N
N

N

HAL

open science

Contextually Constrained Deep Networks for Scene
Labeling

Taygun Kekec, Rémi Emonet, Elisa Fromont, Alain Trémeau, Christian Wolf

» To cite this version:

Taygun Kekec, Rémi Emonet, Elisa Fromont, Alain Trémeau, Christian Wolf. Contextually Con-
strained Deep Networks for Scene Labeling. British Machine Vision Conference, 2014, Sep 2014,
Nottingham, United Kingdom. hal-01020539

HAL Id: hal-01020539
https://hal.science/hal-01020539
Submitted on 30 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01020539
https://hal.archives-ouvertes.fr

KEKEC ET. AL.: CONTEXTUALLY CONSTRAINED DN FOR SCENE LABELING 1

Contextually Constrained Deep Networks for
Scene Labeling

Taygun Kekeg! " Université de Lyon, CNRS UMR 55186,
taygunkekec@gmail.com Laboratoire Hubert-Curien

Rémi Emonet’ Université de Saint-Etienne, F-42000,
remi.emonet@univ-st-etienne.fr Saint-Etienne, France

Elisa Fromont! 2Université de Lyon, CNRS INSA-Lyon,
elisa.fromont@univ-st-etienne.fr LIRIS, UMRS5205, F-69622, France

Alain Trémeau’
alain.tremeau@univ-st-etienne.fr
Christian Wolf2
christian.wolf@liris.cnrs.fr

Abstract

Learning using deep learning architectures is a difficult problem: the complexity of
the prediction model and the difficulty of solving non-convex optimization problems in-
herent to most learning algorithms can both lead to overfitting phenomena and bad local
optima. To overcome these problems we would like to constraint parts of the network
using some semantic context to 1) control its capacity while still allowing complex func-
tions to be learned 2) obtain more meaningful layers. We first propose to learn a weak
convolutional network which would provide us rough label maps over the neighborhood
of a pixel. Then, we incorporate this weak learner in a bigger network. This iterative
process aims at increasing the interpretability by constraining some feature maps to learn
precise contextual information. Using Stanford and SIFT Flow scene labeling datasets,
we show how this contextual knowledge improves accuracy of state-of-the-art architec-
tures. The approach is generic and can be applied to similar networks where contextual
cues are available at training time.

1 Introduction

Deep learning approaches, such as multi-layer neural networks, leverage the amount of avail-
able data to learn representations: instead of hand-crafting intermediate features, they are
learned directly from the data. This is particularly relevant since there is no universal feature
detector performing best for any given problem and these learned features have been shown
to outperform hand-crafted features on many perception tasks.

Recent advances in deep learning methods allow them to scale to big vision datasets. For
example, convolutional neural networks (CNNs) provide some amount of translation invari-
ance and are perfectly adapted for spatial data such as images (and temporal data such as
audio channels). From an optimization perspective, stochastic gradient descent and efficient
back-propagation algorithms provide significant learning time improvements.

(© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Here, we consider the task of semantic full scene labeling, in which an image is seg-
mented into meaningful regions. However, a large part of the contributions can also be
applied to related problems in which contextual information in addition to local appearance
information is primordial such as, e.g., object detection and recognition. Contextual infor-
mation often allows to disambiguate decisions where local information is not discriminant
enough. It commonly comprises cyclic relationships between pixels, super-pixels or parts,
which can be difficult to model. In principle, increasing the support of a classifier (the in-
put patch size) can increase the amount of context taken into account for the decision. In
practice, this places all the burden on the classifier, which needs to learn a highly complex
prediction model from a limited amount of training data, often leading to poor performance.

In the approach we propose, we first learn a network to predict contextual information.
We assume that the contextual information is obtainable from ground truth labels at training
step. In parallel, we learn a second model for the original task assuming that clean contextual
data is available. Finally, we combine these networks and perform a last training phase
without using the contextual information.

As a summary, the contributions of this paper are: i) a generic way of integrating seman-
tic context information when learning convolutional networks; ii) a new training procedure,
which switches from a constrained but easy configuration without contextual noise to a real-
istic configuration, where the system learns to cope with noise in the contextual data; iii) an
illustration of how such an approach improves learning (by avoiding bad optimum) leading
to increased accuracy when applied to the challenging task of full scene labeling.

