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VARIABLE SELECTION FOR K-MEANS QUANTIZATION

By Clément Levrard

Université Paris Sud, UPMC and INRIA

Recent results in quantization theory provide theoretical bounds
on the distortion of squared-norm based quantizers (see, e.g., [3] or
[10]). These bounds are valid whenever the source distribution has
a bounded support, regardless of the dimension of the underlying
Hilbertian space.

However, it remains of interest to select relevant variable for quan-
tization. This task is usually performed using coordinate energy-ratio
thresholding (see, e.g., [1] or [17]), or maximizing a constrained em-
pirical Between Cluster Sum of Squares criterion (see, e.g., [4] or
[22]). This paper offers a Lasso type procedure to select the relevant
variables for k-means clustering, as exposed in [18]. Moreover, some
non-asymptotic convergence results on the distortion are derived for
this procedure, along with consistency results toward sparse code-
books.

1. Introduction. Let P be a distribution over Rd. Quantization is the
issue of replacing P with a finite set of points, without loosing too much
information. To be more precise, if k denotes an integer, a k points quantizer
Q is defined as a map from R

d into a finite subset of Rd with cardinality
k. In other words, a k-quantizer divide R

d into k groups, and assigns each
group a representative.

The quantization theory was originally developed as a way to answer sig-
nal compression issues in the late 40’s (see, e.g., [6]). However, unsupervised
classification is also in the scope of its application. Isolating meaningful
groups from a cloud of data is a topic of interest in many fields, from social
science to biology.

Assume that P has a finite second moment, and let Q be a k points quan-
tizer. The performance of Q in representing P is measured by the distortion

R(Q) = P‖x−Q(x)‖2,

where Pf means integration of f with respect to P . It is worth pointing
out that many other distortion functions can be defined, using ‖x−Q(x)‖r
or more general distance functions (see, e.g., [5] or [7]). However, the choice
of the Euclidean squared norm is convenient, since it allows to fully take
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advantage of the Euclidean structure of Rd, as described in [10]. Moreover,
from a practical point of view, the k-means algorithm (see [11]) is designed
to minimize this squared-norm distortion and can be easily implemented.

Since the distortion is based on the Euclidean distance between a point
and its image, it is well known that only nearest-neighbor quantizers are to
be considered (see, e.g., [7] or [16]). These quantizers are quantizers of the
type x 7→ argminj=1,...,k ‖x− cj‖, where the ci’s are elements of Rd and are
called code points. A vector of code points (c1, . . . , ck) is called a codebook,
so that the distortion takes the form

R(c) = P min
j=1,...,k

‖x− cj‖2.

It has been proved in [15] that, whenever P‖x‖2 < ∞, there exists optimal
codebooks, denoted by c∗.

Let X1, . . . ,Xn denote an independent and identically distributed sam-
ple drawn from P , and denote by Pn the associated empirical distribution,
namely Pn(A) = 1/n |{i|Xi ∈ A}|, for every measurable subset A. The aim is
to design a codebook from this n-sample, whose distortion is as close as pos-
sible to the optimum R(c∗). The k-means algorithm provides the empirical
codebook ĉn, defined by

ĉn = argmin
1

n

n
∑

i=1

min
j=1,...,k

‖Xi − cj‖2 = argminPn min
j=1,...,k

‖x− cj‖2.

It is worth pointing out that, if P (p) 6= 0, where P (p) denotes the marginal

distribution of P on the j-th coordinate, then ĉ
(p)
n = (ĉ

(p)
1 , . . . , ĉ

(p)
k ) 6= 0.

This shows that the k-means algorithm does not provide sparse solutions,
even if P (j) is a noise distribution.

Consequently, when d is large, a variable selection procedure is usually
performed preliminary to the k-means algorithm. The variable selection
can be achieved using penalized BCCS strategies, as exposed in [4] or [22].
Though these procedures offer good performance in classifying the sample
X1, . . . ,Xn, under the assumption that the marginal distributions P (j) are
independent, no theoretical result on the prediction performance has been
given. An other way to perform variable selection can be to select coordi-
nates whose empirical variances are larger than a determined ratio of the
global variance, following the idea of [17]. This algorithm has shown good re-
sults on practical examples, such as curve clustering (see, e.g., [1]). However,
there is no theoretical result on the prediction performance of the selected
coordinates.
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This paper exposes a theoretical study of a Lasso type procedure com-
bined with the k-means procedure, as suggested in [18]. Some results on
the prediction performance and on the consistency to a sparse codebook are
derived for this procedure, in the spirit of [21]. Some sparsity results on the
empirical codebook are also given. It is worth pointing out that these results
are valid when P satisfies a margin condition, as defined in [10], extending
the scope of the asymptotic results proposed in [18].

The paper is organized as follows. Some notation are introduced in Section
2, along with the Lasso k-means procedure and the different assumptions.
The consistency and prediction results are gathered in Section 3, and the
proof of these results are exposed in Section 4. At last, technical proofs are
to be found in Section 5.

2. Notation. Let x be in R
d, then the p-th coordinate of x will be

denoted by x(p). Throughout this paper, it is assumed that, for every p =
1, . . . , d, there exist a sequence Mp, such that |x(p)| ≤ Mp P -almost surely.
In other words P is assumed to have bounded marginal distributions P (p).
To shorten notation, the Euclidean coordinate product

∏d
p=1 [−Mp,Mp] will

be denoted by C. To frame quantization as a contrast minimization issue,
let us introduce the following contrast function

γ :

{
(

R
d
)k × R

d −→ R

(c, x) 7−→ min
j=1,...,k

‖x− cj‖2 ,

where c = (c1, . . . , ck) denotes a codebook, that is a kd-dimensional vector.
The risk R(c) then takes the form R(c) = R(Q) = Pγ(c, .), where we
recall that Pf denotes the integration of the function f with respect to
P . Similarly, the empirical risk R̂n(c) can be defined as R̂n(c) = Pnγ(c, .),
where Pn is the empirical distribution associated with X1, . . . ,Xn, in other
words Pn(A) = 1/n |{i|Xi ∈ A}|, for every measurable subset A ⊂ R

d.
It is worth pointing out that, if P‖x‖2 < ∞, then there exist such mini-

mizers ĉn and c∗ (see, e.g., Theorem 4.12 in [7]). Throughout this paper it
is assumed that there exists a unique optimal quantizer c∗, up to relabeling
code points.

