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Abstract

Two adaptive nonparametric procedures are proposed to estimate the density of the random
effects in a mixed-effect Ornstein-Uhlenbeck model. First an estimator using deconvolution tools
is introduced, which depends on two tuning parameters to be chosen in a data-driven way. The
selection of these two parameters is achieved with a Goldenshluger and Lepski’s method, extended
to this particular case with a new two-dimensional penalized criterion. Then, we propose a kernel
estimator of the density of the random effect, with a new bandwidth selection method. For both
data driven estimators, risk bounds are provided in term of integrated L2-error. The estimators
are evaluated on simulations and show good results. Finally, these non-parametric estimators are
applied to a neuronal database of interspike intervals, and are compared with a previous paramet-
ric estimation.

Keywords. stochastic differential equations, Ornstein-Uhlenbeck process, mixed-effect model,
nonparametric estimation, deconvolution method, kernel estimator, neuronal interspike interval.

1 Introduction
Stochastic differential models have been surveyed a lot in the theoretical literature with continuous
observations (e.g Kutoyants, 2004) or discrete observations, in parametric field (e.g Genon-Catalot
and Jacod, 1993) or nonparametric field (e.g Comte et al., 2007; Hoffmann, 1999). More recently,
stochastic differential equations with random effects have been introduced with various applications
such as neuronal modelling or pharmacokinetic (e.g Picchini et al., 2008; Delattre and Lavielle,
2013; Donnet and Samson, 2013). Mixed-effects models are used to analyse repeated measurements
with similar functional form but with some variability between experiments (see Pinheiro and
Bates, 2000; Diggle et al., 2002; Davidian and Giltinan, 1995). The advantage is that a single
estimation procedure is used to fit the overall data simultaneously.

Estimation methods in stochastic differential models with random effects have been proposed,
especially in the parametric framework (e.g Donnet and Samson, 2008; Donnet et al., 2010; Picchini
et al., 2010; Picchini and Ditlevsen, 2011; Delattre and Lavielle, 2013; Delattre et al., 2013; Donnet
and Samson, 2014; Delattre et al., 2014; Genon-Catalot and Larédo, 2013). All these parametric
estimation methods are developed assuming the normality of the random effect. However, one can
ask if this assumption is reasonable depending on the application context. We focus here on the
nonparametric estimation of the density of the random effect. To the best of our knowledge, the
only reference in this context is Comte et al. (2013).
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To simplify the presentation, we focus on the stochastic Ornstein-Uhlenbeck differential model
with one additive random effect. More precisely, we consider N real valued stochastic processes
(Xj(t), t ∈ [0, T ]), j = 1, . . . , N , with dynamics ruled by the following SDEs:{

dXj(t) =
(
φj − Xj(t)

α

)
dt+ σdWj(t)

Xj(0) = xj
(1)

where (Wj)1≤j≤N are N independent Wiener processes, and (φj)1≤j≤N are N unobserved inde-
pendent and identically distributed (i.i.d.) random variables taking values in R, with a common
density f . The sequences (φj)1≤j≤N and (Wj)1≤j≤N are independent. Here (x1, . . . , xN ) are
known values. The positive constants σ and α are known. Each process (Xj(t), 0 ≤ t ≤ T ) repre-
sents an individual, the variable φj is the random effect of individual j. Due to the independence
of the φj and the Wj , the Xj(t), j = 1, . . . , N are i.i.d. random variables when t is fixed, and
the N trajectories (Xj(t), 0 ≤ t ≤ T ), j = 1, . . . , N are i.i.d.. Nevertheless, differences between
observations are due to the realization of both the Wj and φj . Indeed, the explicit solution of
Equation (1) is given using Itô’s formula, by

Xj(t) = Xj(0)e−t/α + φjα(1− e−t/α) + σe−t/α
∫ t

0

es/αdWj(s) (2)

and for t, t′ ∈]0, T ],

Cov(Xj(t), Xj(t
′)) = α2(1− e−t/α)(1− e−t

′/α)Var(φj) +
ασ2

2
e−(t+t

′)/α(e
2min(t,t′)

α − 1).

The purpose of the present work is to build nonparametric estimators of the random effect
density f , considering that the processes are observed on [0, T ] with T > 0 given. In practice we
consider discrete observations of the Xj ’s with a very small time step δ. We are able to evaluate
the error made by this discretization. The main difficulty is that we do not observe the φj ’s but
only the Xj(kδ)’s. Thus the first step is to find an estimator of the random effects φj and then to
estimate f , taking into account the approximation introduced by the estimation of the φj .

In the context of stochastic differential equations with random effects, Comte et al. (2013)
propose different nonparametric estimators with good theoretical results. We focus on an estimator
built by deconvolution and a kernel estimator. Both estimators have good theoretical properties
assuming asymptotics on T . But these models are likely to be applied to experimental data with
small T . This is especially the case for the neuronal data we are dealing with. Therefore, we adapt
Comte et al. (2013) estimator to this small T framework. First we study a new estimator built by
a deconvolution method (see Comte et al., 2013; Butucea and Tsybakov, 2007, for example). The
introduction of an additional new tuning parameter allows to deal with small T and to control the
variance of the noise. We obtain a satisfying collection of estimators depending on two parameters.
To select the final estimator among this collection, we extend the Goldenshluger and Lepski method
for two dimensional model selection (Goldenshluger and Lepski, 2011). Finally we have a consistent
estimator satisfying an oracle inequality, for any value of T .

Secondly, we consider a kernel estimator of f built from estimators of the random effects φj .
This kernel estimator depends on a bandwidth to be chosen from the data. Several methods to
select the bandwidth of kernel estimators are known. The originality here is the selection method
of the bandwidth we set up: we use a method proposed by Goldenshluger and Lepski (2011) which
provides an adaptive estimator. This kind of non-asymptotic result are not usual in this context.

We illustrate the properties of the proposed estimators with a simulation study. Especially, we
compare them with standard bandwidth selection method of cross-validation type. Then, the esti-
mators are applied to neuronal data (interspikes interval (ISI) measures). Intracellular measures of
the neuronal membrane potential between two spikes can be modelled with an Ornstein-Uhlenbeck
model with one random effect (1). Each one can be considered as an independent experimental unit
with a different realization of the random effect. This database has been surveyed with parametric
strategies in Picchini et al. (2008) and Picchini et al. (2010), where it is assumed that the random
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effects are Gaussian, and proved that the Ornstein-Uhlenbeck model with one random effect fits
better the data than the model without them (by applying a likelihood ratio test). Our goal is
to estimate nonparametrically the density of the random effect. This estimated density could be
used in further works to model this phenomenon instead of the Gaussian density systematically.

The paper is organized as follows. In Section 2, we present a new nonparametric estimation
method based on deconvolution strategy. Then, in Section 3 we propose a kernel estimator with an
original method of bandwidth selection. In Section 4 we calibrate the selection methods and illus-
trate the good performances of the two estimators on simulated data. In Section 5 we experiment
both estimators on the real database. We conclude this article with a discussion in Section 6. Most
proofs are deferred to Appendix A, as well as the computation of the error made by discretization
in Appendix B.

2 A nonparametric estimator built by deconvolution

2.1 Notations and assumptions
Let us introduce some notations. For two functions f and g in L1(R)∩L2(R), the scalar product is
defined by < f, g >=

∫
R f(x)g(x)dx and the associated norm is ‖f‖2 =

∫
R |f(x)|2dx. The Fourier

transform of f is f∗(x) =
∫
R e

ixuf(u)du for all x ∈ R. Then the convolution product of f and g
for all x ∈ R, is f ? g(x) =

∫
R f(x− y)g(y)dy. Finally we recall the Plancherel-Parseval’s formula:

∀f ∈ L1(R) ∩ L2(R), 2π‖f‖2 = ‖f∗‖2.