2 Related Work

For computer vision tasks, convolutional nets [10] have been gaining attention as a tool
famous for its fast inference capabilities paving the way to many successful applications
such as image classification [8], house digit classification [15] and human body part estima-
tion [7]. The focus of this article is on improving such an architecture in two directions. First,
due to the highly non-convexity of the target function, the optimization procedure usually
gets stuck in local optima. For such cases, a popular strategy is to initialize the network with
unsupervised pre-training to guide the optimization to a more reliable region in the weight
space [3] and then train it with supervised information. This strategy has been proven handy
for applications where vast amount of unlabeled data is available. Second, the more layers
are added to a deep network, the more difficult it becomes to understand the semantics of the
intermediate layers [21]. Interpretability of features can provide intuitions for architecture
design and diagnostics for inference. For example, with a neural network trained for a bank
credit approval application, interpretable features would provide reasons why one’s credit
application is not approved (salary feature may not be sufficiently activated). By forcing part
of the network to capture some context information of our choice, we aim to improve the
interpretability of the CNN.

The essence of these deep architectures is to gradually transform observations into high
level abstract concepts in the highest layers, showing that increasing number of layers in a
deep network makes it possible to learn abstract concepts better. An example is the work
of Goodfellow et. al [5] which develops a multi-digit number recognition technique using a
CNN with eight convolutional layers. Although, these deep networks excel in approximat-
ing underlying target function, training such networks is still difficult and special care must
be taken to learn meaningful and accurate functions. If one does not have enough compu-

Citation
Citation
{{LeCun}, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Sermanet, Chintala, and Lecun} 2012

Citation
Citation
{{Jiu}, {Wolf}, {Taylor}, and {Baskurt}} 2014

Citation
Citation
{Erhan, Courville, Bengio, and Vincent} 2010

Citation
Citation
{Zeiler and Fergus} 2013

Citation
Citation
{Goodfellow, Bulatov, Ibarz, Arnoud, and Shet} 2014

Output

Input Image 16 feat. maps 16 maps 64 maps 64 maps 512 “maps” 9 “maps”
46x46 40x40 20x20 14x14 X7 1x1 1x1
(3 channels) 1024

hidden units

og

convolution with
random connections

tanh(.) followed by
2x2 pooling

Figure 1: Plain single-scale convolutional architecture presented in [4] for scene labeling

tational resources and vast amount of data, the designer must provide extra topological or
optimization constraints to effectively train the network. For example, in [9], Le et al. im-
pose an orthonormal constraint to pre-initialize weights of a convolutional network to force
the learned features to be more diverse. Then a a pooling step across multiple features is
used to provide not only a translational invariance but also an invariance to more complex
transformations.

The problem we are interested in this paper is scene labeling: given an image we wish
to label each pixel with its object category. It is a joint formulation of the segmentation,
detection and recognition problems. Some state-of-the-art approaches for scene labeling are
based on graphical models such as Markov Random Fields (MRFs), Conditional Random
Fields (CRFs) [19] or Bayesian networks. Inference in these models amounts to solving
combinatorial problems, which in the case of high level contextual information are often
non-submodular and intractable in the general case.

Instead, feedforward approaches formulate inference of labels as a local classification
task so that inference will be extremely fast. They classify pixel labels with a pure discrimi-
native approach by assuming that latent labels are independently and identically distributed.
For example, Farabet et al. [4] uses a convolutional network to infer pixels labels (Figure
1). In this work, a multiscale approach is used to force the network to learn scale invariant
features. The advantage of such a multiscale approach is to control the number of parame-
ters (capacity). Local decisions resulting from the convNet are further corrected with global
decision rules arising from a CRF which gives a greater spatial coherence between the esti-
mated image labels. Unlike [4], we avoid any correction with a graphical model that would
slow down the inference process. In a different fashion, we expect our Context Learner to
learn about the spatial consistency and provide this information to the whole network.