To size the influence of the different coordinates on the quantization error,
the following coordinate-wise quantization error and variance are introduced.
Let S ⊂ {1, . . . , d} denote a subset of coordinates, and P (S) denote the
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marginal distribution of P over the set R|S|. We may define















σ2
S = PS‖x‖2,

σ̂2
S = PS

n ‖x‖2,
R∗

S = min
c∈CS PSγ(c, .),

R̂∗
S = min

c∈CS PS
n γ(c, .),

where the vector x is element of R|S|. Elementary properties of the distortion
show that, if S = S1 ∪ S2, with empty intersection, then















σ2
S = σ2

S1
+ σ2

S2
,

σ̂2
S = σ̂2

S1
+ σ̂2

S2
,

R∗
S ≥ R∗

S1
+R∗

S2
,

R̂∗
S ≥ R̂∗

S1
+ R̂∗

S2
.

(1)

These elementary properties will be of importance when choosing which
coordinate to select.

The following technical inequality is needed, in order to connect the loss
ℓ(c, c∗) to the distance between codebooks.

Definition 2.1. Assume that there exists a unique optimal quantizer
c∗. Then P satisfies a margin condition if there exists κ0 > 0 such that

∀c ∈ Ck ℓ(c, c∗) ≥ κ0‖c− c∗‖2.(2)

As exposed in [10], Definition 2.1 may be thought of as a margin condition
in the framework of squared distance based quantization. Some examples of
distributions satisfying (2) are given in [10]. Roughly, if P is well concen-
trated around k poles, then (2) will hold. It is also worth mentioning that
the condition required in [18] is much stronger than the condition required
in Definition 2.1, since it requires P to be a mixture of components centered
on the different optimal code points, and that the Hessian matrix of the risk
function located at the optimal codebook is positive definite. As exposed in
[9], the condition mentioned above implies Definition 2.1.

The Lasso k-means procedure, introduced in [18], is defined as follows.

ĉn,λ ∈ arg min
c∈Ck

Pnγ(c, .) + λI(c),(3)

where I(c) denotes a possibly weighted penalty function of the codebook
c. This paper provides results for two types of penalties I(c): a Lasso type
penalty where the weights are chosen to be 1, and a Weighted Lasso type
penalty with adaptive weights.
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Lasso type penalty

In this case the penalty function is chosen by

I(c) = IL(c) =

d
∑

p=1

√

c
(p)2
1 + . . .+ c

(p)2
k .(4)

This L1-type penalty is designed to drive the irrelevant (p)-th coordinates

c
(p)
1 , . . . , c

(p)
k together to zero, as exposed in [2]. The following proposition

gives a theoretical guarantee on the coordinates which are not driven to
zero.

Proposition 2.1. Let p be in {1, . . . , d}. If
√

σ̂2
p − R̂∗

p <
λ

2
,

then
ĉ
(p)
n,λ = (ĉ

(p)
n,λ,1, . . . , ĉ

(p)
n,λ,k) = (0, . . . , 0).

Roughly, Proposition 2.1 ensures that the Lasso k-means procedure selects
only variables whose empirical quantization error is small compared to its
empirical variance. These variables may be interpreted as relevant variables
for the empirical k-quantization error. However, whenMp is small, the choice
of the penalty IL(c) will drive the (p)-th coordinates to 0, even if P (p) is
supported on k points. This scaling issue can be addressed using a Weighted
Lasso penalty, as done in [18].

Weighted Lasso type penalty

The original procedure of Lasso k-means exposed in [18] is indeed a
Weighted Lasso type procedure. However, different weights are proposed
here. For these weights theoretical guarantees are provided on the conver-
gence of the Lasso k-means estimator to a sparse codebook. The proposed
penalty function is the following

ÎWL(c) =

d
∑

p=1

σ̂p

√

c
(p)2
1 + . . .+ c

(p)2
k ,

where the empirical coordinate-wise variances are defined above. The fol-
lowing proposition gives a necessary condition for the p-th coordinate not
to be driven to 0.
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Proposition 2.2. Let p be in {1, . . . , d}. If
√

1−
R̂∗

p

σ̂2
p

<
λ

2
,

then
ĉ
(p)
n,λ = (ĉ

(p)
n,λ,1, . . . , ĉ

(p)
n,λ,k) = (0, . . . , 0).

The scaling issue mentioned above turns out to be addressed, since only
the ratios between empirical variances and empirical k-quantization error are
to be considered to determinate relevant variables. As in the Lasso penalty
case, coordinates with large ratios between empirical k-quantization error
over empirical variance will be driven to zero.

It is worth mentioning that in these two cases non-zero coordinates are
only empirically characterized. The following section provides convergence
results to sparse codebooks, along with prediction results.

3. Results.

3.1. Lasso k-means distortion and consistency. Throughout this subsec-
tion the penalty function I(c) is chosen as IL(c). It is well known that Lasso
type procedures may be thought of as model selection procedures over L1

balls (see, e.g., [13]). This leads to the following result.

Theorem 3.1. Let M∞ denote maxp=1,...,dMp. Choose

λ ≥ 6kM∞
√

2 log(d)√
n

(

1 +
1

2k

√

x

log(d)

)

,

for some x > 0. Then, for every ε > 0, with probability larger than 1 −
(√

kdM∞

ε
+ 1
)

e−x, we have

ℓ(ĉn,λ, c
∗) ≤ inf

r>0
inf

IL(c)≤r
(ℓ(c, c∗) + λ(2r + 3)ε) .

For any codebook c, let ‖c‖0 be defined as |{p|c(p) 6= (0, . . . , 0)}|. Fur-
thermore, assume that P satisfies (2). Then the best sparse approximation
of c∗ at order λ is defined by

c∗λ ∈ arg min
c∈Ck

3R(c) +
8λ2

κ0
‖c‖0,

where κ0 denotes the constant in (2). As in the empirical case of Proposition
2.1, the non-zero coordinates of c∗λ may be characterized in the following way.
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Proposition 3.1. Let p be in {1, . . . , d}. If

σ2
p −R∗

p <
8λ2

3κ0
,

then
c
∗(p)
λ = (0, . . . , 0).

