = 1 0.042 0.039 0.218 0.050

Case f mixed Gamma
T = 0.3 δ = 0.0005 σ = 0.0135 α = 0.039 0.033 0.030 0.712 0.035

T = 300 δ = 0.5 σ = 0.5 α = 39 0.032 0.030 0.035 0.043
T = 50 δ = 0.1 σ = 0.05 α = 1 0.033 0.031 0.145 0.043

We further compare f̂
ĥ
and f̃m̃,s̃. The two estimators seem close to the true density on

graphs, see Figure 1 and 2. In Table 2 on the MISE it is clear that the kernel estimator is the
best. Furthermore, we can point out some differences. The first row of the Table corresponds
to simulations with the parameters of the real dataset. In the first column, the Gaussian case,
the MISE are 10 times larger than the ones for other cases. This can be easily explained: the
values of the estimated density are 10 times larger than others. Nevertheless, on lines 3 and
4 for the Gaussian case, the MISE are very large. This is due to the bad estimation of the φj
by the Zj,T with σ = 0.05 and T = 0.3 1. The quality of the estimation is significantly better
when we try a N (0.278, 0.2) (0.2 is the variance of the mixed Gaussian density we implement
for example). In general one can notice that when σ is larger than the standard deviation of
the density of the random effects f , the estimation is less precise, which is coherent in term of
signal to noise ratio.

Table 2 shows that if T increases, it improves the results for σ = 0.05, compare cases 2
and 5 with 4 and 7 for example. If J is large enough, meaning if δ is small enough (which is
the case even for J = 150 when T = 0.3), the deconvolution estimator fits well the density. In
practice, when T increases, the selected value of s decreases, which could have been predicted.
The results are still satisfying for large T . For the kernel estimator, although the theoretical
condition 1/h5 < T 2 is not satisfied, the numerical results are good.

Another point is, as expected, that the larger N is, the better the estimators f̂
ĥ
and f̃m̃,s̃.

We can refer to Comte et al. (2013) for a study with different values for N . It highlights
the influence of N when the estimated density has two modes; for example with N = 50 the
estimation is clearly less precise than for N = 200.

A main difference between our two estimators f̂
ĥ
and f̃m̃,s̃ is the computation time: a few

seconds for the first one and ten minutes for the second one. Thus the kernel estimator with the
method of bandwidth selection is very efficient, especially in the case of multi-modal densities,
and performs often better than the deconvolution one.

1We insist that this bad estimation is not due to the fact that the noise is Gaussian. Indeed even if Fan
(1991) proves the rates to be logarithmic in that case, the rates are improved and can be polynomial when the
density under estimation is of the same type as the noise (see Lacour (2006), Comte et al. (2006)).
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(a) f Gaussian (b) f mixed Gaussian density

(c) f Gamma (d) f mixed Gamma density

Figure 1: Simulated data. In plain black (red) 25 estimators f̂
ĥ
with parameters: N = 240,

T = 0.3, δ = 0.00015, σ = 0.0135, α = 0.039 and the true density f in plain bold black line

13



(a) f Gaussian (b) f mixed Gaussian

(c) f Gamma (d) f mixed Gamma

Figure 2: Simulated data. In plain black (red) 25 estimators f̃m̃,s̃ with parameters: N = 240,
T = 0.3, δ = 0.00015, σ = 0.0135, α = 0.039 and the true density f in bold plain black line

0.0 0.5 1.0 1.5

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

Figure 3: Simulated data. In bold plain black curve is the true density f mixed Gamma, the
estimator f̂cv estimator f̂

ĥ
are superposed is in plain grey (green), estimator f̃˜̃τ is dotted black

(blue) and estimator f̃m̃,s̃ is plain black (blue), with N = 200, T = 50, δ = 0.05, σ = 0.05,
α = 1
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Table 2: Empirical MISE computed from 100 simulated data sets, with N = 240, α = 0.039
and various T , δ, σ for the kernel estimator f̂

ĥ
and the deconvolution estimator f̃m̃,s̃

f
Case T δ σ Estimator Gaussian gamma mixed Gaussian mixed gamma

1 0.3 0.0002 0.0135 f̂
ĥ

0.254 0.037 0.016 0.024
f̃m̃,s̃ 0.381 0.072 0.021 0.038

2 0.3 0.002 0.0135 f̂
ĥ

0.270 0.032 0.016 0.024
f̃m̃,s̃ 1.584 0.071 0.019 0.038

3 0.3 0.0002 0.05 f̂
ĥ

2.544 0.098 0.026 0.054
f̃m̃,s̃ 3.402 0.231 0.078 0.226

4 0.3 0.002 0.05 f̂
ĥ

2.524 0.092 0.028 0.053
f̃m̃,s̃ 3.269 0.154 0.029 0.232

5 10 0.002 0.0135 f̂
ĥ

0.091 0.031 0.017 0.024
f̃m̃,s̃ 0.080 0.037 0.035 0.052

6 10 0.02 0.0135 f̂
ĥ

0.085 0.033 0.014 0.023
f̃m̃,s̃ 0.151 0.048 0.033 0.034

7 10 0.002 0.05 f̂
ĥ

0.111 0.031 0.016 0.025
f̃m̃,s̃ 0.687 0.061 0.016 0.034

8 10 0.02 0.05 f̂
ĥ

0.121 0.035 0.014 0.025
f̃m̃,s̃ 0.181 0.053 0.023 0.040

9 100 0.2 0.0135 f̂
ĥ

0.106 0.032 0.014 0.024
f̃m̃,s̃ 0.123 0.062 0.091 0.046
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6 Application to neuronal data