We assume (A) f ∈ L2(R), f∗ ∈ L1(R) ∩ L2(R).

2.2 Construction of the collection of estimators
The first step is to build estimators of the φj which are not observed, while we want to estimator
their density. For this purpose, we introduce for j = 1, . . . , N and τ ∈]0, T ], the following random
variables

Zj,τ :=
Xj(τ)−Xj(0)−

∫ τ
0

(−Xj(s)α ds)

τ
= φj +

σ

τ
Wj(τ). (3)

The (Zj,τ ) can be considered as estimators or approximations of the φj and the random variables
Zj,τ − φj are centered. The (Zj,τ )j=1,...,N are i.i.d. when τ is fixed, due to the independence of
(φj)j=1,...,N and (Wj)j=1,...,N .

The deconvolution method is based on the decomposition (3). Indeed the two members of the
sum are independent when τ is fixed which implies

fZτ (u) = f ? fσ
τWj(τ)(u).

Taking the Fourier transform under assumption (A) gives the simple product

f∗Zτ (u) = f∗(u)f∗σ
τWj(τ)

(u),

with f∗σ
τWj(τ)

(u) = e−
u2σ2

2τ . Thus f∗(u) = f∗Zτ (u)eu
2σ2/2τ . Finally the Fourier inversion gives the

closed formula, for all x ∈ R,

f(x) =
1

2π

∫
R
e−iuxf∗Zτ (u)e

u2σ2

2τ du. (4)

Then, we estimate f∗Zτ (u) by its empirical estimator f̂∗Zτ (u) = (1/N)
∑N
j=1 e

iuZj,τ . However, plug-
ging this in formula (4) involves integrability problems. Indeed the integrability of f̂∗Zτ (u)eu

2σ2/2τ

is not ensured. Therefore, we have to introduce a cut-off. The first idea due to Comte et al. (2013)
is to link the time of the process τ and the cut-off:

f̂τ (x) =
1

2π

∫ √τ
−
√
τ

e−iux
1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du. (5)
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Nevertheless, when τ is small (which is the case for the real database we investigate), the
integration domain is not large enough, and the estimators of f are not satisfactory. To improve
the previous estimator, we introduce a new parameter s in the cut-off:

f̂s,τ (x) =
1

2π

∫ s
√
τ

−s
√
τ

e−iux
1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du.

Then to simplify the theoretical study, we replace s
√
τ in the integral by a new parameter m. The

resulting estimator f̃m,s is defined when m2/s2 ∈]0, T ], by

f̃m,s(x) =
1

2π

∫ m

−m
e−iux

1

N

N∑
j=1

eiuZj,m2/s2 e
u2σ2s2

2m2 du (6)

with m and s in two finite setsM and S that we precise later.
Let us emphasize that this estimator f̃m,s specifically depends on two parameters which have

to be selected from the data. This is not usual in the deconvolution setting, where only one cut-off
parameter is often introduced. The selection of these two parameters (m, s) among the finite sets
M, S is thus more difficult. It is even more challenging here because the cut-off m appears both in
the integral and in the integrand. But this will induce gains in the rates of the estimators. Before
proposing a selection method of (m, s) we start by evaluating the quality of the estimator with the
mean integrated squared error (MISE):

E
[
‖f̃m,s − f‖2

]
= ‖f − E[f̃m,s]‖2 + E

[
‖f̃m,s − E[f̃m,s]‖2

]
.

It is interesting to note that E[f̃m,s] = fm where fm is defined by its Fourier transform

f∗m := f∗1[−m,m].

It means that the bias does not depend on s. We obtain the following bound on the MISE of f̃m,s.

Proposition 1. Under (A), the estimator f̃m,s given by (6) is an unbiased estimator of fm and
we have

E
[
‖f̃m,s − f‖2

]
≤ ‖fm − f‖2 +

m

πN

∫ 1

0

eσ
2s2v2dv. (7)

The proofs are relegated in Section A. The first term of the bound (7) is the bias term. It represents
the error resulting from estimating f by fm and it decreases when m increases, indeed:

‖fm − f‖2 =
1

2π

∫
|u|≥m

|f∗(u)|2du.

The second term is the variance term, and increases with m and s. This implies that the couple
(m, s) minimizing the MISE is the one which realizes a compromise between the two terms.

Now we specify the two setsM and S. We notice that the quality of the estimate in the Fourier
domain is good on an interval around zero with length related with σ. We choose the following
set for s,

S := {sl =
1

2l
2

σ
, 1/2P−1 ≤ σsl ≤ 2, l = 0, . . . , P}.

Moreover with this chosen collection S, the order of the variance term is m/N . Thus with the idea
that m2/s2 is homogeneous to a time, we choose m in the finite collection:

M := {m =

√
k∆

σ
, k ∈ N∗, 0 < m ≤ N}

with 0 < ∆ < 1 a small step to be fixed. Finally the collection of couples of parameters is

C := {(m, s) ∈M× S, m2/s2 ≤ T}.

4
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The final estimator is the best estimator f̃m,s from the collection (m, s) ∈ C. Choose the best
estimator is not an easy task except if we know the regularity of f . For example, let us assume
that f is in the Sobolev space with regularity parameter b, i.e. f belongs to the set Ab(L) defined
by

Ab(L) = {f ∈ L1(R) ∩ L2(R),

∫
R
|f∗(x)|2(1 + x2)bdx ≤ L}

with b > 0, L > 0. In this situation, the bias term satisfies:

‖fm − f‖2 =
1

2π

∫
|u|≥m

|f∗(u)|2du ≤ L

2π
m−2b.

Consequently, the L2-risk of f̃m,s is bounded by,

E[‖f̃m,s − f‖2] ≤ L

2π
m−2b +

m

πN
eσ

2s2 .

Therefore, the best theoretical choice of s is sP the smallest s in our collection, and

m = m∗ = KbN
1

(2b+1)

with Kb = (bL exp(−1/(22(P−1))))1/(2b+1). Then we obtain the following asymptotic result.

Corollary 2. If f ∈ Ab(L), and if we choose s = sP and m = m∗, there exists a constant K
depending on b, L, P , such that

E[‖f̃m∗,sP − f‖2] ≤ KN−
2b

2b+1 .

The order of the risk in this case is N−2b/(2b+1) for a large N , it is the nonparametric estimation
rate of convergence obtained when the observation are N realizations of the variable of interest.
Nevertheless, this choice is theoretical because it depends on the regularity b of f which is unknown.
The next section provides a data-driven method to select (m, s).

2.3 Selection of the final estimator
If we look at the risk bound (7), a natural idea is to choose the smallest s and then to select m.
But this strategy does not work in practice, thus we need to find a data driven selection method
for s. Besides, if we choose m first, the selected m depends on s and then we do not have any
criterion to select s. Hence, we select both m and s simultaneously in a data driven way. This is
a crucial issue. Indeed, the role of the two parameters is not the same. Thus we propose a new
criterion adapted from the Goldenshluger and Lepski (2011) method.

The idea is to select the couple which minimizes the MISE: E
[
‖f̃m,s − f‖2

]
. As it is unknown,

we have to find a computable approximation of this quantity. We define the best couple (m, s)
as the one minimizing a criterion defined as the sum of a bias term and a variance term called
penalty. We define the penalty function, which has the same order as the variance term (in the
risk bound):

pen(m, s) = κ
m

N
eσ

2s2 ,

where κ is a numerical constant to be calibrated. Note that for m ∈ M and s ∈ S, the penalty
function is bounded.