The proof of Proposition 3.1 is given in Section 4. Equipped with this
proposition, we are now in position to state convergence results.

Theorem 3.2. Denote by M∞ = maxp=1,...,d. There exists a constant
cL such that, if

λ ≥ cLM∞

√

k log(kd)√
n

(

1 +

√

log(d
√
n) + x

√

k log(kd)

)

,

then, with probability larger than 1− e−x,

λI(ĉn,λ − c∗λ) ≤
(

3R(c∗λ) +
8λ2

3κ0
‖c∗λ‖0

)

∨ λ2.(5)

Moreover, on the same event, the following prediction result holds

ℓ(ĉn,λ, c
∗) ≤ 4λ2‖c∗‖0

κ0
∨ (2λ2).(6)

Theorem 3.2 can be considered as an application of Theorem 2.1 in [21]
to the framework of vector quantization. It also may be noticed that the
constant cL depends on the constant in Sudakov’s minoration (see, e.g.,
Proposition 3.15 in [12]), hence no explicit calculation of cL is given. The
consistency result shows that, provided that λ is chosen large enough, ĉn,λ
converges toward the sparse approximation c∗λ at a rate smaller than dλ.
This dλ rate corresponds to the case where c∗λ = c∗, and is clearly subop-
timal. Consequently much smaller rates are expected. The prediction result
provides a distortion rate smaller than dλ2. When d is large, this rate is of
little interest. However, if a standard k means algorithm is performed on the
set S of variable selected by the Lasso k-means procedure, in the spirit of
[14], then hopefully a distortion rate of k|S|M2

∞/n could be attained, com-
pared to the best codebook based on this subset (see, e.g., Theorem 3.1 in
[10])). As announced in Section 2, when X(p) has a small range, then the
p-th coordinate will be driven to 0 by the Lasso k-means procedure, regard-
less of its separation capacity. To address this scaling issue, some results are
given for a Weighted Lasso k-means procedure in the following subsection.
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3.2. Weighted Lasso k-means distortion and consistency. In this section

the penalty function is ÎWL(c) =
∑d

p=1 σ̂p

√

c
(p)2
1 + . . .+ c

(p)2
k . The fact that

the weights σ̂p depends on the sample will cause several theoretical troubles.
To address this issue, this penalty function is connected to a deterministic
penalty function, namely

IWL(c) =

d
∑

p=1

σp

√

c
(p)2
1 + . . .+ c

(p)2
k .

Denote by T the quantity maxp=1,...,d
Mp

σp
. The following proposition relates

ÎWL to IWL.

Proposition 3.2. Suppose that 2n > T 2
√

log(d). Then, for every y <

log(d)

(

2n

T 2
√

log(d)
− 1

)2

, we have, with probability larger than 1 − e−y, for

all c in Ck,
√

1− α(y)IWL(c) ≤ ÎWL(c) ≤
√

1 + α(y)IWL(c),(7)

where α(y) =
T 2
√

log(d)√
2n

(

1 +
√

y
log(d)

)

.

The proof of Proposition 3.2 is given in Section 4. Proposition 3.2 en-
sures that, provided that enough sample points are at disposal to cor-
rectly estimates the coordinate-wise variances, the data-driven penalty func-
tion ÎWL(c) should be close to the deterministic penalty function IWL(c).
Equipped with this proposition, some results can be derived for the k-
means procedure with penalty IWL(c) which can be related to results for the
Weighted Lasso k-means procedure we propose. This is the idea motivating
the following results.

Theorem 3.3. Let T denote maxp=1,...,d
Mp

σp
. Let x > 0, and suppose

that 2n > T 2
√

log(d). Choose

y < log(d)

(

2n

T 2
√

log(d)
− 1

)2

.

Suppose that

λ ≥ 1
√

1− α(y)

6kM∞
√

2 log(d)√
n

(

1 +
1

2k

√

x

log(d)

)

,
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where α(y) is defined in Proposition 3.2. Then, for every ε > 0, with proba-

bility larger than 1− e−y −
(√

kσ2T
ε

+ 1
)

e−x, we have

ℓ(ĉn,λ, c
∗) ≤ inf

r>0
inf

IWL(c)≤r
(ℓ(c, c∗) + λ(2r + 4)ε) .

As for the Lasso k-means case, Proposition 3.3 proves that the Weighted
Lasso k-means codebook performs well in distortion compared to optimal
codebooks over L1-balls. As in Proposition 3.1, it is worth mentioning that
Proposition 3.3 is valid even when P does not satisfy (2). The proof of
Proposition 3.3 is postponed to Section 4.

For any codebook c, let S(c) be define as the set of coordinates p such

that (c
(p)
1 , . . . , c

(p)
k ) 6= (0, . . . , 0). As done in the previous section, let c∗λ be

defined as the sparse approximation of c∗ at order λ, by

c∗λ = arg min
c∈Ck

3R(c) +
8(1 + α)λ2σ2

S(c)

κ0
,

where α is a parameter which will be chosen as α(y), for some y > 0. The
non-zero coordinates of c∗λ may be characterized in the following way.

Proposition 3.3. Let p be in {1, . . . , d}. If

1−
R∗

p

σ2
p

<
8(1 + α)λ2

3κ0
,

then
c
∗(p)
λ = (0, . . . , 0).

It is worth mentioning that the threshols takes into account only ra-
tios of the type k-quantization error over variances, avoiding scaling issues.
Equipped with this sparse approximation of c∗, we are now in position to
state the consistency and prediction results for the Weighted Lasso k-means
procedure.

Theorem 3.4. Suppose that 2n > T 2
√

log(d). Choose

y < log(d)

(

2n

T 2
√

log(d)
− 1

)2

,

and x > 0. There exists a constant cWL (the same as cL), such that, if

λ ≥ 1
√

1− α(y)
cWL

√

k log(kd)

n

(

1 +

√

log(σ2
√
n) + x

k log(kd)

)

,
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where α(y) is defined in Proposition 3.2, then, with probability larger than
1− e−x − e−y, we have

(8)
√

1− α(y)λIWL(ĉn,λ − c∗λ) ≤
[

3ℓ(c∗λ, c
∗) +

8(1 + α(y))λ2σ2
S(c∗

λ
)

κ0

]

∨
[

(1− α(y))λ2
]

.