For such feedforward approaches, one should select a patch big enough (i.e., with a large
support size) to take large dependencies into account. At the same time, the number of
parameters of the network must remain reasonable. Pinheiro tackles this problem by adding
a recurrence structure to the convolutional network and operating on a larger support size
[13]. To control the capacity, large pooling units are used that bring considerable loss in
the image resolution in the upcoming layers. To cope with this loss of resolution, shifted

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2013

Citation
Citation
{Le, Ngiam, Chen, Chia, Koh, and Ng} 2010

Citation
Citation
{Tighe and Lazebnik} 2010

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2013

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2013

Citation
Citation
{Pedro H. O.protect unhbox voidb@x penalty @M {}Pinherio} 2014

[~}-o
>}
[o}-=
lav)
@
Q

(a) (b)
Figure 2: Functional representation of our feature learning approaches. (a) The target func-
tion is composed of a feature extraction function f and a prediction function p. (b) Our
approach which distinguishes the learning of context features f, and dependent features f.

versions of the input image are fed to the network at the expense of slower inference.

Our strategy is not to choose an optimal support size to capture as much dependencies
as possible. It is closer to the idea of iterative classification [16]. For example, in Tu et
al.’s work [20], a weak classifier is first trained to classify each pixel independently of the
context. Then, a new classifier is initialized with the result of the weak classifier and some
uniformly distributed context cues. Subsequent iterations of the classifier learn to predict
the values of context features in the image, showing that learning context brings greater
accuracy. Shotton et al. [17] also propose a sequential schema using Randomized Decision
Forests to incorporate semantic context to guide the classifier. In the proposed approach,
bags of semantic textons act as a regional prior to maintain the coherence across a region in
the image. These approaches show that providing contextual information to a classifier helps
to prevent inconsistent classifications. This is also our aim in this paper.

3 Proposed approach

Following the intuition that context can help in learning classifiers, our approach is to first
train a function that predicts some context information. Then, the context coming from this
predictor, together with the input are used to learn a classifier for the original task. In this
section, we introduce necessary notations and concepts, then we illustrate our approach with
Convolutional Neural Networks (CNNs) and finally we show how learning is conducted.

3.1 Notations and CNNs

Classical feature learning — In the context of feature learning, the input processing is tradi-
tionally separated in two parts as illustrated in Figure 2a. The input [is first processed with
a function f(.), which has parameters 6y and produces a set of features F. A predictor p(.)
having parameters 6, takes the features F as input and produces a prediction.

At learning time, this output P is compared to the expected output O to produce an error
using a loss function £ that is often the quadratic error: £(P,0) = ||p(f(I,6y),6,) — O||*.
When all the involved functions are differentiable functions, gradient descent can be used to
minimize £(P,O) over a training set. The minimization process finds the (locally) optimal
value for 6 = (6, 6,). Unlike systems where the features are manually extracted and then a
classifier is learned, here, the two sets of parameters (68 and 6,) are learned jointly.

In practice, we learn from a training set S containing N samples: {(1;,0;)}i—1.n. To cope
with large training sets, stochastic gradient descent is often used. Once the parameters are

Citation
Citation
{Shapovalov, Vetrov, and Kohli} 2013

Citation
Citation
{Tu and Bai} 2010

Citation
Citation
{Shotton, Johnson, and Cipolla} 2008

46x46 20x20 7x7 1x1

3
16 ;
—CTP— ﬁ —CTP—> ;ﬁl :IiC’T' Mp—p ¥

46x46 20x20 H
3 o 7x7

—CTP— 1@ —cTP— 9y’
Il

Figure 3: Implementation of the proposed approach. The architecture is a succession of
convolution (C), element-wise hyperbolic tangent (T) and 2x2 pooling (P). The labels of
49 pixels (7x7) within the considered patch are considered as semantic context information.
These labels are one-hot encoded into 9 feature maps. We first learn the lower yellow part of
the network providing a set of ground truth labels.

learned, p(f(I)) is used as a prediction for the the input image I.