To estimate the bias term, we generalize Goldenshluger and Lepski’s criterion for a two dimen-
sional index. The method is inspired by the ideas developed for kernel estimators by Goldenshluger
and Lepski (2011) and adapted to model selection in one dimension in Comte and Johannes (2012)
and in two dimensions by Chagny (2013). The idea is to estimate ‖f−fm‖2 by the L2-distance be-
tween two estimators defined in (6). But this induces a bias which has to be corrected by the penalty
function. We consider the following estimator of the bias, with (m′, s′)∧ (m, s) := (m′ ∧m, s′ ∧ s),

Γm,s = max
(m′,s′)∈C

(
‖f̃m′,s′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+
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for (m, s) ∈ C. Finally the selected couple is:

(m̃, s̃) = arg min
(m,s)∈C

{Γm,s + pen(m, s)}. (8)

Now we are able to prove the following result.

Theorem 3. Under (A), consider the estimator f̃m̃,s̃ given by (6) and (8). There exists κ0 a
numerical constant such that, for all penalty constant κ ≥ κ0,

E[‖f̃m̃,s̃ − f‖2] ≤ C inf
(m,s)∈C

{
‖f − fm‖2 + pen(m, s)

}
+
C ′(P + 1)

N
(9)

where C > 0 is a numerical constant as soon as κ is fixed and C ′ is a constant depending on ‖f‖,
σ, ∆, and P + 1 the cardinality of S.

Inequality (9) means that f̃m̃,s̃ automatically makes the bias-variance trade-off. Moreover, our
result is of non asymptotic nature on N and of oracle type.

One should notice that this new parameter s generalizes the results of Comte et al. (2013) even
if T is large. We choose the two parameters in an adaptive way, thus this gives more flexibility in
the choice of the estimator.

The numerical constant κ is calibrated by simulation experiments. From the theoretical part
we get κ0 = 24 which is much too large in practice. Besides the cardinality P of the set S is chosen
small in practice (P = 3).

In the following, we study another nonparametric estimator of the density f . Indeed, it is a
natural idea to define a kernel estimator from the estimators Zj,τ given in (3).

3 Kernel estimator
First we present the kernel estimator proposed by Comte et al. (2013). Then we recall the MISE
bound they prove. Finally we propose a new procedure to select the bandwidth.

We focus only on Zj,T among the (Zj,τ )[0,τ ] because when T is large Zj,T clearly approximates
φj without needing to remove the noise as for the deconvolution estimator. The idea of the kernel
estimator is thus to use directly the Zj,T as an approximation of the non-observed random effects
φj to estimate their density f .

Thus, for j = 1, . . . , N , we consider the Zj,T defined by (3) when τ = T . These N random
variables are i.i.d. and the resulting kernel estimator of the density of the φj ’s is given for all
x ∈ R, by

f̂h(x) =
1

N

N∑
j=1

Kh(x− Zj,T ) (10)

where h > 0 is a bandwidth, and the kernel K : R→ R is a C2 function such that∫
K(u)du = 1, ‖K‖2 =

∫
K2(u)du < +∞,

∫
(K ′′(u))2du < +∞. (11)

For h > 0 we define fh := Kh ? f with

Kh(x) =
1

h
K
(x
h

)
.

We denote for all p ∈ R, ‖f‖p = (
∫
|f(x)|pdx)1/p and for p = 2 we still use ‖f‖2 = ‖f‖. Let us

notice the relations: ‖K‖ = ‖Kh‖/
√
h and ‖Kh‖1 = ‖K‖1. We recall the result proved in Comte

et al. (2013) for the MISE.

Proposition 4. Consider estimator f̂h given by (10), we have

E[‖f̂h − f‖2] ≤ 2‖f − fh‖2 +
‖K‖2

Nh
+
σ4‖K ′′‖2

3T 2h5
. (12)
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This bound with three terms comes from the bias-variance decomposition. Indeed:
‖E[f̂h]− f‖2] ≤ 2‖f − fh‖2 + 2‖E[f̂h]− fh‖2, with

‖E[f̂h]− fh‖2 ≤
σ4‖K ′′‖2

3T 2h5
(13)

(see the proof in Comte et al. (2013)). In the bound (12), the first term is a bias term, which
decreases when h decreases. The second term is the term of variance which increases when h
decreases. Finally, the third term is an unusual error term due to the approximation of the φj ’s
by the Zj,T also increasing when h decreases.

Now we focus on how to choose the bandwidth from the data. The best choice of h is the one
which minimizes the sum of these three terms. The selection of the bandwidth can be done for
example using cross validation, see e.g. the R-function density which is commonly used. However,
the only theoretical results known for cross-validation procedure are asymptotic and to the best of
our knowledge there is no adaptive result on the final estimator. In the present work, we propose
to adapt a selection method due to Goldenshluger and Lepski (2011) mentioned before, which
provides a data driven bandwidth for which we provide non-asymptotic theoretical results.

We denote HN,T the set of bandwidths h, to be defined later. The best theoretical choice of
the bandwidth is the h which minimizes the bound on the MISE given by (12). Nevertheless, in
practice, this bound is unknown, and has to be estimated. We denote by V the estimator of the
two terms of variance

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ4‖K‖21‖K”‖2

3T 2h5
. (14)

The estimator of the bias term is built as in Section 2.3:

A(h) = sup
h′∈HN,T

(
‖f̂h,h′ − f̂h′‖2 − V (h′)

)
+

(15)

with

f̂h,h′(x) := Kh′ ? f̂h(x) =
1

N

N∑
j=1

Kh′ ? Kh(x− Zj,T ).

The bandwidth is selected as follows

ĥ = argmin
h∈HN,T

(A(h) + V (h)) (16)

with HN,T a discrete set of bandwidth h such that h > 0, 1
Nh ≤ 1, 1

h5T 2 ≤ 1, ∀c > 0,∃Σ(c) <∞,∑
h∈HN,T h

−1/2e−c/
√
h ≤ Σ(c). Then we can prove the following Theorem.

Theorem 5. Consider estimator f̂h given by (10). Then,

E[‖f̂ĥ − f‖
2] ≤ C1 inf

h∈HN,T

{
‖f − fh‖2 +

‖K‖21‖K‖22
Nh

+
σ4‖K‖21‖K”‖22

3T 2h5

}
+
C2

N

where C1, C1 are two positive constants such that C1 depends on ‖K‖1 and C2 depends on ‖f‖, ‖K‖, ‖K‖1,
‖K‖4/3.

The latest result is an oracle inequality: the bias variance compromise is automatically obtained
and in a data-driven and non-asymptotic way.

It is important to notice that if we take for example HN,T = {1/k, k = 1, . . . , N} then the sum∑
h∈HN,T h

−1/2e−c/
√
h converges, which is a necessary condition for the proof.
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4 Simulated study
In the following we compare on simulations the two presented procedures, and we compare our
bandwidth selection method with the cross-validation estimator from the R-function density.