Furthermore, on the same event, the following prediction result holds

ℓ(ĉn,λ, c
∗) ≤

[

8(1 + α(y))σ2
S(c∗)λ

2

κ0

]

∨
[

√

1− α(y)λ2
]

.(9)

As for the Lasso k-means case, Theorem 3.4 ensures that ĉn,λ is close to
its sparse approximation, in the sense of IWL, with a rate possibly much
smaller than λσ2. This rate correspond to the case where the sparse ap-
proximation of c∗ is c∗. This leads to expect much smaller rates for the
deviation between ĉn,λ and c∗λ. However, the prediction result is much more
interesting, since it guarantees a distortion rate of σ2λ2 for the Weighted
Lasso k-means procedure. As mentioned below Theorem 3.2, it is likely that
this distortion rate could be improved by performing a standard k-means
procedure on the set S of selected variables, possibly leading to a distortion
rate of kσ2

ST
2
S/n (see, e.g., Theorem 3.1 in [10]), compared to the optimal

codebook with support S.

4. Proofs. In this section the results are derived for a general penalty
function

Iw(c) =

d
∑

p=1

wp

√

c
(p)2
1 + . . .+ c

(p)2
k ,

for any positive sequence (wp)p=1,...,d. In the Lasso case, wp = 1, whereas in
the Weighted Lasso case wp = σ̂p.

4.1. Proof of Proposition 2.1 and Proposition 2.2. Let V1, . . . , Vk be a
Voronoi partition associated with ĉn,λ, and let L̂ be the matrix of assign-
ments, defined by

L̂i,j = 1Xi∈Vj
.

Suppose that ĉ
(p)
n,λ 6= 0, where through this subsection ĉ

(p)
n,λ will denote the

column vector (ĉ
(p)
n,λ,1, . . . , ĉ

(p)
n,λ,k)

t, and denote by X̂(p) the column vector

(X
(p)
1 , . . . ,X

(p)
k )t. Then the Karush-Kuhn-Tucker condition, for the empirical
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risk strategy penalized with Iw(ĉn,λ), implies that (see, e.g., the proof of
Theorem 2 in [18])

−2√
n
L̂t
(

X̂(p) − L̂ĉ
(p)
n,λ

)

+
√
nλ

wpĉ
(p)
n,λ

‖ĉ(p)n,λ‖
= 0.(10)

Since L̂t
(

X̂(p) − L̂ĉ
(p)
n,λ

)

is the following vector of size k





∑

Xi∈V1

(X
(p)
i − ĉ

(p)
n,λ,1), . . . ,

∑

Xi∈Vk

(X
(p)
i − ĉ

(p)
n,λ,k)



 ,

it may be noted that

∥

∥

∥L̂t
(

X̂(p) − L̂ĉ
(p)
n,λ

)∥

∥

∥

2
=

k
∑

j=1

n2
j(c̄

(p)
j − ĉ

(p)
n,λ,j)

2,

where nj denote the number of sample vector Xi’s in Vj , and c̄j denote the
empirical mean of the sample over the set Vj, that is c̄j = 1

nj

∑

Xi∈Vj
Xi.

Denote by p̂j the empirical weight of Vj , that is p̂j = nj/n, then

1

n2

∥

∥

∥
L̂t
(

X̂(p) − L̂ĉ
(p)
n,λ

)∥

∥

∥

2
≤

k
∑

j=1

p̂j(c̄
(p)
j − ĉ

(p)
n,λ,j)

2,

where p̂j ≤ 1 has been used. Let Q1 be the quantizer which maps Vj to c̄j ,
then it is easy to see that

k
∑

j=1

p̂j(c̄
(p)
j − ĉ

(p)
n,λ,j)

2 = R̂p(ĉn,λ)− R̂p(Q1).

Since R̂p(ĉn,λ)− R̂p(Q1) ≤ σ̂2
p − R̂p, (10) ensures that

λwp

2
≤
√

σ̂2
p − R̂p.

Taking wp = 1 gives the result of Proposition 2.1 and wp = σ̂p gives the
result of Proposition 2.2.
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4.2. Proof of Proposition 3.2. Heffding’s inequality ensures that, for ev-

ery p = 1, . . . , d,
σ̂2
p

σ2
p
− 1 is a subgaussian random variable with variance

bounded by T 4

4n . For a comprehensive introduction to subgaussian random
variables and its application to empirical processes theory, the interested
reader is referred to [12]. Applying Theorem 3.12 in [12] and a bounded dif-
ference concentration inequality (see, e.g., Theorem 5.1 in [12]) yields, with
probability larger than 1− e−y,

max
p=1,...,d

∣

∣

∣

∣

∣

σ̂2
p

σ2
p

− 1

∣

∣

∣

∣

∣

≤ T 2
√

log(d)√
2n

(

1 +

√

y

log(d)

)

.

Taking into account that 2n > T 2
√

log(d) and y < log(d)

(

2n

T 2
√

log(d)
− 1

)2

leads to the result.

4.3. Proof of Proposition 3.1. Let S be a subset of {1, . . . , d}, and let p
be in S such that

σ2
p −R∗

p <
8λ2

3κ0
.

Denote by c∗S an optimal codebook with support S, that is

c∗S = arg min
S(c)=S

R(c).

Then, according to (1), we may write

R(c∗S\{p})−R(c∗S) ≤ R∗
S\{p} + σ2

(S\{p})c − (R∗
S\{p} +R∗

p)− σ2
Sc

≤ σ2
p −R∗

p.

Therefore

3R(c∗S\{p}) +
8λ2

κ0
‖c∗S\{p}‖0 < 3R(c∗S) +

8λ2

κ0
‖c∗S‖0.

4.4. Proof of Proposition 3.3. Adopting the notation of the previous sub-

section, let p be in S such that 1 − R∗

p

σ2
p
< 8(1+α)λ2

κ0
. Then, it can be derived

the same way as in the previous subsection that

R(c∗S\{p})−R(c∗S) ≤ σ2
p −R∗

p.

