Audio Declipping with Social Sparsity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Audio Declipping with Social Sparsity

Résumé

We consider the audio declipping problem by using iterative thresholding algorithms and the principle of social sparsity. This recently introduced approach features thresholding/shrinkage operators which allow to model dependencies between neighboring coefficients in expansions with time-frequency dictionaries. A new unconstrained convex formulation of the audio declipping problem is introduced. The chosen structured thresholding operators are the so called \emph{windowed group-Lasso} and the \emph{persistent empirical Wiener}. The usage of these operators significantly improves the quality of the reconstruction, compared to simple soft-thresholding. The resulting algorithm is fast, simple to implement, and it outperforms the state of the art in terms of signal to noise ratio.
Fichier principal
Vignette du fichier
SDK_icassp14.pdf (189.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01002998 , version 1 (08-06-2014)

Identifiants

Citer

Kai Siedenburg, Matthieu Kowalski, Monika Dörfler. Audio Declipping with Social Sparsity. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), May 2014, Florence, Italy. pp.AASP-L2, ⟨10.1109/icassp.2014.6853863⟩. ⟨hal-01002998⟩
360 Consultations
1433 Téléchargements

Altmetric

Partager

More