6.1 Dataset

We describe quickly the data but we refer to Yu et al. (2004); Lansky et al. (2006) for example
for details on data acquisition. The data are intracellular measurements of the membrane
potential in volts along time, for one single neuron of a pig between the spikes. This is the
depolarization phase. In this neuronal context, between the (j − 1)th and the jth spike, the
depolarization of the membrane potential receiving a random input can be described by the
Ornstein Uhlenbeck model with one random effect (1). The spikes are not intrinsic to the
model but are generated when the voltage reaches for the first time a certain threshold S, then
the process is reset to a fixed initial voltage. Thus each trajectory is observed on an interval
[0, Tj ] where Tj = inf{t > 0, Xj(t) ≥ S}. The initial voltage (the value following a spike) is
assumed to be equal to the resting potential. The present dataset has been normalised to obtain
N trajectories which begin in zero: xj = 0.

The positive constant parameter α is called the time constant of the neuron (the coefficient
of decay in the exponential, when there is no noise), which is intrinsic to the neuron and fixed
to α = 0.039 [s] (Lansky et al., 2006). The diffusion coefficient σ [V/

√
s] has been estimated

using the estimator σ̂2 = (1/N)
∑N

j=1

(
(1/J)

∑J
k=1 ((Xj(δ(k + 1))−Xj(δk))2/δ

)
. We obtain

σ = 0.0135, which is the same value as that used in Picchini et al. (2008). The φj represents
the local average input that the neuron receives during the jth inter-spike interval. We assume
that φj changes from one trajectory to another because of other neurons or the influence of
the environment, for example. So parameters φ and σ characterize the input, while α, xj (the
resting potential) and S (the firing threshold) describe the neuron irrespectively of the incoming
signal (Picchini et al., 2008).

Data are composed of N = 312 inter-spike trajectories. For each interval [0, Tj ] the time
step is the same: δ = 0.00015 [s]. We decide to keep only realizations with more than 2000
observations (Tj/δ ≥ 2000). Finally we have N = 240 realizations with J = 2000 observations
and for j = 1, . . . , N , T = Tj = 0.3 [s]. Also the data are normalized in order to begin with
zero at the initial time. The study of the units of measurement can highlight the collections
given in Section 4. One can notice that the unit of measurement of v in the integrand must be
[s/V] (same unit as 1/Zj,τ ) such that the exponential terms are without unit. The unit of s is
[
√
s/V], and the choice ofM with the same unit as v seems natural.
In is interesting to note that the normality of the Zj,T is rejected by Shapiro and Wilk test

(p-value 10−7) and Kolmogorov-Smirnov test (p-value 10−3). This suggests that the φj ’s are
not Gaussian. Thus we want to estimate nonparametrically their density. In the following we
compare our results to the estimation obtained in Picchini et al. (2010) under the parametric
Gaussian assumption.

6.2 Comparison of estimators

The estimation of the density f obtained by Picchini et al. (2010) under the Gaussian assump-
tion on these data are N (µ = 0.278, η2 = (0.041)2). Using a maximum-likelihood estimator on
the (Zj,T )’s we obtain for the mean 0.270 and for the standard deviation 0.046. We notice that
these two estimations are close to that of Picchini et al. (2010) even if the Zj,T are noisy when
T is small. We use our two nonparametric estimators to see how close to a Gaussian density
they are.

On Figure 4 we represent both estimators f̂
ĥ
and f̃m̃,s̃ applied on the real data and the

density N (µ, η2). The two estimations are close, and close to the estimation of Picchini et al.
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(2010). However, it is also legitimate to think about a Gamma distribution to model the random
parameters φj ’s because, as the data have been normalised, the estimated random effects are
positive. Then it seems reasonable to use a non-negative random variable to model this local
average input. Thus, a Gamma distribution may seem more appropriate than a Gaussian
distribution, even if the chosen Gaussian has small probability to be negative. We look for the
Gamma distribution which has for mean µ = 0.278 and for standard deviation η = 0.041. This
corresponds to a Gamma distribution with the shape parameter 46.3 and the scale parameter
0.006. We notice the similarity between the previous Gaussian curve and the new one. Thus
this distribution seems also suitable to fit the distribution of the φj ’s, as Figure 4 shows.