This leads to

3R(c∗S\{p}) +
8λ2(1 + α)

κ0
σ2
S\{p} < 3R(c∗S) +

8λ2(1 + α)

κ0
σ2
S .
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4.5. Proof of Theorem 3.1. As in the proof of Proposition 2.1, through-
out this subsection, the penalty function is chosen as Iw(c), for a sequence
of weights w. Let T (w) denote the quantity

T (w) = max
p=1,...,d

Mp

wp

.

Then T (w) = M∞ in the Lasso case and T (w) = T in the Weighted Lasso
case. Let also M̄(w) be defined as

√
k‖w‖2T (w). It is immediate that, for

every c in Ck, Iw(c) ≤ M̄(w).
Let γ̄ be defined as

γ̄(c, x) = min
j=1,...,k

−2 〈x, cj〉+ ‖cj‖2,

for every c in Ck and x in R
d. The following proposition, inspired from

Theorem 2.1 in [3], offers an upper bound on the deviations between Pn and
P on the set of possible γ̄ constrained by Iw(c).

Proposition 4.1. Suppose that w is deterministic. Let x > 0. Then,
with probability larger than 1− e−x, we have

sup
Iw(c)≤r

(P − Pn)γ̄(c, .) ≤ r
6kT (w)

√

2 log(d)√
n

(

1 +
1

2k

√

x

log(d)

)

.

It is worth mentioning that the requirements that w is deterministic pre-
vents from directly choosing wp = σ̂p. This issue will be addressed in the fol-

lowing subsection. Now choose λ ≥ 6kT (w)
√

2 log(d)√
n

(

1 + 1
2k

√

x
log(d)

)

, and let

ε > 0. Define K(ε) = ⌈M̄(w)
ε

⌉, that is the smallest integer larger than M̄(w)
ε

,

and m̂ = ⌈ Iw(ĉn,λ)
ε

⌉. Then, applying a union bound to Proposition 4.1, it fol-
lows that, with probability larger than 1−K(ε)e−x, for all m = 1, . . . ,K(ε),

sup
Iw(c)≤mε

(P − Pn)γ̄(c, .) ≤ mε
6kT (w)

√

2 log(d)√
n

(

1 +
1

2k

√

x

log(d)

)

.

On this event, we have

Pnγ̄(ĉn,λ, .) + λIw(ĉn,λ) ≤ inf
r>0

inf
Iw(c)≤r

(Pnγ̄(c, .) + λr)

≤ inf
m=1,...,K(ε)

inf
Iw(c)≤mε

(Pnγ̄(c, .) + λmε) .
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It follows that

P γ̄(ĉn,λ, .) ≤ Pnγ̄(ĉn,λ, .) + λm̂ε

≤ Pnγ̄(ĉn,λ, .) + λIw(ĉn,λ) + λε

≤ inf
m=1,...,K(ε)

inf
Iw(c)≤mε

(P γ̄(c, .) + λ(2m+ 1)ε) .

Adding −P γ̄(c∗, .) on both sides leads to

ℓ(ĉn,λ, c
∗) ≤ inf

m=1,...,K(ε)
inf

Iw(c)≤mε
(ℓ(c, c∗) + λ(2m+ 1)ε)

≤ inf
r>0

inf
Iw(c)≤r

(ℓ(c, c∗) + λ(2m+ 3)ε) .

Choosing wp = 1 concludes the proof for the Lasso k-means procedure.

4.6. Proof of Theorem 3.3. The proof of Theorem 3.3 is almost the same
as the proof of Theorem 3.1, with weights wp = σp, leading to T (w) =
T . To avoid confusion, IWL(c) will denote Iw(c) with weights wp = σp,
and ÎWL(c) will denote Iw(c) with weights wp = σ̂p. Let λ be larger than

1√
1−α(y)

6kM∞

√
2 log(d)√
n

(

1 + 1
2k

√

x
log(d)

)

, then, with probability larger than

1− e−y −
(√

kdT
ε

+ 1
)

e−x we have, for every c in Ck,

Pnγ̄(ĉn,λ, .) + λÎWL ≤ Pnγ̄(c, .) +
√

1 + α(y)λIWL(c).

It follows that

Pnγ̄(ĉn,λ, .) + λÎWL(ĉn,λ)

≤ inf
m=1,...,K(ε)

inf
IWL(c)≤mε

Pnγ̄(c, .) +
√

1 + α(y)mε

≤ inf
m=1,...,K(ε)

inf
IWL(c)≤mε

P γ̄(c, .) + (
√

1 + α(y)mε+
√

1− α(y)mε

≤ inf
r>0

inf
IWL(c)≤r

P γ̄(c, .) +
√

1 + α(y)(r + ε) +
√

1− α(y)(r + ε),

where the middle inequality follows from Proposition 4.1. On the other, it
may be written that

P γ̄(ĉn,λ, .) ≤ Pnγ̄(ĉn,λ, .) +
√

1− α(y)λm̂ε

≤ Pnγ̄(ĉn,λ, .) +
√

1− α(y)λε+ λÎWL(ĉn,λ),

according to Proposition 3.2. Combining these two inequalities and taking
into account that

√

1− α(y) +
√

1 + α(y) ≤ 2 leads to the result.
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4.7. Proof of Theorem 3.2. As done in the previous subsection, the re-
sults are derived for a generic penalty function

Iw(c) =

d
∑

p=1

wp

√

c
(p)
1 2 + . . .+ c

(p)2
k .

The main argument of this proof relies on a comparison between (P −
Pn)(γ̄(c, .) − γ̄(c′, .)) and Iw(c− c′), stated in the following proposition.

Proposition 4.2. Suppose that w is deterministic. Denote by u the

quantity log

(

‖w‖2√n√
log(kd)

)

. There exists a constant L > 1 such that, if we

denote by

λ0 = 16L

√

k log(kd)

n
T (w),

then, for every x > 0, denoting by

λ1 = eλ0

(

1 +

√

u+ x

k log kd

)

,

we have, for any fixed c′ in Ck, with probability larger than 1− e−x,

sup
Iw(c−c

′)≤2M̄(w)

|(P − Pn)(γ(c, .) − γ(c′, .))|
Iw(c− c′) ∨ λ0

≤ λ1,(11)

where we recall that M̄(w) =
√
k‖w‖2T (w).

