Contextually Constrained Deep Networks for Scene Labeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Contextually Constrained Deep Networks for Scene Labeling

Taygun Kekec
  • Fonction : Auteur
  • PersonId : 1412743
Rémi Emonet
Elisa Fromont
Connectez-vous pour contacter l'auteur
Alain Trémeau
  • Fonction : Auteur
  • PersonId : 859601

Résumé

Learning using deep learning architectures is a difficult problem: the complexity of the prediction model and the difficulty of solving non-convex optimization problems inherent to most learning algorithms can both lead to overfitting phenomena and bad local optima. To overcome these problems we would like to constraint parts of the network using some semantic context to 1) control its capacity while still allowing complex functions to be learned 2) obtain more meaningful layers. We first propose to learn a weak convolutional network which would provide us rough label maps over the neighborhood of a pixel. Then, we incorporate this weak learner in a bigger network. This iterative process aims at increasing the interpretability by constraining some feature maps to learn precise contextual information. Using Stanford and SIFT Flow scene labeling datasets, we show how this contextual knowledge improves accuracy of state-of-the-art architectures. The approach is generic and can be applied to similar networks where contextual cues are available at training time.
Fichier principal
Vignette du fichier
bmvc2014.pdf (1.23 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01020539 , version 1 (30-09-2016)

Identifiants

  • HAL Id : hal-01020539 , version 1

Citer

Taygun Kekec, Rémi Emonet, Elisa Fromont, Alain Trémeau, Christian Wolf. Contextually Constrained Deep Networks for Scene Labeling. British Machine Vision Conference, 2014, Sep 2014, Nottingham, United Kingdom. ⟨hal-01020539⟩
283 Consultations
155 Téléchargements

Partager

More