The Gaussian assumption is strong and leads to parametric tractable models. The present
work confirms that this approximation is acceptable. However, the nonparametric estimation
gives a density for the φj ’s that can be used to simulate the random effect and could be closer
to the true one.

Notice that, as mentioned in introduction, Comte et al. (2013)’s estimator cannot handle
small values of T while our new proposals are successful in such case. Let us precise this point.
The

Zj,T ≈

(
Xj(T )−Xj(0) +

δ

α

J∑
l=1

X((l − 1)δ)

)
1

T

is unchanged when we change the units: V,s to mV,ms thus T = 0.3 to T = 300. However, the
deconvolution estimator of Comte et al. (2013) for τ = T is changing when the value of T is
changing. In fact, the estimator is

f̂T (x) =
1

2π

∫ √T
−
√
T
e−iux

1

N

N∑
j=1

eiuZj,T e
u2σ2

2T du

≈ 1

2π

npas∑
k=1

(uk+1 − uk)e−iukx
1

N

N∑
j=1

eiukZj,T e
u2kσ

2

2T


and according to T = 0.3 or T = 300 the values of u and thus the interval of integration and
the three exponential terms are changing. Finally estimator f̂T is changing with the units. And
the interval of integration is not large enough in the case T = 0.3 to gave a good estimation.

To solve this problem we have proposed a new estimator f̃m̃,s̃ to allow the user to deal with
data with the units he/she wants and to not oblige him/her to change it.

But one can wonder if the new estimators are robust when increasing T . Indeed, our method
works for larger T . Precisely changing volts in millivolts and seconds in milliseconds implies
T = 300, σ = 0.426, and on simulated data we adequately reconstruct the shape of the density.

7 Discussion

In this work we study a stochastic differential Ornstein-Uhlenbeck mixed-effects model. We
propose two estimators of the density of the random effect. Both estimators are not very
sensitive to the effect of the time of observation T . Indeed the kernel strategy corresponds to a
context with large T while we built a deconvolution estimator especially for small values of T .
Both are data-driven and satisfy an oracle-type inequality. According to the numerical study,
the kernel estimator seems to be the efficient one: the numerical results are convincing and
close to the ones obtained by cross-validation. Besides we provide non-asymptotic theoretical
results. Furthermore we study neuronal data with nonparametric estimation strategy. Instead
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Figure 4: Real data. In green estimator f̂
ĥ
, in red f̃m̃,s̃, the black dotted and bold line the density

N (µ, η2) from Picchini et al. (2010) and the black dotted thin line the density Γ(46.3, 0.006)

of making any parametric assumptions for the random effect distribution, we build an estimator
of its density. Future work based on this estimation could be more precise and closer to the
real neuronal data. To complete the study, the method for different times of observation Tj
could be settled up. Besides, some goodness-of-fit tests could be produced; we refer to Bissantz
et al. (2007) who construct confidence bands for an estimator of f in the ordinary smooth
deconvolution problem.

The model can be completed by adding another random effect: the time constant of the
neuron. Picchini and Ditlevsen (2011) have investigated this model in a parametric way and
Dion and Genon-Catalot (2015) in a nonparametric way. A recent work Delattre et al. (2015)
assumes that the density of the random effect is a Gaussian mixture and uses data clustering
method, which is an interesting approach for the data described in the present paper. The
question of a random effect in the diffusion coefficient also is open (see Delattre et al. (2014)).
Moreover, a model with a drift b(Xj(t)) + φj , where b is a known function, can be treated with
the same method. However, dealing with a diffusion σ(Xj(t)) where σ is a known function is a
more complex problem.

Acknowledgements The author would like to thank Fabienne Comte and Adeline Samson
for very useful discussions and advice.

8 Proofs

8.1 Proof of Theorem 2

Given h ∈ HN,T , we denote:

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ4‖K‖21‖K ′′‖2

T 2h5
=: V1(h) + V2(h).

Using the definition of A(h) and of ĥ we obtain

‖f̂
ĥ
− f‖2 ≤ 3‖f̂

ĥ
− f̂

h,ĥ
‖2 + 3‖f̂

h,ĥ
− f̂h‖2 + 3‖f̂h − f‖2

≤ 3
(
A(h) + V (ĥ)

)
+ 3

(
A(ĥ) + V (h)

)
+ 3‖f̂h − f‖2

≤ 6A(h) + 6V (h) + 3‖f̂h − f‖2.
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Thus,
E[‖f̂

ĥ
− f‖2] ≤ 6E[A(h)] + 6V (h) + 3E[‖f̂h − f‖2],

hence, we only have to study the term E[A(h)]. We can decompose ‖f̂h,h′ − f̂h′‖2 as follows:

‖f̂h,h′−f̂h′‖2 ≤ 5‖f̂h,h′−E[f̂h,h′ ]‖2+5‖E[f̂h,h′ ]−fh,h′‖2+5‖fh,h′−fh′‖2+5‖fh′−E[f̂h′ ]‖2+5‖E[f̂h′ ]−f̂h′‖2

thus
A(h) ≤ 5(D1 +D2 +D3 +D4 +D5)

with:
D1 := sup

h′∈HN,T
‖fh,h′ − fh′‖2,

D2 := sup
h′∈HN,T

(
‖f̂h′ − E[f̂h′ ]‖2 −

V1(h
′)

10

)
+

, D3 := sup
h′∈HN,T

(
‖f̂h,h′ − E[f̂h,h′ ]‖2 −

V1(h
′)

10

)
+

D4 := sup
h′∈HN,T

(
‖E[f̂h′ ]− fh′‖2 −

V2(h
′)

10

)
+

, D5 := sup
h′∈HN,T

(
‖E[f̂h,h′ ]− fh,h′‖2 −

V2(h
′)

10

)
+

.

According to Young’s inequality (see Theorem 7), we obtain

‖fh,h′ − fh′‖2 = ‖Kh′ ? (fh − f)‖2 ≤ ‖Kh′‖21‖fh − f‖2 = ‖K‖21‖fh − f‖2

thus
D1 ≤ ‖K‖21‖fh − f‖2. (18)

Let us study the term D2. We denote B(1) = {g ∈ L2(R), ‖g‖ = 1}. We define

νN,h(g) :=< g, f̂h − E[f̂h] >

then |νN,h(g)| ≤ ‖g‖‖f̂h − E[f̂h]‖ thus, the estimator f̂h satisfies:

‖f̂h − E[f̂h]‖2 = sup
g∈B(1)

(νN,h(g))2.

We can also compute the scalar product which defines νN,h and we obtain

νN,h(g) =
1

N

N∑
j=1

(
g ? K−h (Zj,T )− E[g ? K−h (Zj,T )]

)
(19)

with K−h (x) := Kh(−x). This finally conducts to:

E[D2] ≤
∑

h′∈HN,T

E

[
sup
g∈B(1)

(νN,h′(g))2 − V1(h
′)

10

]
+

.

This bound and Equation (19) leads to apply Talagrand’s Theorem (8). We have to compute 3
quantities: M , H2 and v.
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First:

sup
g∈B(1)

‖g ? K−h′‖∞ = sup
g∈B(1)

sup
x∈R

∣∣∣∣∫ g(y)K−h′(x− y)dy

∣∣∣∣ = sup
g∈B(1)

sup
x∈R
| < g,K−h′(.− x) > |

≤ sup
g∈B(1)

‖g‖‖Kh′‖ =
‖K‖√
h′

:= M. (20)

Secondly, the bound of Proposition 1 gives

E

[
sup
g∈B(1)

(νN,h(g))2

]
= E[‖f̂h − E[f̂h]‖2] ≤ ‖K‖

2

Nh
:= H2. (21)

Thirdly:

sup
g∈B(1)

(
Var(g ? K−h′(Z1,T ))

)
≤ sup

g∈B(1)
E[(g ? K−h′(Z1,T ))2]

≤ 2 sup
g∈B(1)

E[(g ? K−h′(φ1))
2] + 2 sup

g∈B(1)
E[(g ? (K−h′(Z1,T )−K−h′(φ1))

2].

Let us investigate the two terms separately. Young’s inequality gives:

E[(g ? K−h′(φ1))
2] =

∫
(g ? K−h′(x))2f(x)dx ≤ ‖f‖‖g ? K−h′‖

2
4 =
‖f‖‖K‖24/3√

h′
:= v1. (22)

Then, one can write: Kh′(x−Z1,T )−Kh′(x−φ1) = (φ1−Z1,T )
∫ 1
0 (Kh′)

′(x−φ1+u(φ1−Z1,T ))du,
thus

(g ? K−h′(Z1,T )− g ? Kh′(φ1))
2 = (φ1 − Z1,T )2

(∫
g(x)

∫ 1

0
(Kh′)

′(x− φ1 + u(φ1 − Z1,T ))dudx

)2

≤ (φ1 − Z1,T )2
∫
g2(x)

(∫ 1

0
(Kh′)

′2(x− φ1 + u(φ1 − Z1,T ))du

)
dx

≤ (φ1 − Z1,T )2‖g‖2
∫

(Kh′)
′2(y)dy = (φ1 − Z1,T )2‖(Kh′)

′‖2.

With E[(φ1 − Z1,T )2] = σ2

T 2E[W1(T )2] = σ2

T , the assumption T−1 ≤ h5/2 leads to

E[(g ? K−h′(Z1,T )− g ? Kh′(φ1))
2] ≤ ‖K

′‖2σ2

h′3T
≤ ‖K

′‖2σ2√
h′

:= v2. (23)

Finally v = v1 + v2 = A0/
√
h′ with A0 = ‖f‖‖K‖24/3 + ‖K ′‖2σ2.