The proof of Proposition 4.2 relies on Section 3.4 in [21], and is post-
poned to the next section. The consistency result also relies on the following
Lemma, which connects the L1 penalty to the size of the support. For any
subset S ⊂ {1, . . . , d} and vector x in R

d, the truncated vector xS is defined
by

x
(p)
S = x(p)1p∈S .

Moreover, let S(c) denote the support of c, that is the set of coordinates

such that (c
(p)
1 , . . . , c

(p)
k ) 6= (0, . . . , 0). At last, for a fixed c′ in Ck, following

the notation of [21], with a slight abuse of notation, we denote by Iw,1(c−c′)
and Iw,2(c− c′) the quantities

{

Iw,1(c− c′) = Iw((c − c′)S(c′)),
Iw,2(c− c′) = Iw((c − c′)Sc(c′)).

The following result is derived from Lemma A.4 in [20].
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Lemma 4.1. Let c′ be a fixed codebook. Then, for every c in Ck and
δ > 0,

2λIw,1(c− c′) ≤ 1

δ
ℓ(c, c∗) +

1

δ
ℓ(c′, c∗) +

2δλ2

κ0
‖wS(c′)‖2.(12)

The proof of Lemma 4.1 can be found in [20]. For the sake of completeness
it is briefly recalled here.

Proof of Lemma 4.1. Using Cauchy-Schwarz inequality, it is easy to
see that

2λIw,1(c− c′) ≤ 2λ

√

∑

p∈§(c′)
w2
p‖c− c′‖

≤ 2λ

√

∑

p∈§(c′)
w2
p(‖c − c∗‖+ ‖c′ − c∗‖).

Using the inequality 2ab ≤ κ0
δ
a2 + δ

κ0
b2, and applying (2) leads to

2λIw,1(c− c′) ≤ 1

δ
(ℓ(c, c∗) + ℓ(c, c′)) +

2δλ2

κ0
‖wS(c′)‖2.

Now turn to the case where w = 1, so that ‖wS(c′)‖2 = ‖c′‖0, and choose
λ ≥ 2λ1. Let c′ be a fixed codebook, to be chosen later. The fundamental
Lasso inequality yields

Pnγ(ĉn,λ, .) + λIL(ĉn,λ) ≤ Pnγ(c
′, .) + λIL(c

′, .),

so that

Pγ(ĉn,λ, .)+λIL(ĉn,λ) ≤ Pγ(c′, .)+λIL(c
′, .)+(P −Pn)(γ(ĉn,λ, .)−γ(c′, .)).

Splitting IL(ĉn,λ) in IL,1(ĉn,λ) + IL,2(ĉn,λ), it may be easily derived that
IL(c

′)−IL,1(ĉn,λ) ≤ IL,1(ĉn,λ−c′) and IL,2(ĉn,λ) = IL,2(ĉn,λ−c′). It follows
that

Pγ(ĉn,λ, .) + λIL,2(ĉn,λ − c′) ≤ Pγ(c′, .) + λIL,1(ĉn,λ − c′)

+ (P − Pn)(γ(ĉn,λ, .)− γ(c′, .)).
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Consequently, Proposition 4.2 yields, with probability larger than 1− e−x,

ℓ(c, c∗)+λIL(ĉn,λ − c′)

≤ ℓ(c′, c∗) + 2λIL,1(ĉn,λ − c′) + (P − Pn)(γ(ĉn,λ, .)− γ(c′, .))

≤ ℓ(c′, c∗) + λ1(IL(ĉn,λ − c′) ∨ λ0) + 2λIL,1(ĉn,λ − c′).(13)

Hence, applying Lemma 4.1 with δ = 2 leads to

ℓ(ĉn,λ, c
∗) + 2λIL(ĉn,λ − c′) ≤ 3ℓ(c′, c∗)

8λ2

κ0
‖c′‖0 + 2λ1(IL(ĉn,λ − c′) ∨ λ0).

(14)

If I(ĉn,λ − c′) ≤ λ0, then it is clear that λI(ĉn,λ − c′) ≤ λ2. Otherwise,
we have

2λIL(ĉn,λ − c′) ≤ 3ℓ(c′, c∗)
8λ2

κ0
‖c′‖0 + 2λ1I(ĉn,λ − c′).

Since λ ≥ 2λ1, the consistency result easily follows, taking c′ = c∗λ. Let us
turn to the prediction result.

If IL(ĉn,λ − c∗) ≤ λ0, then IL,1(ĉn,λ − c∗) ≤ λ0. Consequently, taking
c′ = c∗ in (13) yields

ℓ(ĉn,λ, c
∗) ≤ λ0λ1 + 2λλ0.

Since λ0 ≤ λ1 ≤ λ/2, it may be easily derived that ℓ(ĉn,λ, c
∗) ≤ 2λ2. If

IL(ĉn,λ − c∗) > λ0, then taking c′ = c∗ in (14) ensures that

ℓ(ĉn,λ, c
∗) + 2(λ− λ1)IL(ĉn,λ − c∗) ≤ 8λ2

κ0
‖c∗‖0.

4.8. Proof of Theorem 3.4. Throughout this subsection, the sequence w
will be chosen as wp = σp, so that T (w) = T and M̄(w) =

√
kσ2T . Choose

λ ≥ 2√
1−α(y)

λ1, where λ1 is defined in Proposition 4.2. By definition of the

Weighted Lasso k-means procedure, we have

Pnγ(ĉn,λ, .) + λÎWL(ĉn,λ) ≤ Pnγ(c
′, .) + λÎWL(c

′).

As in the previous subsection, this leads to

ℓ(ĉn,λ, c
∗) + λÎWL(ĉn,λ − c′) ≤ ℓ(c′, c∗) + 2λÎWL,1(ĉn,λ − c′)

+ (P − Pn)(γ(ĉn,λ, .)− γ(c′, .)).
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Using Proposition 3.2 and Proposition 4.2, it easily follows that, with prob-
ability larger than 1− e−x − e−y,

(15)

ℓ(ĉn,λ, c
∗)+λ

√

1− α(y)IWL(ĉn,λ−c′) ≤ ℓ(c′, c∗)+λ1(IWL(ĉn,λ−c′)∨λ0)

+ 2
√

1 + α(y)IWL,1(ĉn,λ − c′).