We simulate data by computing the exact solution of (1) given by formula (2) at discrete times
tk ∈ T := {kδ, k ∈ {0, . . . , J}, Jδ = T}. For the simulation study, we have to fix N, δ, T, σ, α, and
the density f . In the following we fix α = 0.039 (which is the value obtained in Lansky et al.
(2006) for the real database, see Section 5). Then we take σ = 0.0135 or σ = 0.05. For the time T ,
we choose T = 0.3, 10, 100 with different values of δ the discrete time step at which observations
are recorded. Thus the value of J , the number of observations for one trajectory changes between
150 and 5000. All these parameter values are chosen in relation with the parameters of the real
database. In this study we hope to highlight the influence of each one. For f , we investigate four
different distributions:
• Gaussian distribution N (0.278, (0.041)2)
• Gamma distribution Γ(1.88, 0.148)
• mixed Gaussian distribution 0.3N (0, (0.02)2) + 0.7N (1, (0.02)2)
• mixed Gamma distribution 0.4Γ(3, 0.08) + 0.6Γ(30, 0.035).

First, we implement the two adaptive estimators: f̃m̃,s̃ and f̂ĥ. We begin by computing the
random variables used by both estimators: Zj,τ given by (3), with Riemann sums approxima-
tions (see Appendix B for details). Furthermore, for the kernel estimator given by (10), we
choose a Gaussian kernel: K(u) = (1/

√
2π)e−u

2/2. In this case ‖K‖1 = 1, ‖K‖22 = 1/(2
√
π),

‖K”‖22 = (1 + 1/
√

2)/(
√

2π). Then, the selected bandwidth ĥ is given by Equation (16). Note
that for all (h, h′) ∈ H2,

Kh′ ? Kh(x) =
1√

2π
√
h′2 + h2

e−x
2/[2(h′2+h2)].

We use this relation to compute the f̂h,h′ . For the deconvolution estimator given by (6) we also
use Riemann sums to compute the integral. For the collection of m, we choose ∆ = δ except when
T = 100 and σ = 0.0135 for which we choose ∆ = δ/100 so that the collection is not empty and
the values are smaller.

Secondly, we have to calibrate the penalty constants: κ for the deconvolution estimator, and
κ1, κ2 for the kernel estimator. Classically, the constants are fixed thanks to preliminary simulation
experiments. Different functions f have been investigated with different parameter values, and a
large number of repetitions. Comparing the MISE obtained as functions of the constants κ, κ1, κ2
yields to select values making a good compromise over all experiences. Finally we choose κ = 0.3,
κ1 = 1, and κ2 = 0.0001.

We represent 25 estimators f̃m̃,s̃ on Figure 1, and 25 estimators f̂ĥ on Figure 2, with the 4
investigated densities f . The beams of estimators are close to the estimated density.

In order to evaluate the performances of each estimator on the different designs, we compare
their empirical MISE computed from 100 simulated data sets. Results are presented in Table 1
when N = 240. Note that the MISE of the two estimators are close to each other. However we
can point out some differences. The first row of the Table corresponds to simulation with the
parameters of the real database. In the first column, the Gaussian case, the MISE are 10 times
larger than the ones for other cases. This can be easily explained: the value of the estimated
density are 10 times larger than others. Nevertheless, on lines 3 and 4 for the Gaussian case, the
MISE are very large. This is due to the bad estimation of the φj by the Zj,T with σ = 0.05 and
T = 0.3 1. The quality of the estimation if significantly better when we jump to a N (0.278, 0.2)
(0.2 is the variance of the mixed Gaussian for example). In general one can notice that when σ
is larger than the standard deviation of the density of the random effects f , the estimation is less
precise, which is coherent in term of signal to noise ratio.

1We insist that this bad estimation is not due to the fact the noise is Gaussian. Indeed even if Fan (1991) proves the
rates to be logarithmic in that case, the rates are improved and can be polynomial when the density under estimation
is of the same type of the noise (see Lacour (2006), Comte et al. (2006)).
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Table 1: Empirical MISE computed from 100 simulated data sets, with N = 240, various T , δ, σ for
the kernel estimator f̂

ĥ
and the deconvolution estimator f̃m̃,s̃

f
Case T δ σ Estimator Gaussian gamma mixed Gaussian mixed gamma

1 0.3 0.0002 0.0135 f̂
ĥ

0.234 0.034 0.015 0.026
f̃m̃,s̃ 0.381 0.072 0.021 0.038

2 0.3 0.002 0.0135 f̂
ĥ

0.240 0.034 0.015 0.025
f̃m̃,s̃ 1.584 0.071 0.019 0.038

3 0.3 0.0002 0.05 f̂
ĥ

2.535 0.095 0.025 0.054
f̃m̃,s̃ 3.402 0.231 0.078 0.226

4 0.3 0.002 0.05 f̂
ĥ

2.524 0.093 0.026 0.053
f̃m̃,s̃ 3.269 0.154 0.029 0.232

5 10 0.002 0.0135 f̂
ĥ

0.096 0.036 0.016 0.024
f̃m̃,s̃ 0.080 0.037 0.035 0.052

6 10 0.02 0.0135 f̂
ĥ

0.105 0.032 0.015 0.023
f̃m̃,s̃ 0.151 0.048 0.033 0.034

7 10 0.002 0.05 f̂
ĥ

0.111 0.037 0.014 0.026
f̃m̃,s̃ 0.687 0.061 0.016 0.034

8 10 0.02 0.05 f̂
ĥ

0.121 0.037 0.016 0.026
f̃m̃,s̃ 0.181 0.053 0.023 0.040

9 100 0.2 0.0135 f̂
ĥ

0.106 0.032 0.015 0.024
f̃m̃,s̃ 0.123 0.062 0.091 0.046

Table 1 does not prove any clear influence of T as shows case 9. If J is large enough, meaning if
δ is small enough, (which is the case even for J = 150 when T = 0.3) the deconvolution estimator
fits well the density. In practice, when T increases, the selected value of s decreases, which could
have been predicted. The results are still satisfying for large T . For the kernel estimator, although
the theoretical condition 1/h5 < T 2 is not satisfied, the numerical results are good. Besides, it is
obvious on simulations that the larger N the better the estimator f̂ĥ. However, the role of N is
not as clear for the deconvolution estimator.

The main difference between our two estimators f̂ĥ and f̃m̃,s̃ is the computation time: a few
seconds for the first one and ten minutes for the second one. The kernel estimator is much faster
than the deconvolution one.

We also compute the MISE for the kernel estimator obtained by cross-validation with the R-
function density. We explored the same scenarios as on Table 1. We can conclude from this study
that both kernel estimators are really close most of the time. Thus the results are not shown.
Nevertheless it appears that the R-function fits slightly better the Gaussian or Gamma densities,
while our estimator f̂ĥ fits better mixture densities in general (case 4 for example).

5 Application to neuronal data

5.1 Database
Data are measurements along time of the membrane potential in volts of one single neuron of a
pig between the spikes (see Yu et al., 2004; Lansky et al., 2006, for details on data acquisition). In
this neuronal context, between the (j−1)th and the jth spike, the depolarization of the membrane
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(a) f Gaussian (b) f mixed Gaussian

(c) f Gamma (d) f mixed Gamma

Figure 1: Simulated data. In red 25 estimators f̃m̃,s̃ with parameters: N = 240, T = 0.3, δ = 0.00015,
σ = 0.0135, α = 0.039 and the bold black line the true density f
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(a) f Gaussian (b) f mixed Gaussian density

(c) f Gamma (d) f mixed Gamma density

Figure 2: Simulated data. In red 25 estimators f̂
ĥ

with parameters: N = 240, T = 0.3, δ = 0.00015,
σ = 0.0135, α = 0.039 and the bold black line the density true density f
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potential receiving a random input, can be described by the Ornstein Uhlenbeck model with one
random effect (1). The spikes are not intrinsic to the model but are generated when the voltage
reaches for the first time a certain threshold S, then the process is reset. Thus each trajectory is
observed on an interval [0, Tj ] where Tj = inf{t > 0, Xj(t) ≥ S}. The initial voltage (the value
following a spike) is assumed to be equal to the resting potential and set to zero: xj = 0.