If κ1‖K‖21 ≥ 40, with the assumption 1/(Nh) ≤ 1, Talagrand’s inequality (under the assump-
tions of the Theorem 2) gives

E

(
sup
g∈B(1)

(νN,h′(g))2 − V1(h
′)

10

)
+

≤ C1

N
√
h′
e−C2/

√
h′ + C3

1

h′N2
e−C4

√
N

≤ C5

N

∑
h′∈HN,T

1√
h′
e−C6/

√
h′ ≤ C5S(C6)

N
.
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One can lead the study of D3 as we have done for D2, using the same steps and tools.
However Kh ? Kh′ instead of Kh′ , adds ‖K‖1 in M and ‖K‖21 in H2 and v.

Then, let us study the term D4. If κ2 ≥ 10/(3‖K‖21), the bound (9) leads us to

D4 = sup
h′∈HN,T

(
‖E[f̂h′ ]− fh′‖2 −

V2(h
′)

10

)
+

≤ sup
h′∈HN,T

(
‖K ′′‖2σ4

3h′5T 2
− κ2‖K‖21‖K ′′‖2σ4

10T 2h′5

)
+

= 0

thus D4 = 0. Finally, similarly, if κ2 ≥ 10/3, we obtain

D5 = sup
h′∈HN,T

(
‖E[f̂h,h′ ]− fh,h′‖2 −

V2(h
′)

10

)
+

≤ sup
h′∈HN,T

(
‖K ′′‖2‖K‖21σ4

3h5T 2
− κ2‖K‖21‖K ′′‖2σ4

10T 2h′5

)
+

= 0.

Thus finally we obtained that:

E[A(h)] ≤ 5
(
‖K‖21‖fh − f‖2 +

c

N

)
(24)

with c a constant depending on ‖f‖, ‖K‖1, ‖K‖, ‖K‖4/3. Finally we have shown that for all
h ∈ HN,T :

E[‖f̂
ĥ
− f‖2] ≤ 6κ1

‖K‖21‖K‖2

Nh
+ 6κ2

‖K‖21‖K ′′‖2σ4

T 2h5
+ 3

(
2‖f − fh‖2 +

‖K‖2

Nh
+

2‖K ′′‖2σ4

3T 2h5

)
+ 30

(
‖K‖21‖f − fh‖2 +

c

N

)
≤

(
6 +

3

‖K‖21κ1

)
V1(h) +

(
6 +

9

2‖K‖21κ2

)
V2(h) + (30‖K‖21 + 6)‖fh − f‖2 +

C

N

≤ C1 inf
h∈HN,T

{‖f − fh‖2 + V (h)}+
C2

N
.

where C1 = max(7, 30‖K‖21 + 6) and C2 depends on ‖f‖, ‖K‖1, ‖K‖, ‖K‖4/3. �

8.2 Proof of Proposition 3

The bias term is ‖f −E[f̃m,s]‖2. Let us compute E[f̃m,s]. As the Zj,τ are i.i.d.. when τ is fixed
and due to the independence of φ1 and W1, we obtain:

E[f̃m,s(x)] =
1

2π

∫ m

−m
e−iuxE

[
e
iuZ1,m2/s2+u

2σ2s2/(2m2)
]
du

=
1

2π

∫ m

−m
e−iuxE

[
eiuφ1+iuσW1(m2/s2)s2/m2+u2σ2s2/(2m2)

]
du

=
1

2π

∫ m

−m
e−iux+u

2σ2s2/(2m2)f∗(u)E
[
eiuσW1(m2/s2)s2/m2

]
du

=
1

2π

∫ m

−m
e−iux+u

2σ2s2/(2m2)f∗(u)e−u
2σ2s2/(2m2)du

=
1

2π

∫ m

−m
e−iuxf∗(u)du =: fm(x).
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Therefore this gives E[f̃m,s(x)] = fm(x), and ‖f−E[f̃m,s]‖2 = ‖f−fm‖2 = 1
2π

∫
|u|≥m |f

∗(u)|2du.
The variance term is:

E
[
‖f̃m,s − fm‖2

]
=

1

2π
E

∫ m

−m

∣∣∣∣∣∣ 1

N

N∑
j=1

e
iuZj,m2/s2e

u2σ2s2

2m2 − f∗(u)

∣∣∣∣∣∣
2

du


=

1

2πN

∫ m

−m
e
u2σ2s2

m2 Var
(
e
iuZ1,m2/s2

)
du

≤ 1

2πN

∫ m

−m
e
u2σ2s2

m2 du =
m

πN

∫ 1

0
es

2σ2v2du. �

8.3 Proof of Theorem 5

Let us study the term ‖f̃m̃,s̃−f‖2. We decompose it into a sum of three terms and the definition
of (m̃, s̃) (15) implies for all (m, s) ∈ C

‖f̃m̃,s̃ − f‖2 ≤ 3
(
‖f̃m̃,s̃ − f̃(m̃,s̃)∧(m,s)‖2 + ‖f̃(m̃,s̃)∧(m,s) − f̃m,s‖2 + ‖f̃m,s − f‖2

)
≤ 3 (Γm,s + pen(m̃, s̃)) + 3

(
Γm̃,s̃ + pen(m, s)

)
+ 3‖f̃m,s − f‖2

≤ 6Γm,s + 6pen(m, s) + 3‖f̃m,s − f‖2 (25)

Now we study Γm,s. First:

‖f̃(m,s)∧(m′,s′) − f̃m′,s′‖2 ≤ 3
(
‖f̃m′,s′ − fm′‖2 + ‖fm′ − fm∧m′‖2 + ‖fm∧m′ − f̃(m′,s′)∧(m,s)‖2

)
.