Now, applying Lemma 4.1 with δ = 1

2
√

1+α(y)
and choosing c′ = c∗λ leads

to

1

2ℓ(ĉn,λ, c∗)
+ λ

√

1− α(y)IWL(ĉn,λ − c∗λ)

≤ 3

2
ℓ(c∗λ, c

∗) +
4(1 + α(y))λ2σ2

S(c∗
λ
)

κ0
+ λ1(IWL(ĉn,λ − c∗λ) ∨ λ0).

Recalling that λ ≥ 2√
1−α(y)

λ1 and λ1 ≥ λ0, if I(ĉn,λ − c∗λ) ≤ λ0, then

λIWL(ĉn,λ − c∗λ) ≤
√

1− α(y)λ2.

Otherwise, we have

λIWL(ĉn,λ − c∗λ) ≤
1

√

1− α(y)

[

3ℓ(c∗λ, c
∗) +

8(1 + α(y))λ2σ2
S(c∗

λ
)

κ0

]

.

Let us turn now to the prediction result. Suppose that IWL(ĉn,λ− c∗) ≤ λ0.
Then, if c′ = c∗, the Lasso inequality combined with Proposition 4.2 ensures
that

ℓ(ĉn,λ, c
∗) + λÎWL,2(ĉn,λ − c∗) ≤ λ1λ0 + λÎWL,1(ĉn,λ − c∗),

which leads to, applying Proposition 3.2,

ℓ(ĉn,λ, c
∗) ≤ λ1λ0 +

√

1 + α(y)λλ0

≤ λ2

2

(

√

(1− α(y))(1 + α(y)) +
1

2
(1− α(y))

)

.

Since
√

1− α(y) +
√

1 + α(y) ≤ 2, it is easy to see that

ℓ(ĉn,λ, c
∗) ≤

√

1− α(y)λ2.

Now if IWL(ĉn,λ − c∗) > λ0, choosing c′ = c∗ in (15) and applying Lemma
4.1, with δ = 1

2
√

1+α(y)
, leads to

1

2
ℓ(ĉn,λ, c

∗) +

√

1− α(y)

2
λIWL(ĉn,λ − c∗) ≤

4(1 + α(y))σ2
S(c∗)λ

2

κ0
.
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5. Technical proofs.

5.1. Proof of Proposition 4.1. This proof is a slight modification of a
result in [3], namely Lemma 4.3. Introducing some independent Rademacher
variables εi, i = 1, . . . , n, such that εi = ±1 with probability 1/2, and
applying the symmetrization principle (see, e.g., Section 2.2 in [8]) leads to

E sup
Iw(c)≤r

(P − Pn)γ̄(c, .) ≤ 2EXEε
1

n

n
∑

i=1

εi min
j=1,...,k

−2 〈Xi, cj〉+ ‖cj‖2,

where EZ means expectation with respect to the law of Z, for some random
variable Z. Let us denote by Iw(c) the norm Iw(c) =

∑d
p=1wp|cp|, for a code

point c in C. Proceeding by induction on k as done in Lemma 4.3 ii) in [3],
we may write

Eε sup
Iw(c)≤r

1

n

n
∑

i=1

εi min
j=1,...,k

−2 〈Xi, cj〉+ ‖cj‖2

≤ 2k

[

Eε sup
Iw(c)≤r

1

n

n
∑

i=1

εi 〈Xi, c〉 +
rT (w)

2
√
n

]

.

At last, it is immediate that

EX,ε sup
I(c)≤r

〈

c,
1

n

n
∑

i=1

εiXi

〉

≤ rEX,ε sup
p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

εi
X

(p)
i

wp

∣

∣

∣

∣

∣

.

When X1, . . . ,Xn is fixed, Hoeffding’s inequality ensures that, for every

p = 1, . . . , d,
∑n

i=1 εi
X

(p)
i

wp
is subgaussian with variance T (w)2

n
. For a compre-

hensive introduction to subgaussian variables and its application to empirical
processes theory the interested reader is referred to [12]. Applying Theorem
3.12 of [12] ensures that

Eε sup
p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

εi
X

(p)
i

wp

∣

∣

∣

∣

∣

≤
√

2 log(d)
T (w)√

n
,

which leads to

E sup
Iw(c)≤r

(P − Pn)γ̄(c, .) ≤
2kT (w)√

n
r +

4k
√

2 log(d)T (w)√
n

r.

Applying a bounded difference concentration inequality such as Theorem
5.1 in [12] leads to the desired result.
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5.2. Proof of Proposition 4.2. For a fixed c′ in ck, denote by Zr(c
′) the

following random variable

Zr(c
′) = sup

Iw(c−c
′)≤r

∣

∣(P − Pn)(γ(c, .) − γ(c′, .)
∣

∣

The following proposition offers a bound on Zr(c
′).

Proposition 5.1. Suppose that w is deterministic. Let x > 0, and c′

be a fixed codebook. Then there exists a constant L > 1 such that, with
probability larger than 1− e−x,

Zr(c
′) ≤ 16L

√

k log(kd)

n
rT (w)

(

1 +
1√
2L

√

x

k log(kd)

)

.

The proof of Proposition 5.1 can be found in the next subsection. Propo-
sition 4.2 derives from a peeling argument, as in Section 3.4 of [21], com-
bined with Proposition 5.1. Let a be such that e−(a−1)2M̄ ≤ λ0, and take
u0 = log(a). Then it is easy to see that u0 ≤ u, where u is defined in
Proposition 4.2. We may write

P

(

sup
Iw(c−c

′)≤2M̄(w)

|(P − Pn)(γ(c, .) − γ(c′, .))|
Iw(c− c′) ∨ λ0

≥ λ1

)

≤
a
∑

j=2

P









sup
Iw(c−c

′)≤2e−(j−1)M̄(w)
Iw(c−c

′)≥2e−jM̄(w)

|(P − Pn)(γ(c, .) − γ(c′, .))|
2e−jM̄(w)

≥ λ1









+ P

(

sup
Iw(c−c

′)≤λ0

|(P − Pn)(γ(c, .) − γ(c′, .))|
2e−(a−1)M̄(w)

≥ λ1

)

≤
a
∑

j=1

P

(

Z2e−(j−1)M̄(w) ≥ 2e−(j−1)M̄(w)λ0

(

1 +

√

u+ x

k log kd

))

≤ ae−ue−x,

where the last inequality follows from Proposition 5.1 and the fact that
L > 1. Noticing that ae−u ≤ 1 proves the result.