The positive constant parameter α [s] is called the time constant of the neuron (the coefficient
of decay in the exponential, when there is no noise). Lansky et al. (2006) estimate this parameter
on the same database by a regression method based on the first moment of the stochastic process
(when the constant diffusion coefficient is fixed σ = 0.0135 [V/

√
s]), they obtain α = 0.039 [s]. We

keep this value. The φj represents the local average input that the neuron receives during the jth
ISI. We assume that φj changes from one ISI to another because of other neurons or environment
influence, for example. So parameters φ and σ characterize the input, while α, xj (the resting
potential), and S (the firing threshold) describe the neuron irrespectively of the incoming signal
(Picchini et al., 2008).

Data are composed of N = 312 ISIs. For each interval [0, Tj ] the time step is the same:
δ = 0.00015 [s]. We decide to keep only realizations with more than 2000 observations (Tj/δ ≥
2000). Finally we have N = 240 realizations with J = 2000 observations and for j = 1, . . . , N ,
T = Tj = 0.3 [s]. Also the data are normalized in order to begin with zero at the initial time.

The study of the units of measurement can highlight the collections given in Section 2.2. One
can notice that the unit of measurement of u in the integrand must be [s/V] (same unit as 1/Zj,τ )
such that the exponential terms are without unit. The unit of s is [

√
s/V], and the choice of M

with the same unit as u seems natural.
In the following we compare our results to the estimation obtained in Picchini et al. (2010)

under the parametric Gaussian assumption.

5.2 Comparison of estimators
The estimation of the density f obtained by Picchini et al. (2010) under the Gaussian assumption
on this database are N (µ = 0.278, η2 = (0.041)2). The mean and the standard deviation we
obtain using a maximum-likelihood estimator on the (Zj,T )’s are: 0.270 and 0.046. Thus these two
estimations are close to the one of Picchini et al. (2010). We use our two nonparametric estimators
to see how close to a Gaussian density they are.

On Figure 3 we represent both estimators f̂ĥ and f̃m̃,s̃ applied to the real database and the
density N (µ, η2). The two estimations are close, and close to the estimation of Picchini et al.
(2010). However, it is also legitimate to think about a Gamma distribution to model the random
parameters φj ’s because it is a non negative local average input. Thus, a Gamma distribution
may seem more appropriate than a Gaussian distribution, even if the chosen Gaussian has small
probability to be negative. We look for the Gamma distribution which has for mean µ = 0.278
and for variance η = 0.041. This distribution is Γ(a = 46.3, s = 0.006) with associated density
fa,s(x) = xa−1ex/s/(Γ(a)sa). We notice the similarity between the previous Gaussian curve and
the new one. Thus this distribution seems also suitable to fit the distribution of the φj ’s as shows
Figure 3.

The Gaussian assumption is strong and leads to parametric tractable models. The present work
confirms that this approximation is acceptable. However, the nonparametric estimation gives a
density for the φj ’s that can be used to simulate the random effect and could be closer to the true
one.

Notice that, as mentioned in introduction, Comte et al. (2013)’s estimator cannot handle small
values of T while our new proposals are successful in such case. One can wonder if the new
estimators are robust when increasing T . Indeed, our method works for larger T . Precisely
changing volts in millivolts and seconds in milliseconds implies T = 300 and σ = 0.426, and on
simulated data with ∆ = δ, we reconstruct well the shape of the density.

12

ha
l-0

10
23

30
0,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



Figure 3: Real data. In green estimator f̂
ĥ
, in red f̃m̃,s̃, the black dotted and bold line the density

N (µ, η2) from Picchini et al. (2010) and the black dotted thin line the density Γ(46.3, 0.006)

6 Discussion
In this work we study a stochastic differential Ornstein-Uhlenbeck mixed-effects model. We propose
two estimators of the density of the random effect. Both estimators are not very sensitive to the
effect of the time of observation T . Both are data-driven and satisfy inequality.of oracle type.

Besides we study neuronal data (ISI) with nonparametric estimation strategy. Instead of setting
parametric assumption for the random effect distribution, we build an estimation of its density.
Future works based on this estimation could be more precise and closer to the real neuronal data.
The model can be improved by adding another random effect: the time constant of the neuron.
This will be surveyed in forgoing works.

Acknowledgements
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A Appendix

A.1 Talagrand’s inequality
The following result follows from the Talagrand concentration inequality given in Klein and Rio
(2005) and arguments in Birgé and Massart (1998).

Theorem 6. Consider n ∈ N∗, F a class at most countable of measurable functions, and (Xi)i∈{1,...,N}
a family of real independent random variables. One defines, for all f ∈ F ,

νN (f) =
1

N

N∑
i=1

(f(Xi)− E[f(Xi)]).

Supposing there are three positive constants M , H and v such that sup
f∈F
‖f‖∞ ≤M ,
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E[sup
f∈F
|νNf |] ≤ H, and sup

f∈F

1
N

∑N
i=1 Var(f(Xi)) ≤ v, then for all α > 0,

E

[(
sup
f∈F
|νN (f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

K1

(
v

N
exp

(
−K1α

NH2

v

)

+
49M2

K1s2(α)N2
exp

(
−
√

2K1C(α)
√
α

7

NH

M

))

with C(α) = (
√

1 + α− 1) ∧ 1, and K1 = 1
6 .

A.2 Young inequality
This inequality can be found in Briane and Pagès (2006) for example.

Theorem 7. Let f be a function belonging to Lp(R) and g belonging to Lq(R), let p, q, r be real
numbers in [1,+∞] and such that

1

p
+

1

q
=

1

r
+ 1.

Then,
‖f ? g‖r ≤ ‖f‖p‖g‖q.

A.3 Proof of Proposition 1

The bias term is ‖f − E[f̃m,s]‖2. Let us compute E[f̃m,s]. As the Zj,τ are i.i.d.. when τ is fixed
and due to the independence of φ1 and W1, we obtain:

E[f̃m,s(x)] =
1

2π

∫ m

−m
e−iuxE

[
eiuZ1,m2/s2+u

2σ2s2/(2m2)
]
du

=
1

2π

∫ m

−m
e−iuxE

[
eiuφ1+iuσW1(m

2/s2)s2/m2+u2σ2s2/(2m2)
]
du

=
1

2π

∫ m

−m
e−iux+u

2σ2s2/(2m2)f∗(u)E
[
eiuσW1(m

2/s2)s2/m2
]
du

=
1

2π

∫ m

−m
e−iux+u

2σ2s2/(2m2)f∗(u)e−u
2σ2s2/(2m2)du

=
1

2π

∫ m

−m
e−iuxf∗(u)du =: fm(x).