Thus:

Γm,s ≤ max
(m′,s′)∈C

(
3‖f̃m′,s′ − fm′‖2 + 3‖fm′ − fm∧m′‖2 + 3‖fm∧m′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+

≤ 3 max
(m′,s′)∈C

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
m′∈M

‖fm′ − fm∧m′‖2.

The last maximum can be explicit. If m′ ≤ m, then ‖fm′ − fm∧m′‖2 = ‖fm′ − fm′‖2 = 0.
Otherwise,

‖fm′ − fm∧m′‖2 = ‖fm′ − fm‖2 =

∫
m≤|u|≤m′

|f∗(u)|2du ≤ ‖f − fm‖2.

Finally:
max
m′∈M

‖fm′ − fm∧m′‖2 ≤ ‖f − fm‖2.

We get the following bound for Γm,s:
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Γm,s ≤ 3 max
(m′,s′)∈C

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

+ 3‖f − fm‖2. (26)

Then we gather Equations (25) and (26):

‖f̃m̃,s̃ − f‖2 ≤ 6pen(m, s) + 3‖f̃m,s − f‖2 + 18‖f − fm‖2 + max
(m′,s′)∈C

18

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ max
(m′,s′)∈C

18

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

.

We first notice that our penalty function is increasing in s and m, thus we get the following
bound for the last term:

E

[
max

(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 − 1

6
pen((m′, s′) ∧ (m, s))

)
+

]

≤ E

[
max

m′≤m,s′≤s

(
‖f̃m′,s′ − fm′‖2 − 1

6
pen(m′, s′)

)
+

]
+ E

[
max

m≤m′,s≤s′

(
‖f̃m,s − fm‖2 −

1

6
pen(m, s)

)
+

]

+E

[
max

m≤m′,s′≤s

(
‖f̃m,s′ − fm‖2 −

1

6
pen(m, s′)

)
+

]
+ E

[
max

m′≤m,s≤s′

(
‖f̃m′,s − fm′‖2 − 1

6
pen(m′, s)

)
+

]

≤ 4
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 − 1

6
pen(m′, s′)

]
+

.

Moreover, according to Proposition 3 and using the inequality
∫ 1

0
eσ

2s2v2dv ≤ eσ
2s2 , we obtain, for all

(m, s) ∈ C,

E[‖f̃m̃,s̃ − f‖2] ≤ 5× 18
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 − 1

6
pen(m′, s′)

]
+

+ 6pen(m, s)

+ 3
m

πN
eσ

2s2 + 21‖f − fm‖2.

Then we obtain the announced result with the following Lemma.

Lemma 6 There exists a constant C ′ > 0 such that for pen(m, s) defined by pen(m, s) = κmN e
σ2s2 ,∑

m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 − 1

6
pen(m′, s′)

]
+

≤ C ′(P + 1)

N
.

According to Lemma 6, to be proved next, we choose pen(m, s) = κmN e
σ2s2 , thus, there exist two

constants C = 145, C ′ > 0 such that,

E[‖f̃m̃,s̃ − f‖2] ≤ 5× 18
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 − 1

6
pen(m′, s′)

]
+

+ (6κ+
3

π
)
m

N
eσ

2s2 + 21‖f − fm‖2

≤ C inf
(m,s)∈C

{‖f − fm‖2 +
m

N
eσ

2s2}+
C ′

N
. �
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Proof of Lemma 6
For a couple (m, s) ∈ C fixed, let us consider the subset Sm := {t ∈ L1(R)∩L2(R), supp(t∗) = [−m,m]}.
For t ∈ Sm,

νN (t) =
1

N

N∑
j=1

(
ϕt(Zj,m2/s2)− E[ϕt(Zj,m2/s2)]

)
with ϕt(x) := 1

2π

∫
t∗(u)eiux+σ

2u2s2/(2m2)du, then νN (t) = 1
2π < t∗, (f̃m,s − fm)∗ >. This leads to

‖f̃m,s − fm‖2 = sup
t∈Sm, ‖t‖=1

|νN (t)|2. (27)

We also have by Cauchy-Schwarz inequality

‖ϕt‖∞ ≤ 1

2π

∫
|t∗(u)|eσ

2u2s2/(2m2)du ≤ 1

2π

(∫ m

−m
|t∗(u)|2du

)1/2(∫ m

−m
eσ

2u2s2/m2

du

)1/2

≤
√

2m√
2π

eσ
2s2/2

thus

sup
t∈Sm,‖t‖=1

‖ϕt‖∞ ≤
√
m√
π
eσ

2s2/2 := M.

