Two floor building needing eight colors - Archive ouverte HAL
Article Dans Une Revue Journal of Graph Algorithms and Applications Année : 2015

Two floor building needing eight colors

Stéphane Bessy
Jean-Sébastien Sereni
  • Fonction : Auteur
  • PersonId : 1026915
  • IdRef : 110354540

Résumé

Motivated by frequency assignment in office blocks, we study the chromatic number of the adjacency graph of 3-dimensional parallelepiped arrangements. In the case each parallelepiped is within one floor, a direct application of the Four-Colour Theorem yields that the adjacency graph has chromatic number at most 8. We provide an example of such an arrangement needing exactly 8 colours. We also discuss bounds on the chromatic number of the adjacency graph of general arrangements of 3-dimensional parallelepipeds according to geometrical measures of the parallelepipeds (side length, total surface or volume).
Fichier principal
Vignette du fichier
BessyGoncalvesSereni2015.19.1.pdf (534.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00996709 , version 1 (26-05-2014)
hal-00996709 , version 2 (07-01-2016)

Identifiants

Citer

Stéphane Bessy, Daniel Gonçalves, Jean-Sébastien Sereni. Two floor building needing eight colors. Journal of Graph Algorithms and Applications, 2015, 19 (1), pp.1--9. ⟨10.7155/jgaa.00344⟩. ⟨hal-00996709v2⟩
362 Consultations
133 Téléchargements

Altmetric

Partager

More