Variable selection for k means quantization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Variable selection for k means quantization

Résumé

Recent results in quantization theory provide theoretical bounds on the distortion of squared-norm based quantizers. These bounds are valid whenever the source distribution has a bounded support, regardless of the dimension of the underlying Hilbertian space. However, it remains of interest to select relevant variable for quantization. This task is usually performed using coordinate energy-ratio thresholding , or maximizing a constrained empirical Between Cluster Sum of Squares criterion. This paper offers a Lasso type procedure to select the relevant variables for $k$-means clustering. Moreover, some non-asymptotic convergence results on the distortion are derived for this procedure, along with consistency results toward sparse codebooks.
Fichier principal
Vignette du fichier
Variable_selection_for_k-means_quantization.pdf (244.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01005545 , version 1 (12-06-2014)
hal-01005545 , version 2 (15-04-2015)
hal-01005545 , version 3 (06-07-2016)

Identifiants

Citer

Clément Levrard. Variable selection for k means quantization. 2014. ⟨hal-01005545v1⟩
411 Consultations
397 Téléchargements

Altmetric

Partager

More