Convolutional Neural Networks — A convolutional neural network (CNN) [10] is a
special case of a neural network that respects the topological structure of the image by using
multidimensional convolutions. Given an image, the network learns a set of filters. The
CNN architecture is based on two main concepts: local receptive fields and weight sharing.
Contrarily to other neural network architectures, neurons of a given layer are only connected
to a subset of the neurons in the subsequent layer. This subset is called a local field or a
receptive field. Since a convolution operation on an image can be implemented by sliding
a convolutional kernel over the entire image, the weights of the filter are shared from one
position to another which introduces some translational invariance into the network [18].
These two ideas reduce the overall complexity of the model, and allow CNNs to scale up
to high dimensional inputs. A standard CNN is implemented using a set of operations.
First, the input image is convolved with a set of 2D filters. Then, a point-wise non-linear
squashing function is applied to a sparse linear combination of responses to introduce non
linearity and allow the network to learn more complex function [14]. Finally, a pooling
layer which down-samples the feature map is used to reduce the sensitivity of the network to
input variations. After capturing much of the non-linearity using convolutional layers, a final
classifier of arbitrary choice is used to classify the examples. An example of a convolutional
network with three convolutional layers is depicted in Figure 1. The first two layers consist of
7 x 7 convolutional filters, a hyperbolic tangent squashing function and a 2 X 2 max pooling
operations on each maps. The number of feature maps are generally determined empirically
and the size of convolution filters are carefully selected to be coherent with the input image
size. The last layer of this CNN has a final convolution and a standard multi-layer perceptron
(MLP).

3.2 Proposed Augmented CNN

For a function composed of f and p (see Fig. 2), finding a good local optima may be trouble-
some especially with neural networks where a huge number of parameters is involved. Our
goal is to maintain the representation power of such a network while guiding its learning. We
thus propose to add some intermediate supervision, encouraging part of the learned features
to capture some predetermined information.

To constrain the whole network, we propose to split the function f into two parts: f; and
fe (Fig. 2b). Function f, aims at predicting some context and it is learned with additional
supervision (examples of the expected context). This increased supervision does not require
more annotations: for instance, the scene labeling datasets are already densely annotated.

Citation
Citation
{{LeCun}, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Simard, Steinkraus, and Platt} 2003

Citation
Citation
{Rojas} 1996

The dependent features function f; computes additional features and is learned (jointly
with p) conditionally on the context obtained from f.. Learning f; conditionally on f,
encourages the dependent features f; to extract information that is complementary to f,.
Below, we describe the networks that constitutes f, and f;, based on the CNN from Fig. 1.

Context Learner — The aim of the first network is to produce the semantic context of
a pixel. The weights of this network are the parameters of context the function f.(.). This
network, called Context Learner is tightly supervised using ground truth annotations to learn
the f.(.) function. It takes as input a training patch X} of size s x s together with a set of
labels A/ (x) around the target pixel x of the patch. It is also a convolutional network but
with only two convolutional layers which aim at predicting not only the label y; of the target
patch pixel but also the label of the entire neighborhood context N (x).

Augmented Learner — Our full architecture consists of the above-mentioned Context
Learner and a Dependent Learner (depicted in blue in Fig. 3). The Dependent learner is
a typical CNN that is responsible for learning the f;(.) function. The augmented learner’s
prediction function p(.) has the same capacity as the one learned from a plain CNN, but
thanks to the internal separation of the network into two different entities, we expect it to
be more accurate and more efficient than a plain convolutional network which would not
explicitly learn some contextual features.

3.3 Learning phases in Augmented CNN

Our Augmented Learner architecture is trained in successive steps to predict the label of an
input patch. We describe here the three phases of our learning strategy (see Fig. 2).

Learning context — In this step, we start from a random initialization 89 and learn 6

from some samples S = {(f;,04) }i=1.x where the superscript j in 6/ indicates the training
stage and Oj is a set of ground truth labels. The context learning step minimizes the following

pfoﬂ (fc(L 66) - Olé)
for a patch I;, pf oft is the softmax prediction output for k'th pixel and OF is the ground-truth
label of k'th context pixel.

The context learner is trained with a semantic label map containing the ground truth la-
bels of the pixels to predict. At the end of this training step, the feature maps that correspond
to the output of the Context Learner will be specialized in modeling the neighboring context
of the target pixel. As a standard CNN focuses only on learning the class of a given patch y;,
it is hard to infer what the last layers are actually learning. In contrast, our learner increases
the interpretability of the whole network.