5.3. Proof of Proposition 5.1. This proof is a slight modification of the
proof of Theorem 3.1 in [10], and mainly relies on Talagrand’s generic chain-
ing principle (see, e.g., [19]). First, it may be easily noticed that, for every
j = 1, . . . , k, if Iw(c− c′) ≤ r, then, for all x in R

d,
∣

∣−2 〈x, cj〉+ ‖cj‖2 + 2
〈

x, c′j
〉

− ‖c′j‖2
∣

∣ ≤ 4rT,
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which leads to
‖γ(c, .) − γ(c′, .)‖∞ ≤ 4rT (w).

As a consequence, a bounded difference concentration inequality (see, e.g.,
Theorem 5.1 in [12]) yields, with probability larger than 1− e−x,

Zr ≤ EZr + 4rT (w)

√

2x

n
.

It remains to bound from above EZr. According to the symmetrization prin-
ciple (see, e.g., Section 2.2 of [8]), we may write

EZr ≤ 2EXEε sup
Iw(c−c

′)≤r

1

n

n
∑

i=1

εi(γ(c,Xi)− γ(c′,Xi)),

where the εi’s are independent Rademacher variables. Let X1, . . . ,Xn be
fixed, and define, for c such that Iw(c− c′) ≤ r the random variable

Yc =
n
∑

i=1

εiγ(c,Xi).

Define the pseudo-distance d0(c, c
′) by

d20(c, c
′) =

n
∑

i=1

k
∑

j=1

8
〈

cj − c′j
〉2

+ 2n

k
∑

j=1

(‖cj‖2 − ‖c′j‖2)2.

Since

(γ(c,Xi)− γ(c′,Xi))
2 ≤ max

j=1,...,k
8
〈

cj − c′j
〉2

+ 2(‖cj‖2 − ‖c′j‖2)2,

it is easy to see that, when X1, . . . ,Xn is fixed, Yc1 − Yc2 is a subgaussian
random variable with variance smaller than d20(c1, c2). The main argument
of our proof is the following Theorem 2.1.5 of [19].

Theorem 5.1. Let Yv, v ∈ V denote a centered stochastic process in-
dexed by V, and Xv denote a centered Gaussian process indexed by the same
set V. Let d be a pseudo-distance over V such that

i) ∀ v, v′ ∈ V Yv − Yv′ is subgaussian with variance d2(v, v′),
ii) ∀ v, v′ ∈ V Var(Xv −Xv′) = d2(v, v′).

Then there exists a universal constant L > 1 such that

E sup
v∈V

(Yv − Yv0) ≤ LE sup
v∈V

(Xv −Xv0),

where v0 is a fixed element of V.
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Denote by V the set of codebooks c in Ck such that Iw(c− c′) ≤ r. Now
introduce, for c such that Iw(c− c′) ≤ r, the following Gaussian process

Nc = 2
√
2

n
∑

i=1

k
∑

j=1

〈cj ,Xi〉 ξi,j +
√
2n

k
∑

j=1

‖cj‖2ξ′j,

where the ξ’s and ξ′’s are independent standard Gaussian random variables.
It is worth noticing that, for all c1 and c2 in V, Var(Nc1 −Nc2) = d20(c1, c2).
Consequently, applying Theorem 5.1 to the set V, equipped with the pseudo-
distance d0, yields

Eε sup
Iw(c−c

′)≤r

Yc − Y
c
′ ≤ LEξ,ξ′ sup

Iw(c−c
′)≤r

Nc −N
c
′ .

It follows that

Eξ,ξ′ sup
Iw(c−c

′)≤r

Nc −Nc
′ ≤ Eξ sup

Iw(c−c
′)≤r

2
√
2

n
∑

i=1

k
∑

j=1

〈

cj − c′j ,Xi

〉

ξi,j

+ Eξ′ sup
Iw(c−c

′)≤r

√
2n

k
∑

j=1

(‖cj‖2 − ‖c′j‖2)ξ′j .

The first term of the right side can be bounded as follows.

Eξ sup
Iw(c−c

′)≤r

2
√
2

n
∑

i=1

k
∑

j=1

〈

cj − c′j ,Xi

〉

ξi,j

≤ 2
√
2Eξ sup

Iw(c−c
′)≤r

k
∑

j=1

〈

cj − c′j ,
n
∑

i=1

ξi,jXi

〉

≤ 2
√
2Eξ sup

Iw(c−c
′)≤r





k
∑

j=1

d
∑

p=1

wp|c(p)j − c′(p)j |



max
j,p

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

≤ 2
√
2krEξ max

j=1,...,k,p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

.

It is worth noticing that, for every (j, p), the random variable
∑n

i=1
ξi,jX

(p)
i

wp
is

Gaussian, with variance bounded by nT 2(w). Consequently, applying The-
orem 3.12 in [12] gives

Eξ max
j=1,...,k,p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

≤ T (w)
√

2n log(kd).
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In turn, the second term of the right side may be bounded by

Eξ′ sup
Iw(c−c

′)≤r

√
2n

k
∑

j=1

(‖cj‖2 − ‖c′j‖2)ξ′j

≤
√
2nEξ′ sup

Iw(c−c
′)≤r

k
∑

j=1





d
∑

p=1

wp|c(p)j − c′(p)j |2Mp

wp





∣

∣ξ′j
∣

∣

≤ 2
√
2nT (w)Eξ′ sup

Iw(c−c
′)≤r

I(c − c′)

√

√

√

√

k
∑

j=1

ξ′2j

≤ 2T (w)r
√
2nk.

Combining these two bounds leads to

EZr(c
′) ≤ 16L

√

k log(kd)

n
rT (w).
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