Two floor building needing eight colors - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2014

Two floor building needing eight colors

Stéphane Bessy
Jean-Sébastien Sereni
  • Fonction : Auteur
  • PersonId : 1026915
  • IdRef : 110354540

Résumé

Motivated by frequency assignment in office blocks, we study the chromatic number of the adjacency graph of 3-dimensional parallelepiped arrangements. In the case each parallelepiped is within one floor, a direct application of the Four-Colour Theorem yields that the adjacency graph has chromatic number at most 8. We provide an example of such an arrangement needing exactly 8 colours. We also discuss bounds on the chromatic number of the adjacency graph of general arrangements of 3-dimensional parallelepipeds according to geometrical measures of the parallelepipeds (side length, total surface or volume).
Fichier principal
Vignette du fichier
BGS14.pdf (120.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00996709 , version 1 (26-05-2014)
hal-00996709 , version 2 (07-01-2016)

Identifiants

  • HAL Id : hal-00996709 , version 1

Citer

Stéphane Bessy, Daniel Gonçalves, Jean-Sébastien Sereni. Two floor building needing eight colors. [Research Report] LIRMM (UM, CNRS). 2014. ⟨hal-00996709v1⟩
359 Consultations
127 Téléchargements

Partager

More