2
where K is the number of context pixels

error function: £, =YX ‘

Learning dependent features — The goal of this part of the augmented learner is to
learn the parameters (67, 6p2) from a random initialization of (6Y, 62) using some samples
S = {(I;;0;) }i=1.n and from parameters 6! learned in the previous step. We minimize £
while keeping OCI fixed. Fixing 6, prevents harming the parameters of the context learner
while learning Gdz. In Fig. 3, the parameters in the yellow region of the Augmented Learner
are frozen during the back-propagation steps.

Learning 95 requires to use the features C of the context learner shown in Figure 2b. This
can be either a ground truth label map or directly the predictions from the embedded context
learner (previous step). We generate the context stochastically for learning fy(.) using a
mixture of ground truth labels and context learner predictions. We replace the context learner
predictions with some ground truth labels (it is also a 7 7 label map) randomly following

B T

o G e L]
R b .

unknown sky tree road grass water building mountain object

Figure 4: 3 input patches and their resulting feature maps produced by the context learner.

a Bernoulli distribution Ber(x|@ = 7) where 7 is generally chosen small. This is done both
because a full label map would be too far from the actual context predictions and because
it could result in trivially learning f,;(.). On the other hand, introducing some ground truth
context regularizes the f;(.) learning step. When the ground truth context is used we still
mask a 3 * 3 regions around the pixel of interest.

Fine tuning — In this step, we learn the final parameters 63 = (67, 93, 93) from some
samples S = {(I;, 0;) }i1..y. We start from an initial value of (6},67,67), and we minimize
L. This idea of this overall refinement step is to weaken the level of supervision and allow
both 67 and 6, to adjust to this sudden lack of possible ground truth contextual information
which is obviously not present during the test step.

4 Experiments

Experimental setup — We selected Torch7, a scientific computing framework with wide
support for machine learning algorithms [2] as our development environment. In order to
ensure the modularity of our approach, we implemented several custom modules for the
neural network package. Our approach has been tested on two scene labeling datasets: Stan-
ford Background [6] and SIFT Flow [11]. The Stanford Background dataset contains 715
images of outdoor scenes having 9 classes. Each image has a resolution of 320x240 pixels.
We randomly split the images to keep 80% of them for training and 20% for testing. From
these images, we extract a total of 40 millions patches.

The SIFT Flow dataset contains 2688 256 x 256 manually labeled images. The dataset
has 2488 training and 200 test images containing 33 classes of objects. From this we ex-
tract 160 millions patches. This dataset is more challenging than the former one because the
training and test sets have different data distributions and the number of classes to predict
is greater. In order to prevent overfitting in our network on such a large amount of patches,
we arbitrarily use an early stopping strategy with a 10% holdout validation set [1]. For both
datasets, 46 x 46 RGB patches are first converted to the YUV color space to separate the
brightness and the color. The input size is a consequence of using pooling units with even
sizes (2 x 2) and convolutional filters with odd sizes (7 x 7). These patches are then normal-
ized to have a zero mean and a unit variance. The normalization of the ¥ channel is local for
each patch while the U and V channels are normalized globally over all possible patches of
the training set.

We report both the pixel accuracy measure which is the proportion of true positives over
all pixels when classifying an image, and the average class accuracy where the average is
computed with equal weights for each class. Note that in our experiments, the training sets

Citation
Citation
{Collobert, Farabet, and Kavukcuoglu} 2011

Citation
Citation
{Gould, Fulton, and Koller} 2009

Citation
Citation
{Liu, Yuen, and Torralba} 2011

Citation
Citation
{Bishop} 2006

Table 1: Pixel and averaged per class accuracy of different methods for the Stanford and
SIFT Flow datasets. T = 0 corresponds no ground truth context injection. Last columns
show the number of parameters and the relative training time per sample.