Therefore this gives E[f̃m,s(x)] = fm(x), and ‖f − E[f̃m,s]‖2 = ‖f − fm‖2 = 1
2π

∫
|u|≥m |f

∗(u)|2du.
The variance term is:

E
[
‖f̃m,s − fm‖2

]
=

1

2π
E

∫ m

−m

∣∣∣∣∣∣ 1

N

N∑
j=1

eiuZj,m2/s2 e
u2σ2s2

2m2 − f∗(u)

∣∣∣∣∣∣
2

du


=

1

2πN

∫ m

−m
e
u2σ2s2

m2 Var
(
eiuZ1,m2/s2

)
du

≤ 1

2πN

∫ m

−m
e
u2σ2s2

m2 du =
m

πN

∫ 1

0

es
2σ2v2du. �

14

ha
l-0

10
23

30
0,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



A.4 Proof of Theorem 3
Let us study the term ‖f̃m̃,s̃ − f‖2. We decompose it into a sum of three terms and the definition
of (m̃, s̃) (8) implies for all (m, s) ∈ C

‖f̃m̃,s̃ − f‖2 ≤ 3
(
‖f̃m̃,s̃ − f̃(m̃,s̃)∧(m,s)‖2 + ‖f̃(m̃,s̃)∧(m,s) − f̃m,s‖2 + ‖f̃m,s − f‖2

)
≤ 3 (Γm,s + pen(m̃, s̃)) + 3 (Γm̃,s̃ + pen(m, s)) + 3‖f̃m,s − f‖2

≤ 6Γm,s + 6pen(m, s) + 3‖f̃m,s − f‖2 (17)

Now we study Γm,s. First:

‖f̃(m,s)∧(m′,s′) − f̃m′,s′‖2 ≤ 3
(
‖f̃m′,s′ − fm′‖2 + ‖fm′ − fm∧m′‖2 + ‖fm∧m′ − f̃(m′,s′)∧(m,s)‖2

)
.

Thus:

Γm,s ≤ max
(m′,s′)∈C

(
3‖f̃m′,s′ − fm′‖2 + 3‖fm′ − fm∧m′‖2 + 3‖fm∧m′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+

≤ 3 max
(m′,s′)∈C

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
m′∈M

‖fm′ − fm∧m′‖2.

The last maximum can be explicit. Ifm′ ≤ m, then ‖fm′−fm∧m′‖2 = ‖fm′−fm′‖2 = 0. Otherwise,

‖fm′ − fm∧m′‖2 = ‖fm′ − fm‖2 =

∫
m≤|u|≤m′

|f∗(u)|2du ≤ ‖f − fm‖2.

Finally:
max
m′∈M

‖fm′ − fm∧m′‖2 ≤ ‖f − fm‖2.

We get the following bound for Γm,s:

Γm,s ≤ 3 max
(m′,s′)∈C

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

+ 3‖f − fm‖2. (18)

Then we gather Equations (17) and (18):

‖f̃m̃,s̃ − f‖2 ≤ 6pen(m, s) + 3‖f̃m,s − f‖2 + 18‖f − fm‖2 + max
(m′,s′)∈C

18

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

+ max
(m′,s′)∈C

18

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen(m′, s′)

)
+

.

We first notice that our penalty function is increasing in s and m, thus we get the following bound
for the last term:
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E

[
max

(m′,s′)∈C

(
‖f̃(m′,s′)∧(m,s) − fm∧m′‖2 −

1

6
pen((m′, s′) ∧ (m, s))

)
+

]

≤ E

[
max

m′≤m,s′≤s

(
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

)
+

]
+ E

[
max

m≤m′,s≤s′

(
‖f̃m,s − fm‖2 −

1

6
pen(m, s)

)
+

]

+E

[
max

m≤m′,s′≤s

(
‖f̃m,s′ − fm‖2 −

1

6
pen(m, s′)

)
+

]
+ E

[
max

m′≤m,s≤s′

(
‖f̃m′,s − fm′‖2 −

1

6
pen(m′, s)

)
+

]

≤ 4
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

]
+

.

Moreover, according to Proposition 1 and using the inequality
∫ 1

0
eσ

2s2v2dv ≤ eσ2s2 , we obtain, for
all (m, s) ∈ C,

E[‖f̃m̃,s̃ − f‖2] ≤ 5× 18
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

]
+

+ 6pen(m, s)

+ 3
m

πN
eσ

2s2 + 21‖f − fm‖2.

Then we obtain the announced result with the following Lemma.

Lemma 8. There exists a constant C ′ > 0 such that for pen(m, s) defined by pen(m, s) = κmN e
σ2s2 ,

∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

]
+

≤ C ′

N
.

According to the Lemma 8, we choose pen(m, s) = κmN e
σ2s2 , thus, there exist two constants

C,C ′ > 0 such that,

E[‖f̃m̃,s̃ − f‖2] ≤ 5× 18
∑
m′∈M

∑
s′∈S

E
[
‖f̃m′,s′ − fm′‖2 −

1

6
pen(m′, s′)

]
+

+ (6κ+
3

π
)
m

N
eσ

2s2 + 21‖f − fm‖2

≤ C inf
(m,s)∈C

{‖f − fm‖2 +
m

N
eσ

2s2}+
C ′

N
. �

Proof of Lemma 8
For a couple (m, s) ∈ C fixed, let us consider the subset Sm := {t ∈ L1 ∩ L2, supp(t∗) = [−m,m]}.
For t ∈ Sm,

νN (t) =
1

N

N∑
j=1

(
ϕt(Zj,m2/s2)− E[ϕt(Zj,m2/s2)]

)
with ϕt(x) := 1

2π

∫
t∗(u)eiux+σ

2u2s2/(2m2)du, then νN (t) = 1
2π < t∗, (f̃m,s − fm)∗ >. This leads to

‖f̃m,s − fm‖2 = sup
t∈Sm, ‖t‖=1

|νN (t)|2. (19)

We also have by Cauchy-Schwarz inequality

‖ϕt‖∞ ≤ 1

2π

∫
|t∗(u)|eσ

2u2s2/(2m2)du ≤ 1

2π

(∫ m

−m
|t∗(u)|2du

)1/2(∫ m

−m
eσ

2u2s2/m2

du

)1/2

≤
√

2m√
2π

eσ
2s2/2
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thus

sup
t∈Sm,‖t‖=1

‖ϕt‖∞ ≤
√
m√
π
eσ

2s2/2 := M.

Then, by Proposition 1,

E

[
sup

t∈Sm,‖t‖=1

|νN (t)|2
]

= E
[
‖f̃m,s − fm‖2

]
≤ m

N

∫ 1

0

eσ
2s2v2dv ≤ m

N
eσ

2s2 := H2.

Using Fubini and Cauchy-Schwarz we obtain for all (m, s) ∈ C:

4π sup
t∈Sm, ‖t‖=1

Var(ϕt(Zj,m2/s2)) ≤ sup
t∈Sm,‖t‖=1

∫∫
t∗(u)t∗(−v)E

[
ei(u−v)Zj,m2/s2

]
e(u

2+v2)σ2s2/(2m2)dudv

≤ 2π

(∫∫
[−m,m]2

|f∗(u− v)|2e(u
2+v2)σ2s2/m2

dudv

)1/2

≤ 2π

(
e2σ

2s2
∫∫

[−m,m]2
|f∗(u− v)|2dudv

)1/2

≤ 2πeσ
2s2
√

2m(

∫ 2m

−2m
|f∗(z)|2dz)1/2 ≤ 2

√
2m
√

2π
√
πeσ

2s2‖f‖ =: 4π2v,

v :=

√
meσ

2s2‖f‖√
π

.