Then, by Proposition 3,

E

[
sup

t∈Sm,‖t‖=1

|νN (t)|2
]

= E
[
‖f̃m,s − fm‖2

]
≤ m

πN

∫ 1

0

eσ
2s2v2dv ≤ m

πN
eσ

2s2 := H2.

Using Fubini and Cauchy-Schwarz inequalities we obtain for all (m, s) ∈ C:

4π sup
t∈Sm, ‖t‖=1

Var(ϕt(Zj,m2/s2)) ≤ sup
t∈Sm,‖t‖=1

∫∫
t∗(u)t∗(−v)E

[
ei(u−v)Zj,m2/s2

]
e(u

2+v2)σ2s2/(2m2)dudv

≤ 2π

(∫∫
[−m,m]2

|f∗(u− v)|2e(u
2+v2)σ2s2/m2

dudv

)1/2

≤ 2π

(
e2σ

2s2
∫∫

[−m,m]2
|f∗(u− v)|2dudv

)1/2

≤ 2πeσ
2s2
√

2m(

∫ 2m

−2m
|f∗(z)|2dz)1/2 ≤ 2

√
2m
√

2π
√
πeσ

2s2‖f‖ =: 4π2v,

v :=

√
meσ

2s2‖f‖√
π

.

Finally using that m ≤ N , s ≤ 2/σ and
∑
s∈S s = (4/σ)(1 − (1/2)P+1) < 4/σ, the Talagrand’s

inequality with α = 1/2 if 4H2 ≤ pen(m, s)/6 implies,

∑
s∈S

∑
m∈M

E
[
‖f̃m,s − fm‖2 −

1

6
pen(s,m)

]
+

≤
∑
s∈S

∑
m∈M

(
C1‖f‖
N

eσ
2s2
√
me−C2

√
m

‖f‖ + C3
m

N2
eσ

2s2e−C4

√
N

)

≤
∑
s∈S

C1‖f‖
N

eσ
2s2

( ∑
m∈M

√
me−C2

√
m

‖f‖

)
+
∑
s∈S

∑
m∈M

C3e
4 1

N
e−C4

√
m

≤ C1‖f‖(P + 1)e4

N

( ∑
m∈M

√
me−C2

√
m

‖f‖

)
+ C3e

4P + 1

N

∑
m∈M

e−C4
√
m

≤ C ′(P + 1)

N
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because with the definition ofM,
∑
m∈M

√
me−C2

√
m

‖f‖ ≤ a1
∑
k∈N k

1/4e−a2k
1/4

< +∞, and
∑
m∈M e−C4m

1/2 ≤∑
k∈N e

−a3k1/4 < +∞, with a1, a2, a3 three positive constants. Notice that C ′ > 0 depends on σ, ‖f‖,
∆.

We choose pen(m, s) = κmeσ
2s2/N with κ ≥ 24. �

A Appendix

A.1 Young inequality
This inequality can be found in Briane and Pagès (2006) for example.

Theorem 7 Let f be a function belonging to Lp(R) and g belonging to Lq(R), let p, q, r be real numbers
in [1,+∞] and such that

1

p
+

1

q
=

1

r
+ 1.

Then,
‖f ? g‖r ≤ ‖f‖p‖g‖q.

A.2 Talagrand’s inequality
The following result follows from the Talagrand concentration inequality given in Klein and Rio (2005)
and arguments in Birgé and Massart (1998).

Theorem 8 Consider n ∈ N∗, F a class at most countable of measurable functions, and (Xi)i∈{1,...,N}
a family of real independent random variables. One defines, for all f ∈ F ,

νN (f) =
1

N

N∑
i=1

(f(Xi)− E[f(Xi)]).

Supposing there are three positive constants M , H and v such that sup
f∈F
‖f‖∞ ≤M ,

E[sup
f∈F
|νNf |] ≤ H, and sup

f∈F
(1/N)

∑N
i=1 Var(f(Xi)) ≤ v, then for all α > 0,

E

[(
sup
f∈F
|νN (f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

a

(
v

N
exp

(
−aαNH

2

v

)

+
49M2

aC2(α)N2
exp

(
−
√

2aC(α)
√
α

7

NH

M

))

with C(α) = (
√

1 + α− 1) ∧ 1, and a = 1
6 .