Stanford Dataset SIFT Flow Dataset number of | train
Architecture Pixel Acc. | Class Acc. || Pixel Acc. | Class Acc. # param. | speed
ContextL 54.19 45.12 42.52 9.89 4.4k 0.75x
ConvNet 69.72 66.24 48.02 44.04 700k 1x
AugL (1=0) 72.06 67.22 48.93 44.53 701k 1.1x
AugL (1 =0.05) 71.97 66.16 49.39 44.54 701k 1.1x
msContextL 55.39 50.06 44.71 10.20 4.4k 2.1x
msConvNet 75.67 67.1 69.93 45.65 1224k 2.70x
msAugL (1 =0) 76.05 68.01 70.88 44.82 1225k 2.85x
msAugL (7 = 0.05) 76.36 68.52 70.42 45.80 1225k 2.85x

are not expanded with artificial transformations. Such an procedure would increase the clas-
sification accuracy by few percents at the expense of slower training. We balance our training
set over the classes which means that the training procedure will try to maximize the class
accuracy. The results reported in this section are thus computed with our implementation of
the Convolutional Network (ConvNet) presented in [4] to have a fair comparison with our
architecture.

Architecture details — The context learner implementation (Fig. 3) transforms a 46 x 46
patch into a 7 x 7 context output. In the first layer, it has sixteen 7 x 7 filters and then 2 x 2
pooling operations for each feature map. Its second layer is composed of K filters (each
of size 7 x 7) each encoding the context of a specific class followed by a 2 x 2 pooling
operation. This layer has thus K output maps, where K corresponds to the number of classes
(9 in Stanford Background, 33 in SIFT Flow). For all experiments in this work, we use the
hyperbolic tangent activation function.

The supervision strategy of the context learner training depends on its filter and pooling
sizes. In order to correctly subsample the ground truth labels of the dense 46 x 46 patch,
we compute the receptive field of each neuron of the output 7 x 7 context map. We then
use the label at the center of this receptive field (this corresponds to the precomputed pixel
coordinates {11, 15, 19, 23, 27, 31, 35}).

We consider both a plain single scale convolutional net and a multiscale version (all the
reported results which with the ms prefix are multiscale versions). In the multiscale case, the
Context Learner is trained to classify a grid of pixels for each scale. An image pyramid with
a scale ratios of 1x, 2x and 4x (with wider support) is used and the parameters of the network
are shared between the 3 scales. The total number of parameters of the multiscale Context
Learner is thus the same as the single scale version. From a computational perspective, our
approach increases the number of parameters by less than 1% compared to the ConvNet
(Table 1). The only parameter increase in our architecture is due to the first two layers of
the context learner. However, these layers have less maps than the later convolutional and
classifier layers.

Our Augmented Learner (“AugL” in the table) has 64 feature maps at the end of its
second layer with K of them coming from the Context Learner. The third layer has a final
7 x 7 convolution resulting in 256 1x1 maps (in the multiscale implementation it is 256 maps
for each scale, for a total of 768 maps) that are connected to an MLP with 1024 hidden units.

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2013

= =S i \‘\‘ S e ‘

(a) msConvnet (b) msAugLearner (c) GroundTruth

Figure 5: Raw image labeling of the multiscale ConvNet, our multiscale augmented learner
and ground truth labels.

We experiment with an AugL that does not use any true context label injection corresponding
to 7 = 0 and another AugL that has an injection parameter 7 = 0.05.

Intermediate results: context learner — The classification accuracies obtained from the
context learner (“ContextL” in the table) are given in Table 1 for both datasets. In Fig. 4,
we show the responses of our context learner maps for some input patches. The second row
shows strong responses for the object, tree and building classes. For the second and third
rows, although the context learner outputs a strong response for the object class, due its the
relative simplicity, it is not able to provide an accurate classification (e.g., for the building
class). Nevertheless, this network is useful for the augmented learner and it’s training time
is negligible: the time per sample is lower (see Table 1) and it converges faster than the
Convnet.

Classification accuracy results — Table 1 shows the classification results obtained with
the different approaches. Overall, we observe that our method provides better results for
both the Stanford and the SIFT Flow datasets. For Stanford dataset, another state of the art
technique is reported by Munoz et al. [12]. They reported their pixel accuracy as 76.9 and
class accuracy as 66.2 without a deep learning architecture. With our technique, we were
able to obtain much higher class accuracy.

While the accuracy gain varies between singlescale and multiscale implementations, we
observe that our approach consistently improves both pixel and class accuracies. The gain
on single-scale experiments are higher compared to multiscale implementations. This brings
us to the empirical conclusion that contextual cues obtained implicitly through appearance
cues of large support size provides valuable contextual information.