Finally using that m ≤ N , s ≤ 2/σ and
∑
s∈S s = (4/σ)(1− (1/2)P+1) < 4/σ, the Talagrand’s

inequality with α = 1/2 if 4H2 ≤ pen(m, s)/6 implies,

∑
s∈S

∑
m∈M

E
[
‖f̃m,s − fm‖2 −

1

6
pen(s,m)

]
+

≤
∑
s∈S

∑
m∈M

(
C1‖f‖
N

eσ
2s2
√
me−C2

√
m
‖f‖ + C3

m

N2
eσ

2s2e−C4

√
N

)

≤
∑
s∈S

C1‖f‖
N

eσ
2s2

( ∑
m∈M

√
me−C2

√
m
‖f‖

)
+
∑
s∈S

∑
m∈M

C3e
4 1

N
e−C4

√
m

≤ C1‖f‖(P + 1)e4

N

( ∑
m∈M

√
me−C2

√
m
‖f‖

)
+ C3e

4P + 1

N

∑
m∈M

e−C4
√
m

≤ C ′(P + 1)

N

because with the definition of M,
∑
m∈M

√
me−C2

√
m
‖f‖ ≤ a1

∑
k∈N k

1/4e−a2k
1/4

< +∞, and∑
m∈M e−C4m

1/2 ≤
∑
k∈N e

−a3k1/4 < +∞, with a1, a2, a3 three positive constants. Notice that
C ′ > 0 depends on σ, ‖f‖, ∆.

We choose pen(m, s) = κmeσ
2s2/N with κ ≥ 24. �

A.5 Proof of Theorem 5
We denote:

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ4‖K‖21‖K”‖2

3T 2h5
=: V1(h) + V2(h).

Using the definition of A(h) and of ĥ we obtain

‖f̂ĥ − f‖
2 ≤ 3‖f̂ĥ − f̂h,ĥ‖

2 + 3‖f̂h,ĥ − f̂h‖
2 + 3‖f̂h − f‖2

≤ 3
(
A(h) + V (ĥ)

)
+ 3

(
A(ĥ) + V (h)

)
+ 3‖f̂h − f‖2

≤ 6A(h) + 6V (h) + 3‖f̂h − f‖2.
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Thus,
‖f̂ĥ − f‖

2 ≤ 6E[A(h)] + 6V (h) + 3E[‖f̂h − f‖2],

hence, we only have to study the term E[A(h)]. We can decompose ‖f̂h,h′ − f̂h′‖2 as follows:

‖f̂h,h′−f̂h′‖2 ≤ 5‖f̂h,h′−E[f̂h,h′ ]‖2+5‖E[f̂h,h′ ]−fh,h′‖2+5‖fh,h′−fh′‖2+5‖fh′−E[f̂h′ ]‖2+5‖E[f̂h′ ]−f̂h′‖2

thus

A(h) ≤ 5(D1 +D2 +D3 +D4 +D5)

with:

D1 := sup
h′∈HN,T

‖fh,h′ − fh′‖2,

D2 := sup
h′∈HN,T

(
‖f̂h′ − E[f̂h′ ]‖2 −

V1(h′)

10

)
+

, D3 := sup
h′∈HN,T

(
‖f̂h,h′ − E[f̂h,h′ ]‖2 −

V1(h′)

10

)
+

D4 := sup
h′∈HN,T

(
‖E[f̂h′ ]− fh′‖2 −

V2(h′)

10

)
+

, D5 := sup
h′∈HN,T

(
‖E[f̂h,h′ ]− fh,h′‖2 −

V2(h′)

10

)
+

.

According to Young inequality (see Theorem 7), we obtain

‖fh,h′ − fh′‖2 = ‖Kh′ ? (fh − f)‖2 ≤ ‖Kh′‖21‖fh − f‖2 = ‖K‖21‖fh − f‖2

thus
D1 ≤ ‖K‖21‖fh − f‖2. (20)

Let us study the term D2. We define νN,h(t) :=< t, f̂h−E[f̂h] >, then |νN,h(t)| ≤ ‖t‖‖f̂h−E[f̂h]‖
thus, the estimator f̂h satisfies:

‖f̂h − E[f̂h]‖2 = sup
t∈L2,‖t‖=1

(νN,h(t))2.

We can also compute the scalar product which defines νN,h and we obtain

νN,h(t) =
1

N

N∑
j=1

(
t ? K−h (Zj,T )− E[t ? K−h (Zj,T )]

)
(21)

with K−h (x) := Kh(−x). This finally conducts to:

E[D2] ≤
∑

h′∈HN,T

E

[
sup
t∈B(1)

(νN,h(t))2 − V1(h′)

10

]
+

with B(1) = {f ∈ L2(R), ‖f‖ = 1}. This bound and Equation (21) leads to apply Talagrand’s
inequality (6). We have to compute 3 quantities: M , H2 and v.
First:

sup
t∈B(1)

‖t ? K−h′‖∞ = sup
t∈B(1)

sup
x∈R

∣∣∣∣∫ t(y)K−h′(x− y)dy

∣∣∣∣ = sup
t∈B(1)

sup
x∈R
| < t,K−h′(.− x) > |

≤ sup
t∈B(1)

‖t‖‖Kh′‖ =
‖K‖√
h′

:= M. (22)

Secondly, Proposition 4 gives

E

[
sup
t∈B(1)

(νN,h(t))2

]
= E[‖f̂h − E[f̂h]‖2] ≤ ‖K‖

2

Nh
:= H2. (23)

18

ha
l-0

10
23

30
0,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



Thirdly:

sup
t∈B(1)

(
Var(t ? K−h′(Z1,T ))

)
≤ sup

t∈B(1)
E[(t ? K−h′(Z1,T ))2]

≤ 2 sup
t∈B(1)

E[(t ? K−h′(φ1))2] + 2 sup
t∈B(1)

E[(t ? (K−h′(Z1,T )−K−h′(φ1))2].

Let us investigate the two terms separately. Young’s inequality gives:

E[(t ? K−h′(φ1))2] =

∫
(t ? K−h′(x))2f(x)dx ≤ ‖f‖‖t ? K−h′‖

2
4 =
‖f‖‖K‖24/3√

h′
:= v1. (24)

Then, one can write: Kh′(x−Z1,T )−Kh′(x−φ1) = (φ1−Z1,T )
∫ 1

0
(Kh′)

′(x−φ1 +u(φ1−Z1,T ))du,
thus

(t ? K−h′(Z1,T )− t ? Kh′(φ1))2 = (φ1 − Z1,T )2
(∫

t(x)

∫ 1

0

(Kh′)
′(x− φ1 + u(φ1 − Z1,T ))dudx

)2

≤ (φ1 − Z1,T )2
∫
t2(x)

(∫ 1

0

(Kh′)
′2(x− φ1 + u(φ1 − Z1,T ))du

)
dx

≤ (φ1 − Z1,T )2‖t‖2
∫

(Kh′)
′2(y)dy = (φ1 − Z1,T )2‖(Kh′)

′‖2.

With E[(φ1 − Z1,T )2] = σ2

T 2E[W1(T )2] = σ2

T , the assumption T ≤ h5/2 leads to

E[(t ? K−h′(Z1,T )− t ? Kh′(φ1))2] ≤ ‖K
′‖2σ2

h′3T
≤ ‖K‖

2σ2

√
h′

:= v2. (25)

Finally v = v1 + v2 = A0/
√
h′ with A0 = ‖f‖‖K‖24/3 + ‖K‖2σ2.

If κ1‖K‖21 ≥ 40, with the assumption 1/(Nh) ≤ 1, Talagrand’s inequality (under the assumptions
of the Theorem 5) gives

E

(
sup
t∈B(1)

(νN,h′(t))
2 − V1(h′)

10

)
+

≤ C1

N
√
h′
e−C2/

√
h′ + C3

1

h′N2
e−C4

√
N

≤ C5

N

∑
h′∈HN,T

1√
h′
e−C6/

√
h′ ≤ C5Σ(C6)

N
.