A.3 Discretization
Indeed, if we assume that the times of observations are the tk = kδ, k = 1, . . . , N and 0 < δ < 1, we
must study the error applied by discretization of the Zj,τ . Then, for any 0 < m2/s2 ≤ T we use:

Ẑj,m2/s2 =
s2

m2

Xj(δ[m
2/(s2δ)])−Xj(0) +

δ

α

[m2/(s2δ)]∑
k=1

Xj((k − 1)δ)

 (28)

to approximate Zj,m2/s2 given by (2). The corresponding estimator of f is

̂̃
fm,s(x) =

1

2π

∫ m

−m
e−iux

1

N

N∑
j=1

eiuẐj,m2/s2 e
u2σ2s2

2m2 du. (29)

25



We investigate the error:

E[‖̂̃fm,s − f‖2] ≤ 2E[‖̂̃fm,s − f̃m,s‖2] + 2E[‖f̃m,s − f‖2]

where the second term of the right hand side is bounded by Proposition 3. Then, Plancherel-Parseval’s
Theorem implies:

E[‖̂̃fm,s − f̃m,s‖2] ≤ 1

2π
E

∫ m

−m

1

N

N∑
j=1

eu
2σ2s2/m2

∣∣∣eiuẐj,m2/s2 − eiuZj,m2/s2

∣∣∣2 du


≤ 1

2π

∫ m

−m
eu

2σ2s2/m2

E
[∣∣∣eiuẐ1,m2/s2 − eiuZ1,m2/s2

∣∣∣2] du
and

E
[∣∣∣eiuẐ1,m2/s2 − eiuZ1,m2/s2

∣∣∣2] ≤ |u|2E [∣∣∣Ẑ1,m2/s2 − Z1,m2/s2

∣∣∣2]
thus we study the last term. For all (m, s) ∈ C, m2/s2 ≤ T ,

Z1,m2/s2 − Ẑ1,m2/s2 =
s2

m2

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)
+

s2

αm2

[m2/(s2δ)]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

then by Cauchy-Schwarz’s inequality we obtain

(Z1,m2/s2 − Ẑ1,m2/s2)2 ≤ 2s4

m4

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
+

2s4

α2m4

[m2/(s2δ)]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

2

.

Höder’s inequality yields
[
m2

s2δ

]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds


2

≤

[
m2

s2δ

]∑
k=1

[∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

]2 [
m2

s2δ

]

≤
[
m2

s2δ

]
δ

[
m2

s2δ

]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))2ds.

Let us study E[(Xj(s)−Xj((k − 1)δ))2], for (k − 1)δ ≤ s ≤ kδ:

Xj(s)−Xj((k − 1)δ) =

∫ s

(k−1)δ

(
φj −

Xj(u)

α

)
du+

∫ s

(k−1)δ
σdWj(u)

and Cauchy-Schwarz’s inequality gives

E[(Xj(s)−Xj((k − 1)δ))2] ≤ 2E

(∫ s

(k−1)δ

(
φj −

Xj(u)

α

)
du

)2
+ 2E

(∫ s

(k−1)δ
σdWj(u)

)2


≤ 2E

[∫ s

(k−1)δ

(
φj −

Xj(u)

α

)2

du

]
+ 2δσ2

≤ 4δ2
(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2. (30)
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Finally, after simplification and using for all x ∈ R+, [x] ≤ x,

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤ 2s4

m4
E[
(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
]

+
2

α2

(
4δ2

(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2

)
and we can deal with the term E[

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
] using formula (30) and m2/s2 −

δ[m2/(s2δ)] ≤ δ. Thus:

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤

(
2s4

m4
+

2

α2

)(
4δ2

(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2

)
.

Besides, for model (1), Equation (17) implies E[Xj(s)
2] ≤ 3x2j + 3α2E[φ2j ] + 3σ2, and 0 < δ < 1

implies

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤ Cδ

(
2s4

m4
+

2

α2

)
with C a positive constant which does not depend on δ or m2/s2. Finally,

E[‖̂̃fm,s − f̃m,s‖2] ≤ Cδ

(
2s4

m4
+

2

α2

)
1

2π

∫ m

−m
u2eu

2σ2s2/m2

du

≤ C ′δ

(∫ 1

0

v2ev
2σ2s2dv

)(
s4

m
+
m3

α2

)
.

But s ≤ 2/σ and m =
√
k∆/σ, with k ∈ N∗ and 0 < ∆ < 1, thus we obtain

E[‖̂̃fm,s − f̃m,s‖2] ≤ C ′

σ3

(∫ 1

0

v2ev
2σ2s2dv

)(
24
√
k

(
δ√
∆

)
+
k3/2

α2

(
δ∆3/2

))
.

Proposition 9 Under (A), assuming E[φ2j ] < +∞, the estimator ̂̃fm,s given by (29) satisfies

E
[
‖f̃m,s − f‖2

]
≤ ‖fm − f‖2 +

√
k∆

σπN
eσ

2s2 +
C ′

σ3

eσ
2s2

2σ2s2

(
24
√
k

(
δ√
∆

)
+
k3/2

α2

(
δ∆3/2

))
.

Finally if ∆ is fixed and δ is small, the error is acceptable. For example if δ = ∆ the error is of order√
δ.

For study on the kernel estimator we refer to Comte et al. (2013).
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