Qualitative segmentation results. Some labeling results from the Stanford dataset are
shown in Figure 5. Our approach yields results that are more visually coherent than those
obtained with the plain ConvNet architecture. For the second and third rows, our architecture
correctly classifies the most important regions of the image whereas the baseline (ConvNet)

Citation
Citation
{Munoz, Bagnell, and Hebert} 2010

fails at maintaining coherent results. In the first row, we illustrate a challenging traffic scene.
We see that in this scenario, both approaches are insufficient to come up with a consistent
global labeling. This can be arbitrarily corrected with an external CRF. However, one inter-
esting result is that our approach detects the traffic sign correctly while the baseline CNN
cannot. These figures show that, roughly initializing the context maps and lumping them to
a full architecture to let them evolve further under the new task (only classifying the target
pixel of a patch) teaches the full network how to take some spatial consistency into account.

5 Conclusions

We have presented a new deep learning architecture based on convolutional layers. The ar-
chitecture is trained in multiple distinct steps. We show that the iterative learning strategy
maintains the capacity of the network while improving both the interpretability of the net-
work layers and the accuracy compared to a good state-of-the-art convnet architecture. This
method is applied to a scene labeling problem but the idea is general enough to be applied
to other computer vision problems where contextual cues are important to classify an object.
Further works include testing more systematic label injection procedures.

Acknowledgement

This work has been supported by the ANR project SoLStiCe (ANR-13-BS02-0002-01).

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., 2006. ISBN 0387310738.

[2] Ronan Collobert, Clément Farabet, and Koray Kavukcuoglu. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, 2011.

[3] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsu-
pervised pre-training help deep learning? In Proceedings of AISTATS, pages 201-208,
2010.

[4] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning Hierarchical Features for
Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35
(8):1915-1929, 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.231.

[5] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet.
Multi-digit number recognition from street view imagery using deep convolutional neu-
ral networks. In International Conference on Learning Representations, 2014.

[6] Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into geo-
metric and semantically consistent regions. In ICCV, pages 1-8, 2009.

[71 Mingyuan Jiu, Christian Wolf, Graham W. Taylor, and Atilla Baskurt. Human body
part estimation from depth images via spatially-constrained deep learning . Pattern
Recognition Letters, December 2014.

(8]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

(20]

(21]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097-1105, 2012.

Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Wei Koh, and An-
drew Y. Ng. Tiled convolutional neural networks. In In Neural Information Processing
Systems (NIPS), pages 1279-1287, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

Ce Liu, J. Yuen, and A Torralba. Nonparametric scene parsing via label transfer. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 33(12):2368-2382, Dec
2011. ISSN 0162-8828.

Daniel Munoz, J. Andrew (Drew) Bagnell, and Martial Hebert. Stacked hierarchical
labeling. In ECCV, September 2010.

Ronan Collobert Pedro H. O. Pinherio. Recurrent convolutional neural networks for
scene parsing. In International Conference of Machine Learning. 2014.

Raul Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag, 1996.

P. Sermanet, S. Chintala, and Y. Lecun. Convolutional neural networks applied to
house numbers digit classification. In International Conference on Pattern Recognition
(ICPR), pages 3288-3291, 2012.

Roman Shapovalov, Dmitry Vetrov, and Pushmeet Kohli. Spatial inference machines.
CVPR, 0:2985-2992, 2013. ISSN 1063-6919.

Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton forests for
image categorization and segmentation. In CVPR, pages 1-8, June 2008. ISBN 978-1-
4244-2242-5.

P.Y. Simard, D. Steinkraus, and John C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In Seventh International Conference
on Document Analysis and Recognition, pages 958-963, 2003. doi: 10.1109/ICDAR.
2003.1227801.

Joseph Tighe and Svetlana Lazebnik. Superparsing: Scalable nonparametric image
parsing with superpixels. In ECCV, pages 352-365, 2010. ISBN 3-642-15554-5, 978-
3-642-15554-3.

Zhuowen Tu and Xiang Bai. Auto-context and its application to high-level vision tasks
and 3d brain image segmentation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(10):1744-1757, Oct 2010. ISSN 0162-8828.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In Advances in Neural Information Processing Systems, 2013.