One can lead the study of D3 as we have done for D2, using the same steps and tools. However
Kh ? Kh′ instead of Kh′ , adds ‖K‖1 in M and ‖K‖21 in H2 and v.

Then, let us study the term D4. If κ2 ≥ 10/(3‖K‖21), the bound (13) leads us to

D4 = sup
h′∈HN,T

(
‖E[f̂h′ ]− fh′‖2 −

V2(h′)

10

)
+

≤ sup
h′∈HN,T

(
‖K”‖2σ4

3h′5T 2
− κ2‖K‖21‖K”‖2σ4

10T 2h′5

)
+

= 0

thus D4 = 0. Finally, similarly, if κ2 ≥ 10/3, we obtain

D5 = sup
h′∈HN,T

(
‖E[f̂h,h′ ]− fh,h′‖2 −

V2(h′)

10

)
+

≤ sup
h′∈HN,T

(
‖K”‖2‖K‖21σ4

3h5T 2
− κ2‖K‖21‖K”‖2σ4

10T 2h′5

)
+

= 0.

19

ha
l-0

10
23

30
0,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



Finally we have shown that for all h ∈ HN,T :

E[‖f̂ĥ − f‖
2] ≤ 6κ1

‖K‖21‖K”‖2

Nh
+ 6κ2

‖K‖21‖K”‖2σ4

T 2h5
+ 3

(
2‖f − fh‖2 +

‖K‖2

Nh
+
‖K”‖2σ4

3T 2h5

)
+ 30

(
‖K‖21‖f − fh‖2 +

C

N

)
≤ C1 inf

h∈HN,T

(
‖f − fh‖2 +

‖K”‖2

Nh
+
‖K”‖2σ4

3T 2h5

)
+
C2

N
.

where C1 depends on ‖K‖1 and C2 depends on ‖f‖, ‖K‖1, ‖K‖, ‖K‖4/3. �

B Discretization
We study the error applied by discretization of the Zj,τ . Indeed, Times of observations are the
tk = kδ, k = 1, . . . , N and 0 < δ < 1. Then, for any 0 < m2/s2 ≤ T we use:

Ẑj,m2/s2 =
s2

m2

Xj(δ[m
2/(s2δ)])−Xj(0) +

δ

α

[m2/(s2δ)]∑
k=1

Xj((k − 1)δ)

 (26)

to approximate Zj,m2/s2 given by (3). The corresponding estimator of f is

̂̃
fm,s(x) =

1

2π

∫ m

−m
e−iux

1

N

N∑
j=1

eiuẐj,m2/s2 e
u2σ2s2

2m2 du. (27)

We investigate the error:

E[‖̂̃fm,s − f‖2] ≤ 2E[‖̂̃fm,s − f̃m,s‖2] + 2E[‖f̃m,s − f‖2]

where the second term of the right hand side is bounded by Proposition 1. Then, Plancherel-
Parseval’s Theorem implies:

E[‖̂̃fm,s − f̃m,s‖2] ≤ 1

2π
E

∫ m

−m

1

N

N∑
j=1

eu
2σ2s2/m2

∣∣∣eiuẐj,m2/s2 − eiuZj,m2/s2

∣∣∣2 du


≤ 1

2π

∫ m

−m
eu

2σ2s2/m2

E
[∣∣∣eiuẐ1,m2/s2 − eiuZ1,m2/s2

∣∣∣2] du
and

E
[∣∣∣eiuẐ1,m2/s2 − eiuZ1,m2/s2

∣∣∣2] ≤ |u|2E [∣∣∣Ẑ1,m2/s2 − Z1,m2/s2

∣∣∣2]
thus we study the last term. For all (m, s) ∈ C, m2/s2 ≤ T ,

Z1,m2/s2 − Ẑ1,m2/s2 =
s2

m2

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)
+

s2

αm2

[m2/(s2δ)]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

then by Cauchy-Schwarz’s inequality we obtain
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(Z1,m2/s2 − Ẑ1,m2/s2)2 ≤ 2s4

m4

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
+

2s4

α2m4

[m2/(s2δ)]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

2

.

Höder’s inequality yields


[
m2

s2δ

]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds


2

≤

[
m2

s2δ

]∑
k=1

[∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))ds

]2 [
m2

s2δ

]

≤
[
m2

s2δ

]
δ

[
m2

s2δ

]∑
k=1

∫ kδ

(k−1)δ
(Xj(s)−Xj((k − 1)δ))2ds.

Let us study E[(Xj(s)−Xj((k − 1)δ))2], for (k − 1)δ ≤ s ≤ kδ:

Xj(s)−Xj((k − 1)δ) =

∫ s

(k−1)δ

(
φj −

Xj(u)

α

)
du+

∫ s

(k−1)δ
σdWj(u)

and Cauchy-Schwarz’s inequality gives

E[(Xj(s)−Xj((k − 1)δ))2] ≤ 2E

(∫ s

(k−1)δ

(
φj −

Xj(u)

α

)
du

)2
+ 2E

(∫ s

(k−1)δ
σdWj(u)

)2


≤ 2E

[∫ s

(k−1)δ

(
φj −

Xj(u)

α

)2

du

]
+ 2δσ2

≤ 4δ2
(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2. (28)

Finally, after simplification and using for all x ∈ R+, [x] ≤ x,

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤ 2s4

m4
E[
(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
]

+
2

α2

(
4δ2

(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2

)
and we can deal with the term E[

(
Xj(m

2/s2)−Xj(δ[m
2/(s2δ)])

)2
] using formula (28) andm2/s2−

δ[m2/(s2δ)] ≤ δ. Thus:

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤

(
2s4

m4
+

2

α2

)(
4δ2

(
E(φ2j ) +

1

α2
sup
s≥0

E[Xj(s)
2]

)
+ 2δσ2

)
.

Besides, for model (1), Equation (2) implies E[Xj(s)
2] ≤ 3x2j + 3α2E[φ2j ] + 3σ2, and 0 < δ < 1

implies

E
[
(Z1,m2/s2 − Ẑ1,m2/s2)2

]
≤ Cδ

(
2s4

m4
+

2

α2

)
with C a positive constant which does not depend on δ or m2/s2. Finally,
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E[‖̂̃fm,s − f̃m,s‖2] ≤ Cδ

(
2s4

m4
+

2

α2

)
1

2π

∫ m

−m
u2eu

2σ2s2/m2

du

≤ C ′δ

(∫ 1

0

v2ev
2σ2s2dv

)(
s4

m
+
m3

α2

)
.

But s ≤ 2/σ and m =
√
k∆/σ, with k ∈ N∗ and 0 < ∆ < 1, thus we obtain

E[‖̂̃fm,s − f̃m,s‖2] ≤ C ′

σ3

(∫ 1

0

v2ev
2σ2s2dv

)(
24
√
k

(
δ√
∆

)
+
k3/2

α2

(
δ∆3/2

))
.

Proposition 9. Under (A), assuming E[φ2j ] < +∞, the estimator ̂̃fm,s given by (27) satisfies

E
[
‖f̃m,s − f‖2

]
≤ ‖fm − f‖2 +

√
k∆

σπN
eσ

2s2 +
C ′

σ3

eσ
2s2

2σ2s2

(
24
√
k

(
δ√
∆

)
+
k3/2

α2

(
δ∆3/2

))
.

Finally if ∆ is fixed and δ is small, the error is acceptable. When ∆ = δ the error is of order√
δ, which is the choice we made in practice most of the time.

For study on the kernel estimator we refer to Comte et al. (2013).
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